van der Velde , Guido G. (2024) Medidas de información en teoría cuántica de campos: hamiltonianos modulares y entropía para teorías incompletas / Information measures in quantum field theory: modular hamiltonians and entropy for incomplete theories. Tesis Doctoral en Física, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Español 1186Kb |
Resumen en español
En esta tesis se estudian dos problemas diferentes de teoría cuántica de campos utilizando herramientas de teoría de información. La primera parte se aboca al cálculo analítico de hamiltonianos modulares para teorías no conformes definidas en la semirrecta y que resultan de la reducción dimensional del escalar y el fermión libres no masivos. La estrategia utilizada consiste en reducir dimensionalmente el hamiltoniano modular en la d esfera para las teorías originales. El resultado se apoya en la factorización del estado reducido al segmento, asociando el flujo modular con simetrías de las teorías efectivas unidimensionales y endomorfismos en el desarrollo causal del intervalo. Resolviendo el espectro de los hamiltonianos modulares encontrados, que dependen del modo angular ℓ, se calcula analíticamente la entropía de entrelazamiento para el segmento. Si bien la suma sobre ℓ de estas entropías es divergente, se propuso un método de regularización novedoso que permite reproducir la estructura de divergencias para la entropía en la d esfera del escalar y el fermión libres. En particular, se logran reproducir los términos universales, representados por la anomalía tipo A en dimensión par arbitraria y la energía libre en la esfera euclídea F en d = 3, lo que resulta una mejora respecto de la regularización radial existente. La segunda parte de la tesis se enfoca en el modelo de Maxwell en 2 + 1 dimensiones. Más específicamente, en los problemas de asignación álgebra-legión característicos de teorías con simetrías generalizadas. En este sentido, se estudia el modelo en un marco dual representado por las derivadas del campo escalar libre. Además, aprovechando la simetría rotacional de las regiones consideradas, se reduce dimensionalmente el problema a la semirrecta, donde toda la diferencia entre el Maxwell y el escalar completo radica en el modo de Fourier n = 0. Así, en una red radial, se analiza la ruptura de la dualidad de Haag. Además, se calcula la entropía en el disco, mostrando que la contribución topológica resultante es inestable frente a distintas realizaciones en la red, con lo cual no es universal. También se calcula la información mutua entre un disco y su complemento, que sí es una cantidad independiente de la regularización. Separando la contribución de los operadores de twist que generan las simetrías generalizadas, se logró reproducir el doble logaritmo predicho en la literatura.
Resumen en inglés
In this thesis, two distinct problems in quantum field theory are addressed using information theory tools. The first part is devoted to the analytic calculation of modular Hamiltonians for non-conformal theories defined on the semi-infinite line, resulting from the dimensional reduction of massless free scalar and fermion fields. The approach involves dimensionally reducing the modular Hamiltonian on the d-sphere for the original theories. The results rely on the factorization of the reduced state in the segment, relating the modular flow with the symmetries of the effective one-dimensional the- ories and endomorphisms in the causal development of the interval. By solving the spectrum of the found modular Hamiltonians, which depend on the angular mode ℓ, the entanglement entropy for the segment is analytically calculated. Although the sum over ℓ of these entropies diverges, a novel regularization method was proposed that allows for the reproduction of the divergence structure for the entropy on the d-sphere of free scalars and fermions. In particular, the universal terms, represented by the type A anomaly in arbitrary even dimensions and the free energy on the Euclidean sphere F in d = 3, are successfully reproduced, which marks an improvement over existing radial regularization. The second part of the thesis focuses on the Maxwell model in 2 + 1 dimensions. More specifically, it addresses the algebra-region assignment problems characteristic of theories with generalized symmetries. In this context, the model is studied within a dual framework represented by the derivatives of the free scalar field. Leveraging the rotational symmetry of the considered regions, the problem is dimensionally reduced to the semi-infinite line, where the entire difference between Maxwell and the complete scalar lies in the Fourier mode n = 0. Thus, on a radial lattice, the breaking of Haag duality is analyzed. Furthermore, the entropy in the disk is calculated, showing that the resulting topological contribution is unstable against different lattice realizations, thereby lacking universality. The mutual information between a disk and its comple- ment, which is a regularization-independent quantity, is also calculated. By isolating the contribution of twist operators that generate generalized symmetries, the double logarithm predicted in the literature was successfully reproduced.
Tipo de objeto: | Tesis (Tesis Doctoral en Física) |
---|---|
Palabras Clave: | Hamiltonians; Hatiltonianos; Quantum field theory; Teoría del campo cuántico; [Modular hamiltonians; Hamiltonianos modulares; Generalized symmetries; Simetrias generalizadas; Haag duality; Dualidad de Haag; Maxwell theory; Teoría de Maxwell; Dimencional reduction; Reducción dimensional] |
Referencias: | [1] Levin, M., Wen, X.-G. Detecting Topological Order in a Ground State Wave Function. Phys. Rev. Lett., 96, 110405, 2006. 1, 74 [2] Calabrese, P., Cardy, J. L. Entanglement entropy and quantum field theory. J. Stat. Mech., 0406, P06002, 2004. 1, 15, 74 [3] Vidal, G., Latorre, J. I., Rico, E., Kitaev, A. Entanglement in quantum critical phenomena. Phys. Rev. Lett., 90, 227902, 2003. 1 [4] Casini, H., Huerta, M., Myers, R. C. Towards a derivation of holographic entanglement entropy. JHEP, 05, 036, 2011. 1, 2, 15, 51 [5] Casini, H., Huerta, M. A Finite entanglement entropy and the c-theorem. Phys. Lett. B, 600, 142–150, 2004. 1 [6] Casini, H., Huerta, M. A c-theorem for the entanglement entropy. J. Phys. A, 40, 7031–7036, 2007. 1 [7] Casini, H., Teste, E., Torroba, G. Markov Property of the Conformal Field Theory Vacuum and the a Theorem. Phys. Rev. Lett., 118 (26), 261602, 2017. 1 [8] Casini, H., Huerta, M. On the RG running of the entanglement entropy of a circle. Phys. Rev. D, 85, 125016, 2012. 1 [9] Ryu, S., Takayanagi, T. Aspects of Holographic Entanglement Entropy. JHEP, 08, 045, 2006. 1, 32 [10] Maldacena, J., Susskind, L. Cool horizons for entangled black holes. Fortsch. Phys., 61, 781–811, 2013. 1 [11] Casini, H. Relative entropy and the Bekenstein bound. Class. Quant. Grav., 25, 205021, 2008. 1, 32 [12] Faulkner, T., Leigh, R. G., Parrikar, O., Wang, H. Modular Hamiltonians for Deformed Half-Spaces and the Averaged Null Energy Condition. JHEP, 09, 038, 2016. 1 [13] Blanco, D., Leston, M., Pérez-Nadal, G. Gravity from entanglement for boundary subregions. JHEP, 06, 130, 2018. 2 [14] Jafferis, D. L., Suh, S. J. The Gravity Duals of Modular Hamiltonians. JHEP, 09, 068, 2016. 32 [15] Jafferis, D. L., Lewkowycz, A., Maldacena, J., Suh, S. J. Relative entropy equals bulk relative entropy. JHEP, 06, 004, 2016. 32 [16] Lashkari, N., McDermott, M. B., Van Raamsdonk, M. Gravitational dynamics from entanglement ’thermodynamics’. JHEP, 04, 195, 2014. [17] Blanco, D. D., Casini, H., Hung, L.-Y., Myers, R. C. Relative Entropy and Holography. JHEP, 08, 060, 2013. 2, 32 [18] Bisognano, J. J., Wichmann, E. H. On the Duality Condition for Quantum Fields. J. Math. Phys., 17, 303–321, 1976. 2 [19] Cardy, J., Tonni, E. Entanglement hamiltonians in two-dimensional conformal field theory. J. Stat. Mech., 1612 (12), 123103, 2016. 2, 34, 36, 37, 65 [20] Hartman, T., Afkhami-Jeddi, N. Speed Limits for Entanglement, 12 2015. 2 [21] Casini, H., Huerta, M. Reduced density matrix and internal dynamics for multicomponent regions. Class. Quant. Grav., 26, 185005, 2009. 2, 34, 103 [22] Blanco, D., Pérez-Nadal, G. Modular Hamiltonian of a chiral fermion on the torus. Phys. Rev. D, 100 (2), 025003, 2019. 2 [23] Casini, H., Huerta, M., Magan, J. M., Pontello, D. Entanglement entropy and superselection sectors. Part I. Global symmetries. JHEP, 02, 014, 2020. 2, 74, 75, 76, 77, 89, 98, 99 [24] Casini, H., Huerta, M., Magan, J. M., Pontello, D. Entropic order parameters for the phases of QFT. JHEP, 04, 277, 2021. 29, 74, 75, 78, 98, 99 [25] Casini, H., Huerta, M., Magan, J. M., Pontello, D. Logarithmic coefficient of the entanglement entropy of a Maxwell field. Phys. Rev. D, 101 (6), 065020, 2020. 2 [26] Huerta, M., van der Velde, G. Instability of universal terms in the entanglement entropy. Phys. Rev. D, 105 (12), 125021, 2022. 3, 74 [27] Huerta, M., van der Velde, G. Modular Hamiltonian of the scalar in the semi infinite line: dimensional reduction for spherically symmetric regions. JHEP, 06, 097, 2023. 31, 69 [28] Huerta, M., van der Velde, G. Modular Hamiltonian in the semi infinite line. Part II. Dimensional reduction of Dirac fermions in spherically symmetric regions. JHEP, 01, 062, 2024. 3, 31 [29] Nishioka, T. Entanglement entropy: holography and renormalization group. Rev. Mod. Phys., 90 (3), 035007, 2018. 5, 6 [30] Casini, H., Huerta, M. Entanglement entropy in free quantum field theory. J. Phys. A, 42, 504007, 2009. 7, 17, 42, 64, 74, 84 [31] Casini, H., Huerta, M. Lectures on entanglement in quantum field theory. PoS, TASI2021, 002, 2023. 5 [32] Bombelli, L., Koul, R. K., Lee, J., Sorkin, R. D. A Quantum Source of Entropy for Black Holes. Phys. Rev. D, 34, 373–383, 1986. 7 [33] Callan, C. G., Jr., Wilczek, F. On geometric entropy. Phys. Lett. B, 333, 55–61, 1994. [34] Srednicki, M. Entropy and area. Phys. Rev. Lett., 71, 666–669, 1993. 7, 37, 87, 102 [35] Casini, H., Fosco, C. D., Huerta, M. Entanglement and alpha entropies for a massive Dirac field in two dimensions. J. Stat. Mech., 0507, P07007, 2005. 10 [36] Avramidi, I. G. Heat kernel approach in quantum field theory. Nuclear Physics B - Proceedings Supplements, 104 (1–3), 3–32, ene. 2002. 12 [37] Vassilevich, D. V. Heat kernel expansion: User’s manual. Phys. Rept., 388, 279–360, 2003. 12 [38] Solodukhin, S. N. Entanglement entropy of black holes. Living Rev. Rel., 14, 8, 2011. 13 [39] Fursaev, D. V., Patrushev, A., Solodukhin, S. N. Distributional Geometry of Squashed Cones. Phys. Rev. D, 88 (4), 044054, 2013. 13, 15 [40] Holzhey, C., Larsen, F., Wilczek, F. Geometric and renormalized entropy in conformal field theory. Nucl. Phys. B, 424, 443–467, 1994. 15 [41] Solodukhin, S. N. Entanglement entropy, conformal invariance and extrinsic geometry. Phys. Lett. B, 665, 305–309, 2008. 15 [42] Huerta, M. Numerical Determination of the Entanglement Entropy for Free Fields in the Cylinder. Phys. Lett. B, 710, 691–696, 2012. 15, 58, 69, 70 [43] Casini, H., Huerta, M. Entanglement entropy for the n-sphere. Phys. Lett. B, 694, 167–171, 2011. 16, 51 [44] Klebanov, I. R., Pufu, S. S., Sachdev, S., Safdi, B. R. Renyi Entropies for Free Field Theories. JHEP, 04, 074, 2012. 16 [45] Magan, J. M., Pontello, D. Quantum Complementarity through Entropic Certainty Principles. Phys. Rev. A, 103 (1), 012211, 2021. 23 [46] Gaiotto, D., Kapustin, A., Seiberg, N., Willett, B. Generalized Global Symmetries. JHEP, 02, 172, 2015. 23 [47] R.Haag. Local quantum physics: Fields, particles, algebras. Springer, Heidelberg, 1992. 32 [48] Brunetti, R., Guido, D., Longo, R. Modular structure and duality in conformal quantum field theory. Communications in Mathematical Physics, 156 (1), 201–219, 1993. 32 [49] Hislop, P. D., Longo, R. Modular Structure of the Local Algebras Associated With the Free Massless Scalar Field Theory. Commun. Math. Phys., 84, 71, 1982. 32 [50] Casini, H., Teste, E., Torroba, G. Modular Hamiltonians on the null plane and the Markov property of the vacuum state. J. Phys. A, 50 (36), 364001, 2017. 32 [51] Arias, R., Casini, H., Huerta, M., Pontello, D. Anisotropic Unruh temperatures. Phys. Rev. D, 96 (10), 105019, 2017. [52] Ohya, M., Petz, D. Quantum entropy and its use. Springer Science & Business Media, 2004. 32 [53] Wall, A. C. A proof of the generalized second law for rapidly changing fields and arbitrary horizon slices. Phys. Rev. D, 85, 104049, 2012. [Erratum: Phys.Rev.D 87, 069904 (2013)]. 32 [54] Blanco, D. D., Casini, H. Localization of Negative Energy and the Bekenstein Bound. Phys. Rev. Lett., 111 (22), 221601, 2013. [55] Bousso, R., Casini, H., Fisher, Z., Maldacena, J. Entropy on a null surface for interacting quantum field theories and the Bousso bound. Phys. Rev. D, 91 (8), 084030, 2015. [56] Bousso, R., Fisher, Z., Koeller, J., Leichenauer, S., Wall, A. C. Proof of the Quantum Null Energy Condition. Phys. Rev. D, 93 (2), 024017, 2016. [57] Hollands, S. Relative entropy close to the edge. Annales Henri Poincare, 20 (7), 2353–2375, 2019. 32 [58] Ryu, S., Takayanagi, T. Holographic derivation of entanglement entropy from AdS/CFT. Phys. Rev. Lett., 96, 181602, 2006. 32 [59] Faulkner, T., Lewkowycz, A. Bulk locality from modular flow. JHEP, 07, 151, 2017. 32 [60] Unruh, W. G. Notes on black-hole evaporation. Physical Review D, 14 (4), 870, 1976. 33 [61] Tonni, E., Rodrıguez-Laguna, J., Sierra, G. Entanglement hamiltonian and entanglement contour in inhomogeneous 1D critical systems. J. Stat. Mech., 1804 (4), 043105, 2018. 34 [62] Di Giulio, G., Arias, R., Tonni, E. Entanglement hamiltonians in 1D free lattice models after a global quantum quench. J. Stat. Mech., 1912 (12), 123103, 2019. [63] Di Giulio, G., Tonni, E. On entanglement hamiltonians of an interval in massless harmonic chains. J. Stat. Mech., 2003 (3), 033102, 2020. [64] Eisler, V., Di Giulio, G., Tonni, E., Peschel, I. Entanglement Hamiltonians for non-critical quantum chains. J. Stat. Mech., 2010, 103102, 2020. [65] Mintchev, M., Tonni, E. Modular Hamiltonians for the massless Dirac field in the presence of a defect. JHEP, 03, 205, 2021. 62 [66] Mintchev, M., Tonni, E. Modular Hamiltonians for the massless Dirac field in the presence of a boundary. JHEP, 03, 204, 2021. 34, 62 [67] Longo, R., Martinetti, P., Rehren, K.-H. Geometric modular action for disjoint intervals and boundary conformal field theory. Rev. Math. Phys., 22, 331–354, 2010. 34 [68] Wong, G. Gluing together Modular flows with free fermions. JHEP, 04, 045, 2019. 34 [69] Javerzat, N., Tonni, E. On the continuum limit of the entanglement Hamiltonian of a sphere for the free massless scalar field. JHEP, 02, 086, 2022. 36 [70] Jackiw, R., Pi, S. Y. Tutorial on Scale and Conformal Symmetries in Diverse Dimensions. J. Phys. A, 44, 223001, 2011. 36, 43 [71] Chamon, C., Jackiw, R., Pi, S.-Y., Santos, L. Conformal quantum mechanics as the CFT1 dual to AdS2. Phys. Lett. B, 701, 503–507, 2011. 36, 43 [72] Riera, A., Latorre, J. I. Area law and vacuum reordering in harmonic networks. Phys. Rev. A, 74, 052326, 2006. 37 [73] Casini, H., Grillo, S., Pontello, D. Relative entropy for coherent states from Araki formula. Phys. Rev. D, 99 (12), 125020, 2019. 41 [74] Saharian, A. A. Scalar Casimir effect for D-dimensional spherically symmetric Robin boundaries. Phys. Rev. D, 63, 125007, 2001. 42 [75] Van Raamsdonk, M. Lectures on Gravity and Entanglement. En: Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings, p´ags. 297–351. 2017. 44 [76] Arias, R. E., Casini, H., Huerta, M., Pontello, D. Entropy and modular Hamiltonian for a free chiral scalar in two intervals. Phys. Rev. D, 98 (12), 125008, 2018. 47, 64 [77] Cappelli, A., D’Appollonio, G. On the trace anomaly as a measure of degrees of freedom. Phys. Lett. B, 487, 87–95, 2000. 51, 68 [78] Klebanov, I. R., Pufu, S. S., Safdi, B. R. F-Theorem without Supersymmetry. JHEP, 10, 038, 2011. 51, 53, 69, 74 [79] Liu, H., Mezei, M. Probing renormalization group flows using entanglement entropy. JHEP, 01, 098, 2014. [80] Casini, H., Huerta, M., Myers, R. C., Yale, A. Mutual information and the F-theorem. JHEP, 10, 003, 2015. 51, 53, 71, 87, 102 [81] Lopez-Ortega, A. The Dirac equation in D-dimensional spherically symmetric spacetimes, 6 2009. 55 [82] Camporesi, R., Higuchi, A. On the Eigen functions of the Dirac operator on spheres and real hyperbolic spaces. J. Geom. Phys., 20, 1–18, 1996. 56 [83] Cho, H. T., Cornell, A. S., Doukas, J., Naylor, W. Split fermion quasi-normal modes. Phys. Rev. D, 75, 104005, 2007. 58 [84] Gibbons, G. W., Rogatko, M., Szyplowska, A. Decay of Massive Dirac Hair on a Brane-World Black Hole. Phys. Rev. D, 77, 064024, 2008. [85] Das, S. R., Gibbons, G. W., Mathur, S. D. Universality of low-energy absorption cross-sections for black holes. Phys. Rev. Lett., 78, 417–419, 1997. 58 [86] Dong, S.-H. On the Dirac equation with a Coulomb potential in D+1 dimensions. Phys. Scripta, 67, 377–380, 2003. 58 [87] Kanellopoulos, E. J., Kanellopoulos, T. V., Wildermuth, K. Exact solution of the dirac equation with a central potential. Commun. Math. Phys., 27, 155–161, 1972. 58 [88] Benedetti, V., Daguerre, L. Entanglement entropy of a Rarita-Schwinger field in a sphere. Phys. Rev. D, 108 (8), 086015, 2023. 58 [89] Simmons-Duffin, D. The Conformal Bootstrap. En: Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings, pags. 1–74. 2017. 60 [90] Casini, H., Huerta, M. Entanglement entropy of a Maxwell field on the sphere. Phys. Rev. D, 93 (10), 105031, 2016. 72 [91] Casini, H., Magan, J. M. On completeness and generalized symmetries in quantum field theory. Mod. Phys. Lett. A, 36 (36), 2130025, 2021. 74, 75 [92] Liu, H., Mezei, M. A Refinement of entanglement entropy and the number of degrees of freedom. JHEP, 04, 162, 2013. 74 [93] Grover, T. Entanglement Monotonicity and the Stability of Gauge Theories in Three Spacetime Dimensions. Phys. Rev. Lett., 112 (15), 151601, 2014. 74 [94] Casini, H., Huerta, M., Rosabal, J. A. Remarks on entanglement entropy for gauge fields. Phys. Rev. D, 89 (8), 085012, 2014. 74 [95] Casini, H., Huerta, M. Entanglement entropy for a Maxwell field: Numerical calculation on a two dimensional lattice. Phys. Rev. D, 90 (10), 105013, 2014. 74, 76, 80, 84, 96 [96] Kitaev, A., Preskill, J. Topological entanglement entropy. Phys. Rev. Lett., 96, 110404, 2006. 74 [97] Buividovich, P. V., Polikarpov, M. I. Entanglement entropy in gauge theories and the holographic principle for electric strings. Phys. Lett. B, 670, 141–145, 2008. 74 [98] Donnelly, W., Wall, A. C. Do gauge fields really contribute negatively to black hole entropy? Phys. Rev. D, 86, 064042, 2012. [99] Donnelly, W., Wall, A. C. Geometric entropy and edge modes of the electromagnetic field. Phys. Rev. D, 94 (10), 104053, 2016. [100] Ghosh, S., Soni, R. M., Trivedi, S. P. On The Entanglement Entropy For Gauge Theories. JHEP, 09, 069, 2015. [101] Huang, K.-W. Central Charge and Entangled Gauge Fields. Phys. Rev. D, 92 (2), 025010, 2015. [102] Soni, R. M., Trivedi, S. P. Entanglement entropy in (3 + 1)-d free U(1) gauge theory. JHEP, 02, 101, 2017. 74 [103] Metlitski, M. A., Grover, T. Entanglement Entropy of Systems with Spontaneously Broken Continuous Symmetry, 12 2011. 76 [104] Agon, C. A., Headrick, M., Jafferis, D. L., Kasko, S. Disk entanglement entropy for a Maxwell field. Phys. Rev. D, 89 (2), 025018, 2014. 76 [105] El-Showk, S., Nakayama, Y., Rychkov, S. What Maxwell Theory in D<>4 teaches us about scale and conformal invariance. Nucl. Phys. B, 848, 578–593, 2011. 79 [106] Peschel, I., Eisler, V. Exact results for the entanglement across defects in critical chains. J. Phys. A: Math. Theor., 45, 155301, 2012. 92 [107] Petz, D. Quantum information theory and quantum statistics. Springer Science & Business Media, 2007. 95 [108] Araki, H. Relative entropy of states of von neumann algebras. Publications of the Research Institute for Mathematical Sciences, 11 (3), 809–833, 1976. 95 |
Materias: | Física > Teoría cuántica de campos |
Divisiones: | Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Sistemas complejos y altas energías > Partículas y campos |
Código ID: | 1257 |
Depositado Por: | Tamara Cárcamo |
Depositado En: | 13 Sep 2024 15:26 |
Última Modificación: | 13 Sep 2024 15:26 |
Personal del repositorio solamente: página de control del documento