Soriano Ruiz, Luis E. (2023) Caracterización de rendimiento de blanco de 68Ga a partir de 68Zn mediante irradiación con protones en ciclotrón de 11 Mev / 68Zn/68Ga Cyclotron target yield characterization using 11 Mev proton beam irradiation. Maestría en Física Médica, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Español 7Mb |
Resumen en español
Debido a múltiples ventajas, actualmente la producción en ciclotrón de 68"Ga, para la marcación de radiofármacos PET, se está convirtiendo en una alternativa cada vez más viable frente a los tradicionales generadores 68"Ge/68"Ga. Al presente, los ciclotrones más vendidos poseen haces de protones con energías de 16.5 a 18 MeV. A partir de simulación Monte Carlo, este trabajo evalúa la potencialidad de producción de 68"Ga en blancos sólidos y líquidos utilizando ciclotrón con energía nominal de haz de protones significativamente menor, de 11 MeV. Las simulaciones en FLUKA se realizaron en base a las composiciones isotópicas y contaminantes reportados por los fabricantes de los sustratos para blancos sólidos y líquidos del 68"Zn enriquecido, un modelado geométrico simplificado, modelado del haz ajustado sobre parámetros físicos reales del ciclotrón, el transporte y la detección de distintas magnitudes relevantes. Se determinaron los rendimientos de saturación para la producción de 68"Ga de blancos con y sin refrigeración anterior mediante He. Los blancos sólidos presentan valores de GBq/μA, mientras que para los blancos líquidos el orden de magnitud es de MBq/μA, concordantes con los valores experimentales reportados en la literatura. Simultáneamente, fue posible determinar la producción de radioisótopos contaminantes debido a las reacciones nucleares colaterales, coincidiendo varios de ellos con radioisótopos encontrados experimentalmente por otros autores.
Resumen en inglés
Nowadays the 68"Ga production for PET radiopharmaceuticals is moving from the already established technique based on 68"Ge/68"Ga generators to a cyclotron target irradiation alternative since it offer numerous advantages. At present the greatest commercial demand is focused on proton energy cyclotron ranging from 16.5 to 18 MeV.This work relies on Monte Carlo simulation techniques to study the potential of 68"Ga production with solid and liquid targets by using the locally available 11 MeV proton beam cyclotron. The FLUKA simulations were performed considering the isotopic compositions and contaminants reported by the manufacturers of the enriched 68"Zn substrates for solid and liquid targets, a simplified geometric modeling, beam modeling tailored to the actual physical parameters, transport and detection of a number of relevant quantities. 68"Ga saturation yields were determined for targets with and without front He gas cooling. Solid targets show magnitudes of GBq/μA while liquid targets are MBq/μA order. Those results are consistent with experimental values reported on the literature. It was also possible to determine contaminating radioisotopes production due to collateral nuclear reactions, many of them match with radioisotopes experimentally found by other authors.
Tipo de objeto: | Tesis (Maestría en Física Médica) |
---|---|
Palabras Clave: | Proton beams; Haces de protones; [FLUKA; Liquid target; Blanco líquido; Solid target; Blanco sólido; Monte Carlo simulation; Simulación Monte Carlo; Cyclotron; Ciclotrón] |
Referencias: | [1] Dasari, A., Shen, C., Halperin, D., Zhao, B., Zhou, S., Xu, Y., et al. Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the united states. JAMA oncology, 3 (10), 1335–1342, 2017. 1 [2] Zhang, J. Y., Kunz, P. L. Making sense of a complex disease: A practical approach to managing neuroendocrine tumors. JCO Oncology Practice, 18 (4), 258–264, 2022. 2 [3] Evangelista, L., Ravelli, I., Bignotto, A., Cecchin, D., Zucchetta, P. Ga-68 dotapeptides and f-18 fdg pet/ct in patients with neuroendocrine tumor: A review. Clinical Imaging, 67, 113–116, 2020. 1, 2 [4] O’Connor, J. M., Marmissolle, F., Bestani, C., Pesce, V., Belli, S., Dominichini, E., et al. Observational study of patients with gastroenteropancreatic and bronchial neuroendocrine tumors in argentina: Results from the large database of a multidisciplinary group clinical multicenter study. Molecular and clinical oncology, 2 (5), 673–684, 2014. 2 [5] Alves, F., Alves, V., Neves, A., Do Carmo, S., Nactergal, B., Hellas, V., et al. Cyclotron production of ga-68 for human use from liquid targets: From theory to practice. En: AIP Conference Proceedings, tomo 1845. AIP Publishing, 2017. 3, 18, 41, 42, 45 [6] Riga, S., Cicoria, G., Pancaldi, D., Zagni, F., Vichi, S., Dassenno, M., et al. Production of ga-68 with a general electric pettrace cyclotron by liquid target. Physica Medica, 55, 116–126, 2018. 3, 18, 22, 41, 45 [7] Salas-Tapia, L. F., Zhang, T. Production of cyclotron-based gallium-68 with low energy protons: Preliminary target design and cyclotron shielding considerations. En: International Conference on Nuclear Engineering, tomo 85277, pág. V004T14A067. American Society of Mechanical Engineers, 2021. 3, 41 [8] Attix, F. H. Introduction to radiological physics and radiation dosimetry. John Wiley & Sons, 1986. 7, 8, 9, 26 [9] Friesel, D., Antaya, T. Medical cyclotrons. Reviews of Accelerator Science and Technology, 2 (01), 133–156, 2009. 9 [10] Qaim, S. Use of cyclotrons in medicine. Radiation Physics and Chemistry, 71 (3- 4), 917–926, 2004. 9 [11] Haji-Saeid, M., Mra, P., Ruth, T., Schleyer, D., Winkel, P., Capote-Noy, M., et al. Cyclotron Produced Radionuclides: Principles and Practice. 2008. 9, 10 [12] Alves, F., Gagnon, K., Komor, J., Haji-Saeid, M., Lapi, S., Schlyer, D., et al. Alternative Radionuclide Production with a Cyclotron. 2021. 10 [13] Alves, F., Bernard, S., Degrado, T., Gagnon, K., Gu´erin, B., H¨ohr, C., et al. Gallium-68 Cyclotron Production @. 2019. 10, 11 [14] Livechart - table of nuclides - nuclear structure and decay data 2009, 2009. URL https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html. 11, 19, 46 [15] Exfor:experimental nuclear reaction data 2023, Oct 2023. URL https:// www-nds.iaea.org/exfor/exfor.htm. 11, 19 [16] Morin, R. L. Monte Carlo simulation in the radiological sciences. CRC Press, 2019. 12, 13 [17] Harrison, R. L. Introduction to monte carlo simulation. En: AIP conference proceedings, tomo 1204, p´ags. 17–21. American Institute of Physics, 2010. 12, 13 [18] Metropolis, N., Ulam, S. The monte carlo method. Journal of the American statistical association, 44 (247), 335–341, 1949. 12 [19] Reif, F., Peris, A. J., la, R. P. J. d. Fisica Estadistica: Berkeley physics course - volumen 5. Reverte, 2002. 12 [20] Alloni, D., Prata, M., Smilgys, B. Experimental and monte carlo characterization of radionuclidic impurities originated from proton irradiation of [18o] h2o in a modern medical cyclotron. Applied Radiation and Isotopes, 146, 84–89, 2019. 16 [21] Al-Jammaz, I., Al Rayyes, A. H., Chai, J.-S., Ditroi, F., Haji-Saeid, M., Jensen, M., et al. Cyclotron Produced Radionuclides: Operation and Maintenance of Gas and Liquid Targets. 2012. 17, 36, 37 [22] Synowiecki, M. A., Perk, L. R., Nijsen, J. F. W. Production of novel diagnostic radionuclides in small medical cyclotrons. EJNMMI radiopharmacy and chemistry, 3 (1), 1–25, 2018. 18 [23] Ferrari, A., Sala, P., Infn, M., Fass`o, A., Ranft, J., Siegen, U. FLUKA: a Multi- Particle Transport Code. Inf. t´ec., 12 2005. URL https://doi.org/10.2172/ 877507. 22, 24, 25, 26, 32 [24] James Ziegler - SRIM & TRIM, Oct 2023. URL http://srim.org/. 33 [25] Talys-based evaluated nuclear data library, Nov 2023. URL https://tendl.web. psi.ch/tendl_2015/reference.html. 36, 38 [26] Bunker, M., Mize, J., Starner, J. Disintegration of ga 70. Physical Review, 105 (1), 227, 1957. 46 [27] Haynes, S. The beta-and gamma-spectra of gallium irradiated by slow neutrons. Physical Review, 74 (4), 423, 1948. 46 [28] Nelson, B. J., Wilson, J., Richter, S., Duke, M. J. M.,Wuest, M.,Wuest, F. Taking cyclotron 68ga production to the next level: Expeditious solid target production of 68ga for preparation of radiotracers. Nuclear Medicine and Biology, 80, 24–31, 2020. 47 |
Materias: | Física > Física médica |
Divisiones: | FUESMEN |
Código ID: | 1232 |
Depositado Por: | Marisa G. Velazco Aldao |
Depositado En: | 11 Abr 2024 12:27 |
Última Modificación: | 11 Abr 2024 14:56 |
Personal del repositorio solamente: página de control del documento