San Martín, Nicolás (2023) Búsqueda de alineamiento inducido por fuerzas magnéticas en la dirección de arribo de rayos cósmicos con los datos del Observatorio Pierre Auger / Search for magnetically induced alignment in the arrival direction of cosmic rays with data from the Pierre Auger Obserbatory. Maestría en Ciencias Físicas, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Español 11Mb |
Resumen en español
Los rayos cósmicos ultra-alta energía son protones, núcleos de Helio y otros núcleos más pesados, hasta el Hierro, que llegan a la Tierra desde todas las direcciones con energías desde los 10"18 eV hasta los 10"20 eV (¡aprox. 16 J en una sola partícula!). Debido a que son partículas con carga eléctrica, se deflectan en los campos magnéticos galácticos y extragalácticos, por lo que sus direcciones de arribo no apuntan a la posición de sus fuentes (esta deflexión es menor a medida que aumenta su rigidez E/Z). El Observatorio Pierre Auger fue diseñado con el objetivo de esclarecer el origen de las partículas con ultra-alta energía E ≳ 1 EeV, (1 EeV ≡ 10"18 eV) entre otros. Expandiéndose en un área de 3000km2, se utiliza para estudiar las lluvias de partículas generadas por el impacto de los rayos cósmicos con la atmósfera, aprovechándose de un diseño híbrido que permite estimar la energía de la partícula con muy buena precisión. Este consiste de un arreglo de detectores de superficie, con los cuales se detectan directamente las partículas secundarias, y una serie de detectores de fluorescencia, telescopios con los cuales se observa la radiación electromagnética emitida por la excitación de la atmósfera producida por las lluvias de partículas. En este trabajo se analizaron eventos con energías mayores a 40 EeV con el objetivo de determinar fuentes puntuales de los rayos cósmicos de ultra-alta energía. Suponiendo que existen una o más fuentes diferentes del promedio que puedan acelerar protones o He a estas energías, se espera que la deflexión en las direcciones de arribo de los rayos cósmicos provenientes de estas fuente con respecto a la posición en el cielo de la misma sea en un solo sentido y proporcional a la inversa de su energía. A los conjuntos que cumplieran con estas características, se los llamó multipletes. A partir de simulaciones de multipletes de He, se realizó un estudio de la sensibilidad del método para determinar los parámetros óptimos y se analizó el desempeño del mismo. Implementando dos estrategias: una búsqueda en todo el cielo y otra alrededor de galaxias candidatas a ser posibles fuentes, se aplicó el método a los datos observacionales. Se reportaron los resultados y se lo comparó con simulaciones de cielos isotrópicos. No se encontraron evidencias estadísticamente significativas de la existencia de multipletes. Se estudió la sensibilidad del método frente a un escenario con estadística reducida, el cual representa una situación en la que se elijen solo los eventos livianos, y se encontraron resultados prometedores. Suponiendo que, efectivamente, existe una fuente que pueda emitir He a las energías consideradas, esta también debería emitir otras partículas con rigidez similar. En especial, se buscó extender los multipletes encontrados anteriormente (con la suposición de que alguno de los mismo sea real y esté formado por He) con eventos de menor energía, 20 EeV ≤ E < 40 EeV (con la suposición que dichos eventos fuesen protones acelerados por la misma fuente). Esta extensión se realizó para los multipletes con las dos mayores multiplicidades de la búsqueda en todo el cielo y el de mayor multiplicidad para cada una de las posibles fuentes estudiadas. Se reportaron los resultados y no se encontró ninguna evidencia estadísticamente significativa de la presencia de multipletes.
Resumen en inglés
Ultra-high energy cosmic rays are protons, helium nuclei, and other heavier nuclei up to iron, arriving at Earth from all directions with energies ranging from 10"18 eV to 10"20 eV (approximately 16 J in a single particle!). Because they are electrically charged particles, they are deflected by galactic and extragalactic magnetic fields, meaning their arrival directions do not point back to the position of their sources (this deflection is smaller as their rigidity E/Z increases). The Pierre Auger Observatory was designed with the aim of clarifying the origin of ultra-high energy particles E ≳ 1 EeV, (1 EeV ≡ 10"18 eV), among others. Spanning an area of 3000km2, it is used to study the particle showers generated by the impact of cosmic rays with the atmosphere, taking advantage of a hybrid design that allows for very precise estimation of the energy of the primary particle. This consists of an array of surface detectors, which directly detect secondary particles, and a series of fluorescence detectors, telescopes that observe the electromagnetic radiation emitted by the excitation of the atmosphere caused by the particle showers. In this work, events with energies greater than 40 EeV were analyzed with the goal of determining point sources of ultra-high energy cosmic rays. Assuming that there are one or more sources different from the average that can accelerate protons or He to these energies, it is expected that the deflection in the arrival directions of the cosmic rays from these sources with respect to their position in the sky would be in a single direction and inversely proportional to their energy. The sets that met these characteristics were called multiplets. Through simulations of He multiplets, a study of the sensitivity of the method was conducted to determine optimal parameters, and its performance was analyzed. Implementing two strategies: a search across the entire sky and another around candidate galaxies as possible sources, the method was applied to observational data. Results were reported and compared with simulations of isotropic skies. No statistically significant evidence of the existence of multiplets was found. The sensitivity of the method in a scenario with reduced statistics was studied, representing a situation where only light events are selected, and promising results were found. Assuming that there indeed exists a source that can emit He at the considered energies, it should also emit other particles with similar rigidity. In particular, an extension of the previously found multiplets (assuming that one of them could be real and formed by He) with lower energy events, 20×10"18 eV ≤ E < 40×10"18 eV (assuming that they could be protons from the same source), was sought. This extension was carried out for the multiplets with the two highest multiplicities from the all-sky search and the highest multiplicity for each of the possible sources studied. Results were reported, and no statistically significant evidence of the presence of multiplets was found.
Tipo de objeto: | Tesis (Maestría en Ciencias Físicas) |
---|---|
Palabras Clave: | Multiplets; Multipletes; Helium; Helio; [Cosmic rays; Rayos cósmicos; Ultra-high energy; Ultra alta energía; Pierre Auger; Pierre Auger; Extragalactic; Extragaláctico] |
Referencias: | [1] The Pierre Auger Collaboration. PoS(ICRC2023)252. ix, 34, 44, 45, 54 [2] Hess, V. On the observations of the penetrating radiation during seven balloon flights. arXiv preprint arXiv:1808.02927, 2018. 1 [3] Anchordoqui, L. A. Ultra-high-energy cosmic rays. Physics Reports, 801, 1–93, 2019. 1, 2, 3, 4, 5, 8, 9, 11 [4] The Pierre Auger Collaboration. Observation of a large-scale anisotropy in the arrival directions of cosmic rays above 8 ×1018 eV. Science, 357 (6357), 1266–1270, 2017. URL https://www.science.org/doi/abs/10.1126/science.aan4338. 1,7, 24, 25 [5] Workman, R. L., et al. Review of Particle Physics. PTEP, 2022, 083C01, 2022. 2 [6] Perkins, D. H. Particle astrophysics. Oxford University Press, 2009. 2, 5, 6 [7] The Pierre Auger Collaboration. Measurement of the cosmic-ray energy spectrum above 2,5 × 1018 eV using the Pierre Auger Observatory. Phys. Rev. D, 102,062005, Sep 2020. URL https://link.aps.org/doi/10.1103/PhysRevD.102. 062005. 2, 3, 21, 22, 23, 35 [8] Grupen, C., Cowan, G., Eidelman, S., Stroh, T. Astroparticle physics. Springer, 2005. 3, 6, 7, 13 [9] Aloisio, R. Acceleration and propagation of ultra high energy cosmic rays. Progress of Theoretical and Experimental Physics, 2017, 07 2017. 3 [10] Hawking, S. W., Israel, W. Three hundred years of gravitation. Cambridge University Press, 1989. 4 [11] Photo album :: Tycho’s supernova remnant :: 22 sep 05. URL https://chandra.harvard.edu/photo/2005/tycho/. 4 [12] Heger, A., Fryer, C. L., Woosley, S. E., Langer, N., Hartmann, D. H. How massive single stars end their life. The Astrophysical Journal, 591 (1), 288–300, jul 2003. URL https://doi.org/10.1086%2F375341. 6 [13] Imagine the universe! URL https://imagine.gsfc.nasa.gov/science/ objects/neutron_stars1.html. 7 [14] Galaxias con n´ucleos activos: una nueva mirada. URL https://oac.unc.edu.ar/2020/08/25/galaxias-con-nucleos-activos-una-nueva-mirada/. 8 [15] Ngc 253: The silver coin galaxy. URL https://science.nasa.gov/ngc-253-silver-coin-galaxy. 9 [16] Das, S., Kang, H., Ryu, D., Cho, J. Propagation of ultra–high-energy protons through the magnetized cosmic web. The Astrophysical Journal, 682 (1), 29–38, jul 2008. URL https://doi.org/10.1086%2F588278. 10 [17] Jansson, R., Farrar, G. R. A new model of the galactic magnetic field. The Astrophysical Journal, 757 (1), 14, 2012. 10, 25, 37 [18] Jansson, R., Farrar, G. R. The galactic magnetic field. The Astrophysical Journal, 761 (1), 11, nov. 2012. URL http://dx.doi.org/10.1088/2041-8205/761/1/L11. 10 [19] Adam, R., Ade, P. A. R., Alves, M. I. R., Ashdown, M., Aumont, J., Baccigalupi, C., et al. Planckintermediate results: Xlii. large-scale galactic magnetic fields. Astronomy & Astrophysics, 596, A103, dic. 2016. URL http://dx.doi.org/10.1051/0004-6361/201528033. 10 [20] Greisen, K. End to the cosmic-ray spectrum? Physical Review Letters, 16 (17), 748, 1966. 11 [21] Zatsepin, G. T., Kuz’min, V. A. Upper limit of the spectrum of cosmic rays. Soviet Journal of Experimental and Theoretical Physics Letters, 4, 78, 1966. 11 [22] Stanev, T. High energy cosmic rays. Springer, 2004. 12 [23] Stecker, F. W., Salamon, M. H. Photodisintegration of ultra-high-energy cosmic rays: A new determination. The Astrophysical Journal, 512 (2), 521, feb 1999.URL https://dx.doi.org/10.1086/306816. 12 [24] Letessier-Selvon, A., Stanev, T. Ultrahigh energy cosmic rays. Reviews of Modern Physics, 83 (3), 907–942, sep 2011. URL https://doi.org/10.1103% 2Frevmodphys.83.907. 13 [25] The Pierre Auger Collaboration. The Pierre Auger Observatory: Contributions to the 36th international cosmic ray conference (ICRC 2019), 2019. URL https://arxiv.org/abs/1909.09073. 14, 24 [26] The Pierre Auger Collaboration. The Pierre Auger cosmic ray observatory. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 798, 172–213, 2015. 16, 19, 20, 21, 35 [27] Detectores de superficie. URL https://visitantes.auger.org.ar/index.php/ detectores-de-superficie/. 17 [28] Castellina, A. AugerPrime: the Pierre Auger Observatory upgrade. EPJ Web of Conferences, 210, 06002, 2019. URL https://doi.org/10.1051%2Fepjconf%2F201921006002. 18 [29] Abraham, J., Abreu, P., Aglietta, M., Aguirre, C., Allard, D., Allekotte, I., et al. Observation of the suppression of the flux of cosmic rays above 4×1019 eV. Physical Review Letters, 101 (6), 061101, 2008. 21 [30] Alexander, Abreu, P., Aglietta, M., Ahn, E., Al Samarai, I., Albuquerque, I. F. d. M., et al. Depth of maximum of air-shower profiles at the Pierre Auger Observatory. i. measurements at energies above 1017,8 eV. Physical Review D, 90 (12), 122005, 2014. 24 [31] The Pierre Auger Collaboration. Combined fit of spectrum and composition data as measured by the Pierre Auger Observatory. Journal of Cosmology and Astroparticle Physics, 2017 (04), 038, 2017. 24 [32] Erdogdu, P., Huchra, J. P., Lahav, O., Colless, M., Cutri, R. M., Falco, E., et al. The dipole anisotropy of the 2 micron all-sky redshift survey. Monthly Notices of the Royal Astronomical Society, 368 (4), 1515–1526, 2006. 25 [33] The Pierre Auger Collaboration. Arrival directions of cosmic rays above 32 EeV from phase one of the Pierre Auger Observatory. The Astrophysical Journal, 935 (2), 170, 2022. 25, 27 [34] Skrutskie, M., Cutri, R., Stiening, R., Weinberg, M., Schneider, S., Carpenter, J., et al. The two micron all sky survey (2mass). The Astronomical Journal, 131 (2), 1163, 2006. 25 [35] Lunardini, C., Vance, G. S., Emig, K. L., Windhorst, R. A. Are starburst galaxies a common source of high energy neutrinos and cosmic rays? Journal of Cosmology and Astroparticle Physics, 2019 (10), 073, 2019. 25 [36] Oh, K., Koss, M., Markwardt, C. B., Schawinski, K., Baumgartner, W. H., Barthelmy, S. D., et al. The 105-month swift-bat all-sky hard x-ray survey. The Astrophysical Journal Supplement Series, 235 (1), 4, 2018. 25 [37] The Pierre Auger Collaboration. Search for magnetically-induced signatures in the arrival directions of ultra-high-energy cosmic rays measured at the Pierre Auger Observatory. Journal of Cosmology and Astroparticle Physics, 2020 (06), 017–017, jun 2020. URL https://doi.org/10.1088%2F1475-7516%2F2020%2F06%2F017. 37, 38 [38] Pshirkov, M. S., Tinyakov, P. G., Kronberg, P. P., Newton-McGee, K. J. Deriving the global structure of the galactic magnetic field from Faraday rotation measures of extragalactic sources. The Astrophysical Journal, 738 (2), 192, 8 2011. URL https://doi.org/10.1088%2F0004-637x%2F738%2F2%2F192. 37 [39] The IceCube, Pierre Auger and Telescope Array collaborations. Search for correlations between the arrival directions of icecube neutrino events and ultrahighenergy cosmic rays detected by the pierre auger observatory and the telescope array. Journal of Cosmology and Astroparticle Physics, 2016 (01), 037–037, ene. 2016. URL http://dx.doi.org/10.1088/1475-7516/2016/01/037. 37 [40] Golup, G., Harari, D., Mollerach, S., Roulet, E. Source position reconstruction and constraints on the galactic magnetic field from ultra-high energy cosmic rays. Astroparticle Physics, 32 (5), 269–277, dic. 2009. URL http://dx.doi.org/10.1016/j.astropartphys.2009.09.003. 37 [41] The Pierre Auger Collaboration. Search for signatures of magnetically-induced alignment in the arrival directions measured by the Pierre Auger Observatory. Astroparticle Physics, 35 (6), 354–361, jan 2012. URL https://doi.org/10.1016%2Fj.astropartphys.2011.10.004. 38 |
Materias: | Física > Astropartículas |
Divisiones: | Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Sistemas complejos y altas energías > Partículas y campos |
Código ID: | 1249 |
Depositado Por: | Tamara Cárcamo |
Depositado En: | 12 Sep 2024 15:55 |
Última Modificación: | 12 Sep 2024 15:55 |
Personal del repositorio solamente: página de control del documento