Gómez Farfán, María G. (2023) Síntesis y caracterización de pocas capas de antimonio sobre grafeno / Synthesis and characterization of few layers of antimonene on graphene. Maestría en Ciencias Físicas, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) - Versión publicada Español 22Mb |
Resumen en español
Los materiales 2D han mostrado tener un alto potencial para su uso en diversas aplicaciones tecnológicas. En particular, el antimonio (Sb) tiene una alta aplicabilidad en electrónica, sensores y baterías. El antimonio bidimensional presenta dos estructuras estables las cuales son llamadas fase α y fase β. En el presente trabajo, se estudia el crecimiento de pocas capas de antimonio en la fase β debido a que esta fase presenta propiedades electrónicas y optoelectrónicas interesantes, distintas a las de antimonio en estado masivo. Se determinaron los factores determinantes para poder conseguir dicha fase. Uno de dichos factores es el sustrato sobre el cual el antimonio es depositado, es por ello que el trabajo se enfoca en el crecimiento de Sb sobre grafeno en ultra alto vacío. Posteriormente estudiamos la estabilidad de esta heteroestructura, Sb/grafeno, en condiciones ambiente fuera de ultra alto vacío. El trabajo se desempeñó usando las siguientes técnicas de caracterización: espectroscopía Raman y espectroscopía de fotoelectrones emitidos por rayos X (XPS). Se pudo observar que la fase β de antimonio crece al ser depositada sobre grafeno de muy buena calidad, y se observa que en las regiones de la muestra donde no se tiene una buena calidad de grafeno no se forma la fase β. Por otro lado, se observó que en el sustrato de cobre empleado no se formó la fase β. Los resultados obtenidos precisan que la superficie en la cual se crecen las capas de antimonio es determinante para el crecimiento de la fase requerida. Finalmente, también se pudo constatar que el antimonio se oxida sobre el grafeno y el cobre al ponerlo en contacto con el aire. En el caso del grafeno, si la muestra se calienta hasta llegar a una temperatura de 107 ◦C partiendo desde temperatura ambiente, se logra recuperar la mitad del antimonio metálico depositado, mientras que para el caso del cobre no se logra recuperar nada del antimonio metálico.
Resumen en inglés
2D materials have shown to have high potential for use in technological applications. In particular, antimony (Sb) has high applicability in electronics, sensors, and batteries. Two-dimensional antimony has two stable structures called α phase and β phase. In this work, the growth of few layers of antimony in the β phase is studied, due to this phase exhibiting interesting electronic and optoelectronic properties different from bulk antimony. The determining factors for achieving this phase were determined. One of these factors is the substrate on which antimony is deposited, which is why this work focuses on the growth of Sb on graphene under ultra-high vacuum conditions. Subsequently, the stability of this heterostructure, Sb/graphene, was studied under ambient conditions outside of ultra-high vacuum. The characterization techniques used in this work include Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). It was observed that the β phase of antimony grows when deposited on high-quality graphene, while in regions with lower-quality graphene, the β phase does not form. On the other hand, it was observed that the β phase did not form on the copper substrate used. The results obtained indicate that the surface on which antimony layers are grown is crucial for achieving the desired phase. Finally, it was also observed that antimony oxidizes on both graphene and copper upon exposure to air. In the case of graphene, if the sample is heated to a temperature of 107 degrees Celsius from room temperature, half of the deposited metallic antimony can be recovered, while no metallic antimony can be recovered from copper.
Tipo de objeto: | Tesis (Maestría en Ciencias Físicas) |
---|---|
Palabras Clave: | Graphene; Grafeno; Antimony; Antimonio; [RAMN; Heteroestructure; Heteroestructura] |
Referencias: | [1] V. Pham, P., Chanakya Bodepudi, S., Shehzad, K., et al. 2d heterostructures for ubiquitous electronics and optoelectronics: Principles, opportunities, and challenges. Chemical Reviews, 122 (6), 6514–6613, 2022. 1, 3, 6 [2] Li, M.-Y., Chang-Chen, H., Shi, Y., et al. Heterostructures based on twodimensional layered materials and their potential applications. Materials Today, 19 (6), 322–335, 2016. 1, 3, 6 [3] Jianping, J., Xiufeng, S., Jizi, L., et al. Two-dimensional antimonene single crystals grown by van der Waals epitaxy. Nature Communications, 7 (13352), 1–9, 2016. 1, 5, 7, 9, 20 [4] Zhang, S., Yan, Z., Li, Y., et al. Atomically thin arsenene and antimonene:Semimetal-Semiconductor and Indirect-Direct Band-Gap Transitions. Angewandte Chemie International Edition, 54, 3112–3115, 2015. 1 [5] Carrasco, J. A., Congost-Escoin, P., Assebban, M., et al. Antimonene: a tuneable post-graphene material for advanced applications in optoelectronics, catalysis, energy and biomedicine. Chemical Society Reviews, 52, 1288–1330, 2023. 2, 3, 4, 5, 13 [6] Jincang, S., Wenkang, L., Tengfei, D., et al. Graphene/antimonene/graphene heterostructure: A potential anode for sodium-ion batteries. Carbon, 153, 767–775, 2019. 2 [7] Tushar, G., Kenan, E., Stefan, H., et al. Resolving few-layer antimonene/graphene heterostructures. npj 2D Materials and Applications, 5 (53), 1–11, 2021. 2, 4, 10, 11, 84, 85 [8] Ping, Z., Chen, M., Shaoxiang, S., et al. Absence of topological -antimonene and growth of -antimonene on noble metal Ag(111) and Cu(111) surfaces. Physical Review Materials, 6 (074002), 1–7. 2, 10, 80 [9] Novoselov, K. S., Mishchenko, A., Carvalho, A., et al. 2d materials and van der Waals heterostructures. Science, 353, aac9439, 2016. 3, 6 [10] Torres, L. E. F. F., Roche, S., Charlier, J.-C. Introduction to Graphene-Based Nanomaterials From Electronic Structure to Quantum Transport. Cambridge University Press, 1992. 4 [11] Bhuyan, S. A., Uddin, N., Islam, M., et al. Synthesis of graphene. International Nano Letters, 6, 65–83, 2016. 4, 7 [12] Wang, G., Pandey, R., Karna, S. P. Atomically thin group V elemental films: Theoretical investigations of antimonene allotropes. ACS Appl. Mater. Interfaces, 7, 11490–11496, 2015. 5, 9 [13] Zhang, Y., Zhang, L., Kim, P., et al. Vapor trapping growth of single-crystalline graphene flowers: synthesis, morphology, and electronic properties. Nano Letters, 12 (6), 1–7, 2012. 8 [14] Zhang, S., Yan, Z., Li, Y., et al. Atomically thin arsenene and antimonene: Semimetal–semiconductor and indirect–direct band-gap transitions. Angewandte Chemie International Edition, 54, 1–5, 2015. 9 [15] Ares, P., Aguilar-Galindo, F., Rodr´ıguez-San-Miguel, D. Mechanical isolation of highly stable antimonene under ambient conditions. Advanced Materials, 28, 6332–6336, 2016. 9 [16] Wu, X., Shao, Y., Liu, H., et al. Epitaxial growth and air-stability of monolayer antimonene on PdTe2. Advanced Materials, 29 (1605407), 1–6, 2017. 9 [17] Shao, Y., Liu, Z.-L., Cheng, C., et al. Epitaxial growth of flat antimonene monolayer: A new honeycomb analogue of graphene. Nano Letters, 18, 21332139, 2018. 10 [18] Niu, T., Zhou, W., Zhou, D., et al. Modulating epitaxial atomic structure of antimonene through interface design. Advanced Materials, 31 (1902606), 18, 2019. 10 [19] Cantero, E. D., Mart´ınez, E. A., Serkovic-Loli, L. N., et al. Synthesis and characterization of a pure 2d antimony film on Au(111). J. Phys. Chem. C, 125 (17), 9273–9280, 2021. 10 [20] Smith, E., Dent, G. Modern Raman Spectroscopy - A practical Approach. John Wiley Sons,Ltd, 2005. 14 [21] Malard, L. M., Pimenta, M. A., Dresselhaus, G., et al. Raman spectroscopy in graphene. Physics Reports, 473 (5), 51–87, 2009. 18 [22] Beams, R., Can¸cado, L. G., Novotny, L. Raman characterization of defects and dopants in graphene. Journal of Physics: Condensed Matter, 27 (083002), 1–26, 2015. 18 [23] Quang, V. V., Trong, N. S., Trung, N. N., et al. Full-layer controlled synthesis and transfer of large-scale monolayer graphene for nitrogen dioxide and ammonia sensing. Analytical Letters, 47 (2), 280–294, 2014. 19 [24] Gergely, A. A review on corrosion protection with single-layer, multilayer, and composites of graphene. Corrosion Reviews, 36 (2), 155–225, 2018. 19 [25] Moulder, J. F., Stickle, W. F., Sonol, P. E., et al. Handbook of X-ray Photoelectron Spectroscopy. Perkin-Elmer Corporation, 1992. 21, 22, 23, 24, 25, 41, 91 [26] NIST. https://srdata.nist.gov/xps/, Version 5.0. 24, 41 [27] Chen, C. J. Introduction to Scanning Tunneling Microscopy. Oxford University Press, 2004. 27, 29 [28] Horcas, I., Fernández, R., Gomez-Rodrıguez, J. M., et al. Wsxm: A software for scanning probe microscopy and a tool for nanotechnology. Review of Scientific Instruments, 78 (013705), 2007. 33 [29] Goldstein, J., Newbury, D., Joy, D., et al. Scanning Electron Microscopy and X-Ray Microanalysis. Springer Science + Business Media, 2007. 81, 82, 83, 84 |
Materias: | Física > Materiales bidimensionales |
Divisiones: | Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Interacción de la radiación con la materia > Colisiones atómicas y físicas de superficies |
Código ID: | 1250 |
Depositado Por: | Tamara Cárcamo |
Depositado En: | 12 Sep 2024 16:01 |
Última Modificación: | 12 Sep 2024 16:01 |
Personal del repositorio solamente: página de control del documento