Efecto de la proximidad con metales no magnéticos y materiales ferromagnéticos en la inestabilidad de Larkin-Ovchinnikov en sistemas superconductores desordenados / Effect of proximity to non-magnetic metals and ferromagnetic materials on the Larkin-Ovchinnikov instability in disordered superconductor systems

Blatter, Gastón (2023) Efecto de la proximidad con metales no magnéticos y materiales ferromagnéticos en la inestabilidad de Larkin-Ovchinnikov en sistemas superconductores desordenados / Effect of proximity to non-magnetic metals and ferromagnetic materials on the Larkin-Ovchinnikov instability in disordered superconductor systems. Maestría en Ciencias Físicas, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
32Mb

Resumen en español

Conocer las velocidades límites alcanzables por los vórtices superconductores en la disipación es de utilidad por varias razones. Primero, es útil para realizar una medici ón indirecta del tiempo de relajación de cuasipartículas, parámetro necesario para el diseño y fabricación de detectores de fotones únicos basados en nanoalambres superconductores (SNSPD). Cuanto mayor sea la velocidad alcanzada por los vórtices, más pequeño es dicho tiempo y por lo tanto mayor resolución puede tener un detector. A su vez, es interesante dado que cuando las velocidades alcanzadas son de car´acter supersónico, aparece nueva física emergente asociada a radiación Cherenkov y ondas de espín en híbridos superconductor/ferromagneto. Se conoce que hay diversos factores que impactan en las velocidades alcanzables. Por mencionar algunos, se tiene el efecto de la rugosidad de las láminas superconductoras y los efectos de proximidad con capas magnéticas. Esto motivó la fabricación de bicapas superconductor/ferromagneto, y bicapas superconductor/metal no magnético para investigar en mayor detalle estos efectos. Como material superconductor se escogió el nitruro de molibdeno (Mo2N), que se caracteriza por su posibilidad de ser crecido a temperatura ambiente y amorfo, con una temperatura crítica de hasta 8 K. Como materiales magnéticos se seleccionaron FePt, Co y Fe_20Ni_80. El criterio seguido fue la diversidad en la estructura de dominios de estos sistemas. En cuanto a los materiales metálicos, se utilizaron Al, W y Pt, con un criterio basado en tener diferentes conductividades eléctricas/térmicas. Las bicapas fueron fabricadas mediante la técnica de sputtering, y posteriormente caracterizadas mediante las técnicas DRX, AFM, MFM, magnetometría SQUID y transporte eléctrico. Se construyeron microcircuitos sobre las muestras utilizando las técnicas de litografía óptica y comido iónico. Los resultados obtenidos muestran en primer lugar que para todas las bicapas, las velocidades alcanzadas son mayores que para una monocapa de Mo_2N. En el caso de las bicapas superconductor/metal no magnético, esto se asoció a la capacidad de las muestras en transportar calor, disminuyendo así el efecto de los calentamientos locales que pueden ser destructivos para la dinámica de vórtices. En el caso de las bicapas superconductor/ ferromagneto, se observaron incrementos aun mayores, asociados a efectos de proximidad magnéticos. Se observó además que cuando el sistema magnético tiene una estructura de dominios en forma de stripes, los incrementos de velocidad están prexi sentes únicamente si los mismos están alineados con el flujo de vórtices. De lo contario, se encontró una caída drástica de velocidades, para bajos valores de campo magnético. Para campos magnéticos moderados y altos, las velocidades medidas son iguales a las del resto de las bicapas superconductor/ferromagneto.

Resumen en inglés

Knowing the critical velocity reachable by superconducting vortices in the flux-flow state is valuable for several reasons. First, it is useful to perform an indirect measurement of the quasiparticle relaxation time, a necessary parameter for the design and construction of Superconducting Nanowire Single Photon Detectors (SNSPD). As the critical velocity increases, this time is reduced, resulting in improved detector resolution. Additionally, it is interesting because new physics emerges when vortex velocities become supersonic, including Cherenkov radiation and spin waves in superconductor/ ferromagnetic hybrids. There are various factors known to influence achievable velocities. Notably, the roughness of superconducting films and the proximity effects with magnetic layers play crucial roles. This led to the production of superconductor/ferromagnetic and superconductor/non-magnetic metal bilayers to delve deeper into these effects. Molybdenum nitride (Mo2N) was chosen as the superconducting material due to its ability to be grown at room temperature in an amorphous state, boasting a critical temperature of up to 8 K. Magnetic materials such as FePt, Co, and Fe_20Ni_80 were selected based on the diversity of their magnetic domain structures. In the realm of metallic materials, Al, W, and Pt were chosen for their distinct thermal and electrical conductivities. The bilayers were fabricated using the sputtering technique and subsequently characterized through X-ray diffraction (XRD), atomic force microscopy (AFM), magnetic force microscopy (MFM), SQUID magnetometry, and electrical transport measurements. Microcircuits were constructed on the samples using optical lithography and ion beam techniques. The results obtained indicate, firstly, that for all bilayers, velocities achieved surpass those of a monolayer of Mo_2N. In the case of superconductor/non-magnetic metal bilayers, this enhancement is attributed to the samples’ ability to efficiently transport heat, thereby mitigating the adverse effects of local heating that could be detrimental to vortex dynamics. Notably, in the superconductor/ferromagnetic bilayers, even greater velocity increases were observed, primarily attributed to magnetic proximity effects. It was further noted that when the magnetic system exhibits a domain structure in the form of stripes, velocity increments are evident only when these stripes align with the vortex flow. Conversely, a significant drop in velocities was observed for low values of the applied magnetic field when the stripes were misaligned. However, for moderate to high magnetic fields, the measured velocities aligned with those of the other superconductor/ferromagnetic bilayers.

Tipo de objeto:Tesis (Maestría en Ciencias Físicas)
Palabras Clave:Superconductivity; Superconductividad; Ferromagnetism; Ferromagnetismo; Vortices; Metals; Metales; [Bilayers; Bicapas; Larkin Ovchinnikov]
Referencias:[1] Yao, C., Ma, Y. Superconducting materials: Challenges and opportunities for large-scale applications. iScience, 24 (6), 102541, 2021. URL https://www. sciencedirect.com/science/article/pii/S2589004221005095. 1, 13 [2] Bulaevskii, L. N., Graf, M. J., Batista, C. D., Kogan, V. G. Vortex-induced dissipation in narrow current-biased thin-film superconducting strips. Phys. Rev. B, 83, 144526, Apr 2011. URL https://link.aps.org/doi/10.1103/PhysRevB. 83.144526. [3] Embon, L., Anahory, Y., Jeli´c, , Lachman, E., Myasoedov, Y., Huber, M., et al. Imaging of super-fast dynamics and flow instabilities of superconducting vortices. Nature Communications, 8, 06 2017. [4] Dobrovolskiy, O., Vodolazov, D., Porrati, F., Sachser, R., Bevz, V., Mikhailov, M., et al. Ultra-fast vortex motion in a direct-write nb-c superconductor. Nature Communications, 11, 3291, 07 2020. 20, 21 [5] Lin, S.-Z., Ayala-Valenzuela, O., McDonald, R. D., Bulaevskii, L. N., Holesinger, T. G., Ronning, F., et al. Characterization of the thin-film nbn superconductor for single-photon detection by transport measurements. Phys. Rev. B, 87, 184507, May 2013. URL https://link.aps.org/doi/10.1103/PhysRevB.87.184507. 1, 12, 17, 18, 19 [6] Budinsk´a, B., Aichner, B., Vodolazov, D. Y., Mikhailov, M. Y., Porrati, F., Huth, M., et al. Rising speed limits for fluxons via edge-quality improvement in wide mosi thin films. Phys. Rev. Appl., 17, 034072, Mar 2022. URL https://link. aps.org/doi/10.1103/PhysRevApplied.17.034072. 1, 2 [7] Dobrovolskiy, O. V., Wang, Q., Vodolazov, D. Y., Budinska, B., Knauer, S., Sachser, R., et al. Cherenkov radiation of spin waves by ultra-fast moving magnetic flux quanta, 2023. 1, 21 [8] Ivlev, B. I., Mej´ıa-Rosales, S., Kunchur, M. N. Cherenkov resonances in vortex dissipation in superconductors. Phys. Rev. B, 60, 12419–12423, Nov 1999. URL https://link.aps.org/doi/10.1103/PhysRevB.60.12419. 1, 21 [9] Bezuglyj, A. I., Shklovskij, V. A., Vovk, R. V., Bevz, V. M., Huth, M., Dobrovolskiy, O. V. Local flux-flow instability in superconducting films near Tc. Phys. Rev. B, 99, 174518, May 2019. URL https://link.aps.org/doi/10.1103/PhysRevB. 99.174518. 2, 24 [10] Shklovskij, V. A., Nazipova, A. P., Dobrovolskiy, O. V. Pinning effects on selfheating and flux-flow instability in superconducting films near Tc. Phys. Rev. B, 95, 184517, May 2017. URL https://link.aps.org/doi/10.1103/PhysRevB. 95.184517. 2 [11] Cirillo, C., Pagliarulo, V., Myoren, H., Bonavolont`a, C., Parlato, L., Pepe, G. P., et al. Quasiparticle energy relaxation times in nbn/cuni nanostripes from critical velocity measurements. Phys. Rev. B, 84, 054536, Aug 2011. URL https://link. aps.org/doi/10.1103/PhysRevB.84.054536. 2, 21 [12] Voltan, S., Cirillo, C., Snijders, H., Lahabi, K., Garcia-Santiago, A., Hernandez, J., et al. Emergence of the stripe-domain phase in patterned permalloy films. Physical Review B, 94, 08 2016. 21, 24, 39, 43, 58 [13] Attanasio, C., Cirillo, C. Quasiparticle relaxation mechanisms in superconductor/ ferromagnet bilayers. Journal of Physics: Condensed Matter, 24 (8), 083201, feb 2012. URL https://dx.doi.org/10.1088/0953-8984/24/8/083201. 2, 58, 59 [14] ´Alvarez, N. R., G´omez, J. E., Moya Riffo, A. E., Vicente ´Alvarez, M. A., Butera, A. Critical thickness for stripe domain formation in FePt thin films: Dependence on residual stress. Journal of Applied Physics, 119 (8), 083906, 02 2016. URL https://doi.org/10.1063/1.4942652. 2, 23, 24, 25, 33, 43 [15] Haberkorn, N. Thickness dependence of the flux-flow velocity and the vortex instability in nanocrystalline γ-mo2n thin films. Thin Solid Films, 759, 139475, 2022. URL https://www.sciencedirect.com/science/article/pii/ S004060902200387X. 3, 14, 28, 37, 46, 52 [16] Kamerlingh Onnes, H. Communication from the physical laboratory of the university of leiden. p´ags. 1479–1481, Apr 1911. 6 [17] Tinkham, M. Introduction to Superconductivity. 2a ed´on. Dover Publications, 2004. URL http://www.worldcat.org/isbn/0486435032. 6, 7, 9 [18] London, F., London, H., Lindemann, F. A. The electromagnetic equations of the supraconductor. Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences, 149 (866), 71–88, 1935. URL https: //royalsocietypublishing.org/doi/abs/10.1098/rspa.1935.0048. 8 [19] Ashcroft, N. W., Mermin, N. D. Solid State Physics. Holt-Saunders, 1976. 8, 27 [20] Abrikosov, A. A. On the Magnetic properties of superconductors of the second group. Sov. Phys. JETP, 5, 1174–1182, 1957. 9, 15 [21] Pares de cooper. https://gefes-rsef.org/ las-propiedades-emergentes-y-su-papel-en-la-superconductividad/. Accessed: 2022-24-11. 10 [22] Wang, Z., Terai, H., Kawakami, A., Uzawa, Y. Interface and tunneling barrier heights of NbN/AlN/NbN tunnel junctions. Applied Physics Letters, 75 (5), 701– 703, 08 1999. URL https://doi.org/10.1063/1.124487. 13 [23] Kim, S., Terai, H., Yamashita, T., Qiu, W., Fuse, T., Yoshihara, F., et al. Enhanced coherence of all-nitride superconducting qubits epitaxially grown on silicon substrate. Communications Materials, 2 (1), sep. 2021. URL http: //dx.doi.org/10.1038/s43246-021-00204-4. [24] Shcherbatenko, M., Tretyakov, I., Lobanov, Y., Maslennikov, S. N., Kaurova, N., Finkel, M., et al. Nonequilibrium interpretation of DC properties of NbN superconducting hot electron bolometers. Applied Physics Letters, 109 (13), 132602, 09 2016. URL https://doi.org/10.1063/1.4963691. 13 [25] Verma, V. B., Korzh, B., Bussi`eres, F., Horansky, R. D., Lita, A. E., Marsili, F., et al. High-efficiency WSi superconducting nanowire single-photon detectors operating at 2.5 K. Applied Physics Letters, 105 (12), 122601, 09 2014. URL https://doi.org/10.1063/1.4896045. 14, 38 [26] Baek, B., Lita, A. E., Verma, V., Nam, S. W. Superconducting a-WxSi1x nanowire single-photon detector with saturated internal quantum efficiency from visible to 1850 nm. Applied Physics Letters, 98 (25), 251105, 06 2011. URL https://doi. org/10.1063/1.3600793. 14 [27] Dorenbos, S., Forn-Diaz, P., Fuse, T., Verbruggen, A., Zijlstra, T., Klapwijk, T., et al. Low gap superconducting single photon detectors for infrared sensitivity. Applied Physics Letters, 98, 251102 – 251102, 07 2011. 14 [28] Engel, A., Aeschbacher, A., Inderbitzin, K., Schilling, A., Il’in, K., Hofherr, M., et al. Tantalum nitride superconducting single-photon detectors with low cutoff energy. Applied Physics Letters, 100 (6), 062601, 02 2012. URL https: //doi.org/10.1063/1.3684243. 14 [29] Smirnov, K., Divochiy, A., Vakhtomin, Y., Morozov, P., Zolotov, P., Antipov, A., et al. Nbn single-photon detectors with saturated dependence of quantum efficiency. Superconductor Science and Technology, 31 (3), 035011, feb 2018. URL https://dx.doi.org/10.1088/1361-6668/aaa7aa. 14 [30] Blatter, G., Feigel’man, M. V., Geshkenbein, V. B., Larkin, A. I., Vinokur, V. M. Vortices in high-temperature superconductors. Rev. Mod. Phys., 66, 1125–1388, Oct 1994. URL https://link.aps.org/doi/10.1103/RevModPhys.66.1125. 15, 16 [31] Larkin, A. I., Ovchinnikov, Y. N. Nonlinear conductivity of superconductors in the mixed state. Soviet Journal of Experimental and Theoretical Physics, 41, 960, mayo 1975. 20 [32] Leo, A., Grimaldi, G., Citro, R., Nigro, A., Pace, S., Huebener, R. P. Quasiparticle scattering time in niobium superconducting films. Phys. Rev. B, 84, 014536, Jul 2011. URL https://link.aps.org/doi/10.1103/PhysRevB.84.014536. 20 [33] Doettinger, S., Huebener, R., K¨uhle, A. Electronic instability during vortex motion in cuprate superconductors regime of low and high magnetic fields. Physica C: Superconductivity, 251 (3), 285–289, 1995. URL https://www.sciencedirect. com/science/article/pii/0921453495004114. 20 [34] Bezuglyj, A., Shklovskij, V. Effect of self-heating on flux flow instability in a superconductor near tc. Physica C: Superconductivity, 202 (3), 234– 242, 1992. URL https://www.sciencedirect.com/science/article/pii/ 0921453492901659. 20, 25, 38, 39 [35] Cullity, B. D., Graham, C. D. Introduction to Magnetic Materials. 2a ed´on. Wiley- IEEE Press, 2008. 21, 24 [36] Hubert, A., Sch¨afer, R. Magnetic Domains: The Analysis of Magnetic Microstructures. Springer, 1998. URL https://books.google.com.ar/books?id= pBE42lLYs-MC. 22, 23 [37] Mayadas, A. F., Shatzkes, M. Electrical-resistivity model for polycrystalline films: the case of arbitrary reflection at external surfaces. Phys. Rev. B, 1, 1382–1389, Feb 1970. URL https://link.aps.org/doi/10.1103/PhysRevB.1.1382. 23 [38] Datta, S. Electronic Transport in Mesoscopic Systems. Cambridge Studies in Semiconductor Physics and Microelectronic Engineering. Cambridge University Press, 1995. 23 [39] Dobrovolskiy, O., Bevz, V., Begun, E., Sachser, R., Vovk, R., Huth, M. Fast dynamics of guided magnetic flux quanta. Phys. Rev. Appl., 11, 054064, May 2019. URL https://link.aps.org/doi/10.1103/PhysRevApplied.11.054064. 24, 26, 58 [40] Braun, C. For the reflectometry tool. Berlin, 1997-1999. URL http://www. helmholtz-berlin.de. 32, 40, 53 [41] van der Beek, C. J., Konczykowski, M., Abal’oshev, A., Abal’osheva, I., Gierlowski, P., Lewandowski, S. J., et al. Strong pinning in high-temperature superconducting films. Phys. Rev. B, 66, 024523, Jul 2002. URL https://link.aps.org/doi/ 10.1103/PhysRevB.66.024523. 34, 45, 55 [42] Foltyn, S., Civale, L., MacManus-Driscoll, J., Jia, Q., Maiorov, B., Wang, H., et al. Materials science challenges for high-temperature superconducting wire. Nature materials, 6, 631–42, 10 2007. 34 [43] Haberkorn, N., Bengio, S., Su´arez, S., P´erez, P., Sirena, M., Guimpel, J. Effect of the nitrogen-argon gas mixtures on the superconductivity properties of reactively sputtered molybdenum nitride thin films. Materials Letters, 215, 15–18, 2018. URL https://www.sciencedirect.com/science/article/pii/ S0167577X17318049. 37 [44] Haberkorn, N., Bengio, S., Troiani, H., Su´arez, S., P´erez, P., Granell, P., et al. Thickness dependence of the superconducting properties of γ- mo2n thin films on si (001) grown by dc sputtering at room temperature. Materials Chemistry and Physics, 204, 48–57, 2018. URL https://www.sciencedirect.com/science/ article/pii/S0254058417307976. 37, 58 [45] Kanazawa, H., Lauhoff, G., Suzuki, T. Magnetic and structural properties of (CoxFe100−x)50Pt50 alloy thin films. Journal of Applied Physics, 87 (9), 6143– 6145, 05 2000. URL https://doi.org/10.1063/1.372636. 43 [46] Silva, A. S., Hierro-Rodriguez, A., Bunyaev, S. A., Kakazei, G. N., Dobrovolskiy, O. V., Redondo, C., et al. Magnetic properties of permalloy antidot array fabricated by interference lithography. AIP Advances, 9 (3), 035136, 03 2019. URL https://doi.org/10.1063/1.5080111. [47] Li, H. D., He, K., Xie, M. H., Wang, N., Jia, J. F., Xue, Q. K. Surface modification for epitaxial growth of single crystalline cobalt thin films with uniaxial magnetic anisotropy on gan(0001)-1Ö1 surfaces. New Journal of Physics, 12 (7), 073007, jul 2010. URL https://dx.doi.org/10.1088/1367-2630/12/7/073007. 43 [48] Caputo, M., Cirillo, C., Voltan, S., Cucolo, A.M., Aarts, J., Attanasio, C. Influence of the magnetic configuration on the vortex-lattice instability in nb/permalloy bilayers. Phys. Rev. B, 96, 174519, Nov 2017. URL https://link.aps.org/ doi/10.1103/PhysRevB.96.174519. 43 [49] Amos, N., Fernandez, R., Ikkawi, R., Lee, B., Lavrenov, A., Krichevsky, A., et al. Magnetic force microscopy study of magnetic stripe domains in sputter deposited Permalloy thin films. Journal of Applied Physics, 103 (7), 07E732, 03 2008. URL https://doi.org/10.1063/1.2835441. 43 [50] Dean, J. A. (ed.) Lange’s Handbook of Chemistry. 14a ed´on. New York: McGraw- Hill, 1992. 51 [51] Dresselhaus, M., Dresselhaus, G., Cronin, S., Filho, A. Solid State Properties: From Bulk to Nano. Graduate Texts in Physics. Springer Berlin Heidelberg, 2018. URL https://books.google.com.ar/books?id=n8FHDwAAQBAJ. 57
Materias:Física > Materia condensada
Divisiones:Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Materia condensada > Bajas temperaturas
Código ID:1236
Depositado Por:Marisa G. Velazco Aldao
Depositado En:23 Abr 2024 14:35
Última Modificación:23 Abr 2024 14:37

Personal del repositorio solamente: página de control del documento