Stella, Valentina M. (2024) Estudio de cambios espaciales de la textura cristalográfica mediante técnicas de transmisión de neutrones / Study of spatial changes in crystallographic texture using neutron transmission techniques. Maestría en Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Español 9Mb |
Resumen en español
En el presente trabajo, se propone caracterizar la variación espacial de la textura cristalográfica a partir de transmisión de neutrones con resolución en energía. Se ha desarrollado y aplicado el método de imágenes de bordes de Bragg con resolución espacial para analizar la evolución de polos de la textura, en un caso particularmente adecuado para esta técnica. Se trata de la zona de trabajo correspondiente al primer paso de laminado en frío de un tubo de Zircaloy-4. El Zircaloy-4 es ampliamente utilizado en la industria nuclear para fabricar tubos de revestimiento de combustible en reactores nucleares. Su fabricación incluye múltiples pasos de laminado en frío con tratamientos térmicos intermedios de recristalización. Este proceso genera cambios en la textura del material, cuya caracterización es de interés para la CNEA debido a su impacto en la anisotropía de las propiedades físicas y, por ende, en el rendimiento de las piezas en servicio. En trabajos anteriores, se caracterizó la evolución de la textura de estos tubos durante el primer paso de laminación mediante difracción de neutrones. Sin embargo, este caso es ideal para estudiar mediante imágenes de borde de Bragg, ya que el cambio en la textura se ve reflejado en una rotación de 30° de los cristales alrededor del eje c. Esta rotación resulta en un cambio en las alturas de los bordes de Bragg en los polos (11¯20) y (10¯10) en la dirección axial, debido a que esta altura es proporcional a la cantidad de cristales con dirección paralela a la del haz utilizado en las imágenes con neutrones. En el experimento, llevado a cabo en el instrumento BOA del Instituto Paul-Scherrer, el haz estaba alineado paralelo a la dirección axial del tubo. El método aplicado sin resolución espacial ofreció resultados consistentes con los de difracción de neutrones y, con la adición de resolución espacial, se detectaron variaciones de textura con mayor precisión. Además, se sentaron las bases para continuar el desarrollo y mejora de esta técnica.
Resumen en inglés
In the present work, we propose to characterize the spatial variation of crystallographic texture from energy-resolved neutron transmission. The spatially resolved Bragg edge imaging method has been developed and applied to analyze the pole evolution of the texture, in a case particularly suitable for this technique. This is the working area corresponding to the first cold rolling step of a Zircaloy-4 tube. Zircaloy-4 is widely used in the nuclear industry to fabricate fuel cladding tubes in nuclear reactors. Its fabrication involves multiple cold rolling steps with intermediate recrystallization heat treatments. This process generates changes in the texture of the material, whose characterization is of interest to CNEA due to its impact on the anisotropy of the physical properties and, therefore, on the performance of the parts in service. In previous work, the texture evolution of these tubes was characterized during the first lamination step by neutron diffraction. However, this case is ideal for study by Bragg edge imaging, since the change in texture is reflected in a 30° rotation of the crystals around the c-axis. This rotation results in a change in the heights of the Bragg edges at the (11¯20) and (10¯10) poles in the axial direction, since this height is proportional to the number of crystals with direction parallel to that of the beam used in the neutron imaging. In the experiment, carried out on the BOA instrument of the Paul-Scherrer Institute, the beam was aligned parallel to the axial direction of the tube. The method applied without spatial resolution gave results consistent with those of neutron diffraction and, with the addition of spatial resolution, texture variations were detected more accurately. In addition, the basis for further development and improvement of this technique was laid.
Tipo de objeto: | Tesis (Maestría en Ingeniería) |
---|---|
Palabras Clave: | Zirconium; Circonio; Spatial resolution; Resolución espacial; [Cold pilgering; Laminado en frio; Neutron imaging; Imágenes con neutrones; Crystallographic texture; Textura cristalográfica; Bragg edges; Bordes de bragg] Crystallographic texture; Textura cristalográfica; Bragg edges; Bordes de bragg] |
Referencias: | [1] Malamud, F. Efectos de la microestructura sobre la transmisión de neutrones en materiales de interés nuclear. Tesis Doctoral, Universidad Nacional de Cuyo, 2016. xi, xi, xi, xi, 3, 7, 20, 21 [2] Ramadhan, R. S. Development and Application of Bragg Edge Neutron Transmission Imaging on the IMAT Beamline. Tesis Doctoral, Coventry University, 2019. xi, 26 [3] Busi, M., Capek, J., Polatidis, E., Hovind, J., Boillat, P., Tremsin, A. S., et al. Frame overlap bragg edge imaging. Scientific Reports, 10 (1), 14867, 2020. xii, 33, 34 [4] Juarez, G., Alvarez, M. A. V., Santisteban, J., Almer, J., Luzin, V., Vizcaino, P. Global and local texture development during initial plastic deformation of coldpilgered zircaloy-4 tubing. Journal of Nuclear Materials, 558, 153382, 2022. xii, xii, xiii, xvi, xvi, 42, 47, 51, 53, 78, 79, 92, 93, 94, 95 [5] Chu, Z.-b., Xue, Z.-y., Zhang, D., Wang, H.-z., Li, W., Liu, R.-h., et al. Parameters of cold pilgering of seamless steel tube. Journal of Iron and Steel Research International, 26, 593–601, 2019. xii, 45 [6] Tenckhoff, E. Deformation mechanisms, texture, and anisotropy in zirconium and zircaloy, tomo 966. ASTM International, 1988. xiii, 41, 50 [7] Deng, S., Song, H., Zheng, C., Zhao, T., Zhang, S., Nielsen, K. B. Selection of deformation modes and related texture evolution in zircaloy-4 during one pass cold pilgering. Materials Science and Engineering: A, 764, 138280, 2019. xiii, 50, 51 [8] Freitas, F. N. C. Adequabilidade das condi¸coes de lamina¸cao de um a¸co baixocarbono a estampagem profunda, 2003. xvi, 116 [9] Engler, O., Zaefferer, S., Randle, V. Introduction to texture analysis: macrotexture, microtexture, and orientation mapping, 2010. xvii, 122 [10] Yang, Z., Zhang, F., Yang, X.,Wang, Y.,Wang, D. Microstructure and mechanical properties of zr-4 alloy and 316 stainless steel diffusion bonding joint using nb/nicomposite interlayer. Advanced Engineering Materials, p´ag. 2300279, 2023. xvii,125 [11] Ikhlaq, U., Hirose, A., Ahmad, R., Ikhlaq, A., Saleem, S., Sammynaiken, R., et al. The role of ar flow rates on synthesis of nanostructured zirconium nitride layer growth using plasma enhanced hot filament nitriding (pehfn) technique. The European Physical Journal Applied Physics, 69 (1), 10801, 2015. xvii, 126 [12] Bertolino, G. Deterioro de las propiedades mecánicas de aleaciones base circonio por interacción con hidrógeno. Tesis Doctoral, Instituto Balseiro, UNCuyo, 2001. xix, 40 [13] Squires, G. L. Introduction to the theory of thermal neutron scattering. Courier Corporation, 1996. 7, 9, 13, 101, 102 [14] Santisteban, J. R., Edwards, L., Stelmukh, V. Characterization of textured materials by tof transmission. Physica B: Condensed Matter, 385, 636–638, 2006. 7, 22, 110 [15] Parks, D. E., Beyster, J., Nelkin, M., Wikner, N. Slow neutron scattering and thermalization with reactor applications, 1970. 9, 101 [16] Granada, J. Total scattering cross section of solids for cold and epithermal neutrons. Zeitschrift fur Naturforschung A, 39 (12), 1160–1167, 1984. 11 [17] Marshall, W., Lovesey, S. W., et al. Theory of thermal neutron scattering: the use of neutrons for the investigation of condensed matter. Clarendon Press, 1971. 17 [18] Halpern, O., Hamermesh, M., Johnson, M. The passage of neutrons through crystals and polycrystals. Physical Review, 59 (12), 981, 1941. 18 [19] Fermi, E., Marshall, L. Interference phenomena of slow neutrons. Physical Review, 71 (10), 666, 1947. 18 [20] Monte carlo simulation of neutron scattering by a textured polycrystal. Journal of Applied Crystallography, 53 (2), 512–529, 2020. 22, 110 [21] Kockelmann, W., Frei, G., Lehmann, E. H., Vontobel, P., Santisteban, J. R. Energy-selective neutron transmission imaging at a pulsed source. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 578 (2), 421–434, 2007. 27 [22] Mampe, W., Ageron, P., Bates, C., Pendlebury, J., Steyerl, A. Neutron lifetime measured with stored ultracold neutrons. Physical Review Letters, 63 (6), 593, 1989. 28 [23] Iwase, K., Sakuma, K., Kamiyama, T., Kiyanagi, Y., Piegsa, F., van den Brandt, B., et al. Nuclear instruments and methods in physics research a. 31 [24] PSI, P. S. I. Boa, 2023. URL https://www.psi.ch/en/sinq/boa. 31 [25] Krishnan, A. M., R. Zirconium alloys in nuclear technology. Proceeding of the Indian Academy of Sciences Section C: Engineering Sciences, págs. 41–56, 1981. 40 [26] Griffiths, M. A review of microstructure evolution in zirconium alloys during irradiation. Journal of Nuclear Materials, 159, 190–218, 1988. 41 [27] Lebensohn, R., Gonzalez, M., Tome, C., Pochettino, A. Measurement and prediction of texture development during a rolling sequence of zircaloy-4 tubes. Journal of nuclear materials, 229, 57–64, 1996. 43, 46 [28] Singh, J., Mahesh, S., Kumar, G., Pant, P., Srivastava, D., Dey, G., et al. Texture development and plastic deformation in a pilgered zircaloy-4 tube. Metallurgical and Materials Transactions A, 46, 1927–1947, 2015. 43, 46 [29] Signorelli, J., Turner, P., Loge, R. Una aplicacion multi-escala para el proceso de conformado de tubos de zircaloy. Mecánica Computacional, págs. 179–192, 2004. 43 [30] Cook, C., Sabol, G., Sekera, K., Randall, S. Texture control in Zircaloy tubing through processing. ASTM International, 1991. 45 [31] Nagai, N., Kakuma, T., Fujita, K. Texture control of zircaloy tubing during tube reduction. En: Zirconium in the Nuclear Industry. ASTM International, 1982. 46 [32] Allen, V., Preuss, M., Robson, J. D., Comstock, R. Evolution of texture in zirconium alloy tubing during processing. En: Materials Science Forum, tomo 495, págs. 675–680. Trans Tech Publ, 2005. 46 [33] Hobson, D. Tubing fabrication parameters and their application to texture control in zircaloy tubing. Inf. tec., Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States), 1971. 46 [34] Tenckhoff, E., Rittenhouse, P. Annealing textures in zircaloy tubing. Journal of Nuclear Materials, 35 (1), 14–23, 1970. 53 [35] Santisteban, J., Edwards, L., Steuwer, A., Withers, P. Time-of-flight neutron transmission diffraction. Journal of applied crystallography, 34 (3), 289–297, 2001. 61 [36] Dawidowski, J., Granada, J. R., Santisteban, J. R., Cantargi, F., Palomino, L. A. R. Neutron scattering lengths and cross sections. En: Experimental Methods in the Physical Sciences, tomo 44, págs. 471–528. Elsevier, 2013. 65 [37] Sears, V., Shelley, S. Debye–waller factor for elemental crystals. Acta Crystallographica Section A: Foundations of Crystallography, 47 (4), 441–446, 1991. 65 [38] Kocks, U. F., Tome, C. N.,Wenk, H.-R. Texture and anisotropy: preferred orientations in polycrystals and their effect on materials properties. Cambridge university press, 2000. 110, 116, 125, 127 [39] Lutterotti, L. Total pattern fitting for the combined size–strain–stress–texture determination in thin film diffraction. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268 (3-4), 334–340, 2010. 122 [40] Lutterotti, L., Matthies, S., Wenk, H.-R., Schultz, A., Richardson Jr, J. Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra. Journal of Applied Physics, 81 (2), 594–600, 1997. 122 [41] Bachmann, F., Hielscher, R., Schaeben, H. Texture analysis with mtex–free and open source software toolbox. Solid state phenomena, 160, 63–68, 2010. 122 [42] Monsalve, A., Artigas, A. Texturas, una herramienta indispensable en el estudio de materiales metálicos. Revista Remetallica, (9), 2003. 124, 125 [43] Schwarzer, R., et al. The determination of local texture by electron diffraction–a tutorial review. Texture, Stress, and Microstructure, 20 (1-4), 7–27, 1993. 125 |
Materias: | Ingeniería nuclear > Técnicas neutrónicas Ingeniería nuclear > Materiales nucleares |
Divisiones: | Gcia. de área de Energía Nuclear > Gcia. de Ingeniería Nuclear > LAHN |
Código ID: | 1259 |
Depositado Por: | Tamara Cárcamo |
Depositado En: | 12 Sep 2024 14:45 |
Última Modificación: | 12 Sep 2024 14:45 |
Personal del repositorio solamente: página de control del documento