Chehade, Pablo N. (2023) Dinámica de una burbuja de cavitación láser / Dynamics of a laser cavitation bubble. Maestría en Ciencias Físicas, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Español 6Mb |
Resumen en español
Se analizó numéricamente la dinámica de una burbuja de cavitación láser desde su formación hasta el momento de máxima expansión y posterior compresión. Se identificaron dos etapas en la evolución de la burbuja, cada una gobernada por fenómenos físicos distintos. Durante la primera etapa, un láser de alta potencia incide en un medio líquido, generando una burbuja de cavitación. Luego, esta burbuja se expande hasta un radio máximo. Este proceso es de origen electrostático, termodinámico y fluidodinámico. En la actualidad existe un modelo que describe fenomenológicamente esta etapa. En este trabajo se ha formalizado y cuantificado el modelo con el objetivo de capturar efectos importantes, como la relación entre el radio máximo de la burbuja y la potencia del láser incidente. Ambos modelos presuponen la existencia de microburbujas de gas estables en el medio líquido. La segunda etapa involucra la compresión de la burbuja hasta un radio mínimo. Este proceso es de origen termodinámico y fluidodinámico. Se desarrolló e implementó el modelo que explica esta dinámica, considerando una amplia variedad de efectos físicos. Este modelo se compone de un conjunto de ecuaciones diferenciales acopladas que conforman un problema de tipo stiff. Se exploraron diversos métodos numéricos y técnicas de resolución computacionales. Se obtuvo la evolución del radio de la burbuja, la presión, la temperatura y la concentración de distintas especies químicas bajo condiciones iniciales especificas. Luego, con el objetivo de validar el código, se compararon los resultados con los obtenidos mediante una implementación previa realizada y experimentalmente validada en el Laboratorio de Cavitación y Biotecnología. Adicionalmente, se investigó la posibilidad de que ocurran reacciones nucleares D-D en el momento de máxima compresión de la burbuja, instante en el que se forma un plasma con valores relativamente altos de densidad y temperatura.
Resumen en inglés
The dynamics of a laser cavitation bubble from its formation to the moment of maximum expansion and subsequent compression were numerically analyzed. Two stages in the bubble’s evolution were identified, each governed by different physical phenomena. During the first stage, a high-power laser impacts a liquid medium, generating a cavitation bubble. Then, this bubble expands to a maximum radius. This process is electrostatic, thermodynamic, and fluid dynamic in nature. Currently, there is a model that phenomenologically describes this stage. This work formalized and quantified the model to capture important effects, such as the relationship between the bubble’s maximum radius and the incident laser power. Both models presuppose the existence of stable gas microbubbles in the liquid medium. The second stage involves the compression of the bubble to a minimum radius. This process is thermodynamic and fluid dynamic in origin. A model explaining this dynamics was developed and implemented, considering a wide variety of physical effects. This model consists of a set of coupled differential equations forming a stiff-type problem. Various numerical methods and computational resolution techniques were explored. The evolution of the bubble’s radius, pressure, temperature, and concentration of different chemical species under specific initial conditions were obtained. Then, to validate the code, the results were compared with those obtained through a previous implementation that was experimentally validated at the Laboratory of Cavitation and Biotechnology. Additionally, the possibility of D-D nuclear reactions occurring at the moment of maximum bubble compression, when a plasma with relatively high density and temperature values is formed, was investigated.
Tipo de objeto: | Tesis (Maestría en Ciencias Físicas) |
---|---|
Palabras Clave: | Thermodynamics; Termodinámica; Laser cavities; Cavidades de láser; [Numerical study; Estudio numérico; High power laser; Láser de alta potencia; Electrostatic; Electroestática] |
Referencias: | [1] Bunkin, N., Bunkin, F. Bubstons-stable gaseous bubbles in strongly dilute electrolytic solutions. Sov. Phys. JETP, 74, 271–276, 01 1992. 1, 10, 31, 42 [2] Bunkin, N., Bunkin, F. The new concepts in the optical breakdown of transparent liquids. Laser Physics, 3, 63–78, 01 1993. 1, 3, 4, 5, 9, 10, 11, 12, 15, 18, 22, 23, 25, 30, 31, 41 [3] Peng, C., Tian, S., Li, G., Sukop, M. C. Simulation of laser-produced single cavitation bubbles with hybrid thermal lattice boltzmann method. International Journal of Heat and Mass Transfer, 149, 119136, 2020. URL https: //www.sciencedirect.com/science/article/pii/S0017931019340906. 1, 15, 17 [4] Zhong, X., Eshraghi, J., Vlachos, P., Dabiri, S., Ardekani, A. M. A model for a laser-induced cavitation bubble. International Journal of Multiphase Flow, 132, 103433, 2020. URL https://www.sciencedirect.com/science/article/pii/ S0301932220305425. [5] Sinibaldi, G., Occhicone, A., Alves Pereira, F., Caprini, D., Marino, L., Michelotti, F., et al. Laser induced cavitation: Plasma generation and breakdown shockwave. Physics of Fluids, 31 (10), 103302, 10 2019. URL https://doi.org/10.1063/1. 5119794. 1, 15, 17 [6] Puente, G. F., Bonetto, F. J. Proposed method to estimate the liquid-vapor accommodation coefficient based on experimental sonoluminescence data. Physical Review E, 71 (5), 056309, 2005. 1 [7] Puente, G. F., Urteaga, R., Bonetto, F. J. Numerical and experimental study of dissociation in an air-water single-bubble sonoluminescence system. Physical Review E, 72 (4), 046305, 2005. [8] Puente, G. F. Sonoluminiscencia y cavitaci´on en burbujas: an´alisis din´amico y de estabilidad en regiones altamente no lineales. Tesis Doctoral, Instituto Balseiro, CNEA-UNCuyo, Bariloche, Argentina, 2006. 53, 54, 55, 56, 62 [9] Fujikawa, S., Akamatsu, T. Effects of the non-equilibrium condensation of vapour on the pressure wave produced by the collapse of a bubble in a liquid. Journal of Fluid Mechanics, 97 (3), 481–512, 1980. 54, 56 [10] Yasui, K. Variation of liquid temperature at bubble wall near the sonoluminescence threshold. Journal of the Physical Society of Japan, 65 (9), 2830–2840, 1996. [11] Yasui, K. Alternative model of single-bubble sonoluminescence. Phys. Rev. E, 56, 6750–6760, Dec 1997. 54, 55, 61 [12] Yasui, K. Sprintger Bbriefs in Molecular Science Ultrasound and Sonochemistry Acoustic Cavitation and Bubble Dynamics. 1a ed´on. Gewerbestrasse 11, 6330 Cham, Switzerland: Springer Nature, 2018. 56 [13] Toegel, R., Gompf, B., Pecha, R., Lohse, D. Does water vapor prevent upscaling sonoluminescence? Phys. Rev. Lett., 85, 3165–3168, Oct 2000. 58 [14] Toegel, R., Lohse, D. Phase diagrams for sonoluminescing bubbles: A comparison between experiment and theory. Journal of Chemical Physics, 118, 1863–1875, 1 2003. 1, 56, 59 [15] Taleyarkhan, R. P., West, C. D., Cho, J. S., Lahey, R. T., Nigmatulin, R. I., Block, R. C. Evidence for Nuclear Emissions During Acoustic Cavitation. Science, 295 (5561), 1868–1873, mar 2002. 2 [16] bei Li, B., chao Zhang, H., Lu, J., wu Ni, X. Experimental investigation of the effect of ambient pressure on laser-induced bubble dynamics. Optics & Laser Technology, 43 (8), 1499–1503, 2011. URL https://www.sciencedirect.com/ science/article/pii/S0030399211001411. 3, 14 [17] Petkovˇsek, R., Gregorˇciˇc, P. A laser probe measurement of cavitation bubble dynamics improved by shock wave detection and compared to shadow photography. Journal of Applied Physics, 102 (4), 044909, 08 2007. URL https: //doi.org/10.1063/1.2774000. 3, 14 [18] Grand, D., Bernas, A., Amouyal, E. Photoionization of aqueous indole: Conduction band edge and energy gap in liquid water. Chemical Physics, 44 (1), 73–79, 1979. 4, 23 [19] Landau, L. D., Lifshitz, E. M. Statistical Physics Part I, tomo 5. 2a ed´on. Pergamon Press, 1969. 6 [20] Leighton, T. 4 - the forced bubble. En: T. Leighton (ed.) The Acoustic Bubble, p´ags. 302–303. Academic Press, 1994. 9, 13 [21] Cole, R. Underwater explosions. Princeton University Press, 1948. 12, 42 [22] Dormand, J., Prince, P. A family of embedded runge-kutta formulae. Journal of Computational and Applied Mathematics, 6 (1), 19–26, 1980. URL https: //www.sciencedirect.com/science/article/pii/0771050X80900133. 14, 32, 64 [23] Uzal, L. C. Modelado y experimentos en cavitaci´on l´aser. Tesis de maestr´ıa, Instituto Balseiro (IB) - Universidad Nacional de Cuyo (UNCuyo) - Comisión Nacional de Energía Atómica (CNEA), 2006. 20, 24, 53, 69 [24] Wikipedia. Spherical aberration, 2023. URL https://en.wikipedia.org/wiki/ Spherical_aberration, accedido: 26-11-2023. 21 [25] Wikipedia. Gaussian beam, 2023. URL https://en.wikipedia.org/wiki/ Gaussian_beam, ´Ultimo acceso: 12 de noviembre de 2023. 21 [26] LibreTexts. 7.1: Propiedades ´unicas de los láseres, 2023. Accedido: 26-11-2023. 21 [27] Rechiman, L. M., Bonetto, F. J., Rossell´o, J. M. Effect of the rayleigh-taylor instability on maximum reachable temperatures in laser-induced bubbles. Phys. Rev. E, 86, 027301, Aug 2012. URL https://link.aps.org/doi/10.1103/PhysRevE. 86.027301. 24 [28] Sadighi-Bonabi, R., Razeghi, F., Ebrahimi, H., Fallahi, S., Lotfi, E. Quasiadiabatic approach for laser-induced single-bubble sonoluminescence. Phys. Rev. E, 85, 016302, Jan 2012. URL https://link.aps.org/doi/10.1103/PhysRevE. 85.016302. 44 [29] Weder, P. A. Medición del espectro de la emisión de una burbuja producida en forma sincrónica utilizando un láser pulsado de alta potencia. Trabajo especial de ingeniería nuclear, Instituto Balseiro (IB) - Universidad Nacional de Cuyo (UNCuyo) - Comisi´on Nacional de Energía Atómica (CNEA), 2000. 53 [30] Beattie, J. A., Ikehara, S. An equation of state for gas mixtures. ii. a study of the methods of combination of the constants of the beattie-bridgeman equation of state. Proceedings of the American Academy of Arts and Sciences, 64 (7), 127–176, 1930. 55 [31] Fehlberg, E. Low-order Classical Runge-Kutta Formulas with Stepsize Control and Their Application to Some Heat Transfer Problems. NASA technical report. National Aeronautics and Space Administration, 1969. 62 [32] Shampine, L. F., Gear, C. W. A User’s View of Solving Stiff Ordinary Differential Equations. SIAM Review, 21 (1), 1 – 17, ene. 1979. 63 [33] Hairer, E., Wanner, G. Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, tomo 14. Springer Verlag Series in Comput. Math., 1996. 64 [34] community, T. S. Scipy integrate solve ivp. https://docs.scipy.org/ doc/scipy/reference/generated/scipy.integrate.solve_ivp.html. Accessed: 2022-20-11. 64 [35] community, T. S. Scipy optimize fsolve. https://docs.scipy.org/doc/scipy/ reference/generated/scipy.optimize.fsolve.html. Accessed: 2022-20-11. 64 [36] Wikipedia. Backward differentiation formula, 2023. URL https: //en.wikipedia.org/w/index.php?title=Backward_differentiation_ formula&oldid=1166087118, accedido: 26-11-2023. 64 [37] Petzold, L. Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential equations. SIAM Journal on Scientific and Statistical Computing, 4 (1), 136–148, 1983. URL https://doi.org/10.1137/0904010. 64 [38] Hindmarsh, A. C. Odepack, a systemized collection of ode solvers. Scientific computing, 1983. 64 [39] Urteaga, R. C. Determinaci´on de la existencia de plasma en una burbuja sonoluminiscente. Tesis de licenciatura en f´ısica, Instituto Balseiro (IB) - Universidad Nacional de Cuyo (UNCuyo) - Comisi´on Nacional de Energ´ıa At´omica (CNEA), 2000. 69 [40] Camara, C., Putterman, S., Kirilov, E. Sonoluminescence from a single bubble driven at 1 megahertz. Phys. Rev. Lett., 92, 124301, Mar 2004. URL https: //link.aps.org/doi/10.1103/PhysRevLett.92.124301. 69 [41] Geisler, R., Schmidt-Ott, W.-D., Kurz, T., Lauterborn, W. Search for neutron emission in laser-induced cavitation. Europhysics Letters, 66 (3), 435, may 2004. URL https://dx.doi.org/10.1209/epl/i2003-10214-0. 69 [42] Nigmatulin, R. I., Akhatov, I. S., Topolnikov, A. S., Bolotnova, R. K., Vakhitova, N. K., Lahey, R. T., et al. Theory of supercompression of vapor bubbles and nanoscale thermonuclear fusion. Physics of Fluids, 17 (10), 107106, 2005. 69, 70 [43] Guizzo, E. Bubble fusion research under scrutiny. IEEE Spectrum, 43 (5), 16–21, 2006. 69 [44] Taleyarkhan, R. P., West, C. D., Cho, J. S., Lahey, R. T., Nigmatulin, R. I., Block, R. C. Evidence for nuclear emissions during acoustic cavitation. Science, 295, 1868 – 1873, 2002. URL https://api.semanticscholar.org/CorpusID:11405525. 69 [45] Li, X. Z., Wei, Q. M., Liu, B. A new simple formula for fusion cross-sections of light nuclei. Nuclear Fusion, 48 (12), 125003, nov 2008. URL https://dx.doi. org/10.1088/0029-5515/48/12/125003. 71, 72, 73 [46] Chadwick, M., Obloˇzinsk´y, P., Herman, M., Greene, N., McKnight, R., Smith, D., et al. Endf/b-vii.0: Next generation evaluated nuclear data library for nuclear science and technology. Nuclear Data Sheets, 107 (12), 2931– 3060, 2006. URL https://www.sciencedirect.com/science/article/pii/ S0090375206000871, evaluated Nuclear Data File ENDF/B-VII.0. 72 [47] Foundation, P. S. Decimal — decimal fixed point and floating point arithmetic, 2023. URL https://docs.python.org/3/library/decimal.html, accedido: 2023-11-23. 72 |
Materias: | Física > Interacción de la radiación con la materia |
Divisiones: | Gcia. de área de Energía Nuclear > Gcia. de Ingeniería Nuclear > Cavitación y biotecnología |
Código ID: | 1237 |
Depositado Por: | Marisa G. Velazco Aldao |
Depositado En: | 24 Abr 2024 12:54 |
Última Modificación: | 24 Abr 2024 12:54 |
Personal del repositorio solamente: página de control del documento