Valdés, Daniela Paola (2024) Hipertermia de nanopartículas magnéticas en fantomas: de la teoría al experimento / Hyperthermia of magnetic nanoparticles in phantoms: from the theory to the experiment. Tesis Doctoral en Física, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Español 38Mb |
Resumen en español
Los tratamientos médicos contra el cáncer basados en nanopartículas, como la hipertermia magnética, son ampliamente investigados en la actualidad. Sin embargo, hay numerosos factores que dificultan su predictibilidad, reproducibilidad y la interpretación de los experimentos (en términos de incremento de temperatura o absorción de potencia) cuando son llevados a cabo en sistemas in vitro o in vivo. Algunos de ellos son la influencia de la viscosidad del medio y los efectos de interacciones debido a la aglomeración de las nanopartículas. Esto nos conduce a tratar de entender como se comportan los sistemas no ideales que poseen distribuciones de parámetros intrínsecos a las nanopartículas, as como a estudiar las distribuciones de temperatura durante el calentamiento de la muestra. El objetivo de esta tesis es abordar estos problemas a través de una retroalimentación entre enfoques teóricos y experimentales. Comenzamos por generar un marco teórico que nos permite entender como se comportan magnéticamente sistemas de nanopartículas simples (tanto no interactuantes como cadenas unidimensionales ideales), el rol de diferentes parámetros en la relajación magnética y explicar como el mismo agregado en diferentes condiciones experimentales puede tener un efecto beneficioso o perjudicial en la absorción de potencia. Con este marco teórico a mano, preparamos sistemas de características controladas que obran de fantomas celulares. Estos consisten de nanopartículas fijas en una matriz de gel, tanto dispersas como formando agregados. Mediante una caracterización exhaustiva de las nanopartículas y de los fantomas, que incluye tanto estudios de microscopía como mediciones magnéticas, recolectamos información sobre su morfología, composición y comportamiento magnético en condiciones dc y ac. Para comprender los resultados de magnetometría ac en condiciones típicas de hipertermia, modelamos sistemas similares a los reales, con distribuciones de tamaño, anisótropa y diferentes grados de aglomeración, tanto de manera analítica como efectiva. Finalmente, volvemos a poner el foco sobre la medición y desarrollamos un método de análisis que permite obtener mapas de evolución del incremento de temperatura durante experimentos de hipertermia para diferentes puntos en los fantomas, de manera simultanea y no invasiva. El mismo consiste en la adquisición de vídeos a través de una cámara termográfica y su posterior procesamiento. En contraste con las mediciones convencionales con sonda local, permite evaluar distribuciones de temperatura as como flujo de calor, potencia y da idea de las perdidas térmicas, lo cual es esencial para el entendimiento de experimentos in vitro, in vivo y de futuros tratamientos debido a la complejidad que introduce la perfusión sanguínea y las condiciones tumorales en la interpretación de los resultados. El desarrollo de este trabajo de tesis, en el cual los aspectos teóricos y experimentales se han alternado y retroalimentado a lo largo del mismo, nos ha permitido captar los factores físicos mas relevantes en los experimentos de hipertermia magnética abordados. Para resumir, llevamos a cabo exitosamente la síntesis y caracterización de tres muestras, logrando controlar sus propiedades morfológicas y magnéticas, as como obtener detalles de su composición. Con ellas, preparamos fantomas celulares en los cuales pudimos obtener aglomerados elongados de partículas mediante campos magnéticos ac típicos de experimentos de hipertermia. Los fantomas se caracterizaron extensivamente y se evaluó su absorción de potencia mediante métodos magnéticos (ciclos ac) y calorimétricos (estudios con cámara termográfica). Para reproducir estos ciclos ac mediante simulaciones, nos nutrimos de la información obtenida mediante la caracterización previa de los fantomas para desarrollar un modelo efectivo que mantiene los elementos esenciales para determinar su comportamiento magnético en estas condiciones. Desarrollamos, a partir de las medidas con la cámara termográfica, un método con mucha potencialidad para estudiar dinámica de calentamiento y distribuciones heterogéneas de nanopartículas en una matriz, con capacidad de análisis 2D que demuestra ser muy superior a las mediciones con sonda local. Este enfoque global sobre la hipertermia magnética abre el camino para nuevos estudios de sistemas de nanopartículas complejos utilizados en la aplicación.
Resumen en inglés
Medical cancer treatments based on nanoparticles such as magnetic hyperthermia are widely investigated nowadays. However, there are numerous factors that hinder the predictability, reproducibility and interpretation of the experiments (in terms of temperature increase or power absorption) when they are carried out in vitro or in vivo. Some of them are the influence of the medium's viscosity and the effects of interactions due to nanoparticle agglomeration. This leads us to try to understand how non-ideal systems with distributions of nanoparticle-intrinsic parameters behave, as well as to study temperature distributions during sample heating. The goal of this thesis is to address these problems through a feedback loop between theoretical and experimental approaches. We begin by generating a theoretical framework that allow us to understand how simple nanoparticle systems behave magnetically (both non-interacting and ideal one-dimensional chains), the role of different parameters in magnetic relaxation and explain how the same aggregate in different experimental conditions can have a beneficial or detrimental effect on power absorption. With this theoretical framework at hand, we prepare systems with controlled characteristics which act as cellular phantoms. They consist of nanoparticles fixed into a gel matrix, both dispersed and forming aggregates. Through a comprehensive characterization of the nanoparticles and phantoms, including both microscopy studies and magnetic measurements, we collect information on their morphology, composition, and magnetic behavior under dc and ac conditions. To understand the results of ac magnetometry under typical hyperthermia conditions, we model systems similar to real ones, with size distributions, anisotropy and different degrees of agglomeration, both analytically and effectively. Finally, we return our focus to the measurements and develop an analysis method that allows us to obtain temperature-evolution maps during hyperthermia experiments for different points on the phantoms, simultaneously and non-invasively. It consists of video acquisition through a thermographical camera and its subsequent processing. In contrast to conventional measurements with local probes, it allows to evaluate temperature distributions as well as heat flow, power and addresses thermal losses, which is essential for the understanding of in vitro and in vivo experiments, as well as future treatments due to the complexity introduced into the system by blood perfusion and tumoral conditions, making it more dificult to interpret results. The development of this thesis work, in which we have alternated between the theoretical and experimental aspects and worked with their feedback throughout, has allowed us to capture the most relevant physical factors in the magnetic hyperthermia experiments addressed. To summarize, we successfully carried out the synthesis and characterization of three samples, managing to control their morphological and magnetic properties, as well as get details of their composition. With them, we prepared cell phantoms in which we were able to obtain elongated agglomerates of particles using ac magnetic fields typical of hyperthermia experiments. The phantoms were extensively characterized and their power absorption was evaluated using magnetic (ac loops) and calorimetric (thermographic camera studies) methods. To reproduce these ac loops through simulations, we draw on the information obtained through the previous characterization of the phantoms to develop an effective model that maintains the essential elements to determine their magnetic behavior under these conditions. We developed, based on measurements with the thermographic camera, a method with great potential to study heating dynamics and heterogeneous distributions of nanoparticles in a matrix, with 2D-analysis capacity that proves to be much superior to measurements performed with local probes. This comprehensive approach to magnetic hyperthermia opens the way for new studies of complex nanoparticle systems used in the application.
Tipo de objeto: | Tesis (Tesis Doctoral en Física) |
---|---|
Palabras Clave: | Nanoparticles; Nanopartículas; Thermography; Termografía; Phantoms; Anisotropy; Anisotropía; Hysteresis; Histéresis; [Magnetic hyperthermia; Hipertermia magnética; Fantomas] |
Referencias: | [1] Yoreo, J. J. D., Gilbert, P. U. P. A., Sommerdijk, N. A. J. M., Penn, R. L., Whitelam, S., Joester, D., et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science, 349 (6247), 2015. URL https://doi.org/10.1126/science.aaa6760. 1 [2] Lin, W., Paterson, G. A., Zhu, Q., Wang, Y., Kopylova, E., Li, Y., et al. Origin of microbial biomineralization and magnetotaxis during the archean. Proceedings of the National Academy of Sciences, 114 (9), 2171-2176, 2017. URL https://doi.org/10.1073/pnas.1614654114. 2 [3] Chen, L., Bazylinski, D. A., Lower, B. H. Bacteria that synthesize nano-sized compasses to navigate using earth's geomagnetic field. Nature Education Knowledge, 3, 30, 2010. 2 [4] Zhu, G. H., Gray, A. B., Patra, H. K. Nanomedicine: controlling nanoparticle clearance for translational success. Trends in Pharmacological Sciences, 43 (9), 709-711, 2022. URL https://doi.org/10.1016/j.tips.2022.05.001. 2 [5] Kappel, C., Seidl, C., Medina-Montano, C., Schinnerer, M., Alberg, I., Leps, C., et al. Density of conjugated antibody determines the extent of Fc receptor dependent capture of nanoparticles by liver sinusoidal endothelial cells. ACS Nano, 15 (9), 15191-15209, 2021. URL https://doi.org/10.1021/acsnano.1c05713. 2 [6] Bhandari, S., Larsen, A. K., McCourt, P., Smedsrod, B., Sorensen, K. K. The scavenger function of liver sinusoidal endothelial cells in health and disease. Frontiers in Physiology, 12, 2021. URL https://doi.org/10.3389/fphys.2021.757469.2 [7] Harvell-Smith, S., Tung, L. D., Thanh, N. T. K. Magnetic particle imaging: tracer development and the biomedical applications of a radiation-free, sensitive, and quantitative imaging modality. Nanoscale, 14 (10), 3658-3697, 2022. URL https://doi.org/10.1039/d1nr05670k. 2 [8] Pablico-Lansigan, M. H., Situ, S. F., Samia, A. C. S. Magnetic particle imaging: advancements and perspectives for real-time in vivo monitoring and imageguided therapy. Nanoscale, 5 (10), 4040, 2013. URL https://doi.org/10.1039/c3nr00544e. 2 [9] Wu, L., Zhang, Y., Steinberg, G., Qu, H., Huang, S., Cheng, M., et al. A review of magnetic particle imaging and perspectives on neuroimaging. American Journal of Neuroradiology, 40 (2), 206-212, 2019. URL https://doi.org/10.3174/ajnr.a5896. 2 [10] Fatima, H., Kim, K.-S. Magnetic nanoparticles for bioseparation. Korean Journal of Chemical Engineering, 34 (3), 589-599, 2017. URL https://doi.org/10.1007/s11814-016-0349-2. 3 [11] Yildiz, I. Applications of magnetic nanoparticles in biomedical separation and purification. Nanotechnology Reviews, 5 (3), 2016. URL https://doi.org/10.1515/ntrev-2015-0012. 3 [12] Maddu, N. Nanoparticle mediated diagnosis of clinical biomarkers of different diseases: a medical application of nanotechnology. En: Nanoparticles in Analytical and Medical Devices, págs. 155-173. Elsevier, 2021. URL https://doi.org/10.1016/b978-0-12-821163-2.00009-1. 3 [13] Gao, L., Zhuang, J., Nie, L., Zhang, J., Zhang, Y., Gu, N., et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nature Nanotechnology, 2 (9), 577-583, 2007. URL https://doi.org/10.1038/nnano.2007.260. 3 [14] Chen, W., Chen, J., Feng, Y.-B., Hong, L., Chen, Q.-Y., Wu, L.-F., et al. Peroxidase-like activity of water-soluble cupric oxide nanoparticles and its analytical application for detection of hydrogen peroxide and glucose. The Analyst, 137 (7), 1706, 2012. URL https://doi.org/10.1039/c2an35072f. [15] He, S., Shi, W., Zhang, X., Li, J., Huang, Y. -cyclodextrins-based inclusion complexes of CoFe2O4 magnetic nanoparticles as catalyst for the luminol chemiluminescence system and their applications in hydrogen peroxide detection. Talanta, 82 (1), 377-383, 2010. URL https://doi.org/10.1016/j.talanta.2010.04.055. 3 [16] Shin, H. Y., Park, T. J., Kim, M. I. Recent research trends and future prospects in nanozymes. Journal of Nanomaterials, 2015, 1-11, 2015. URL https://doi.org/10.1155/2015/756278. 3 [17] Gallo-Cordova, A., Castro, J. J., Winkler, E. L., Lima, E., Zysler, R. D., del Puerto Morales, M., et al. Improving degradation of real wastewaters with selfheating magnetic nanocatalysts. Journal of Cleaner Production, 308, 127385, 2021. URL https://doi.org/10.1016/j.jclepro.2021.127385. 3 [18] Goya, G. F., Mayoral, A., Winkler, E., Zysler, R. D., Bagnato, C., Raineri, M., et al. Next generation of nanozymes: A perspective of the challenges to match biological performance. Journal of Applied Physics, 130 (19), 2021. URL https://doi.org/10.1063/5.0061499. 3 [19] Marycz, K., Sobierajska, P., Roecken, M., Kornicka-Garbowska, K., Kepska, M., Idczak, R., et al. Iron oxides nanoparticles (IOs) exposed to magnetic field promote expression of osteogenic markers in osteoblasts through integrin alpha-3 (INTa-3) activation, inhibits osteoclasts activity and exerts antiinammatory action. Journal of Nanobiotechnology, 18 (1), 2020. URL https: //doi.org/10.1186/s12951-020-00590-w. 3, 4 [20] Kushwaha, A., Goswami, L., Kim, B. S. Nanomaterial-based therapy for wound healing. Nanomaterials, 12 (4), 618, 2022. URL https://doi.org/10.3390/nano12040618. 4 [21] Patra, J. K., Das, G., Fraceto, L. F., Campos, E. V. R., del Pilar Rodriguez-Torres, M., Acosta-Torres, L. S., et al. Nano based drug delivery systems: recent developments and future prospects. Journal of Nanobiotechnology, 16 (1), 2018. URL https://doi.org/10.1186/s12951-018-0392-8. 4 [22] Hajdu, S. I. Greco-roman thought about cancer. Cancer, 100 (10), 2048-2051, 2004. URL https://doi.org/10.1002/cncr.20198. 4 [23] Karidio, I. D., Sanlier, S. H. Reviewing cancer's biology: an eclectic approach. Journal of the Egyptian National Cancer Institute, 33 (1), 2021. URL https://doi.org/10.1186/s43046-021-00088-y. 4 [24] Lin, J. C. Electromagnetic heating techniques for organ rewarming. En: The Biophysics of Organ Cryopreservation, págs. 315-335. Springer US, 1987. URL https://doi.org/10.1007/978-1-4684-5469-7_15. 4 [25] Fares, J., Fares, M. Y., Khachfe, H. H., Salhab, H. A., Fares, Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduction and Targeted Therapy, 5 (1), 2020. URL https://doi.org/10.1038/s41392-020-0134-x.4 [26] Corbet, C., Feron, O. Tumour acidosis: from the passenger to the driver's seat. Nature Reviews Cancer, 17 (10), 577-593, 2017. URL https://doi.org/10.1038/nrc.2017.77. 4, 5 [27] Yang, L. Tumor microenvironment and metabolism. International Journal of Molecular Sciences, 18 (12), 2729, 2017. URL https://doi.org/10.3390/ijms18122729. 4 [28] Siemann, D. W. The unique characteristics of tumor vasculature and preclinical evidence for its selective disruption by tumor-vascular disrupting agents. Cancer Treatment Reviews, 37 (1), 63-74, 2011. URL https://doi.org/10.1016/j.ctrv.2010.05.001. 4 [29] Clapp, R. W., Jacobs, M. M., Loechler, E. L. Environmental and occupational causes of cancer: New evidence 2005-2007. Reviews on Environmental Health, 23 (1), 1-38, 2008. URL https://doi.org/10.1515/reveh.2008.23.1.1. 4 [30] Mokhtari, R. B., Homayouni, T. S., Baluch, N., Morgatskaya, E., Kumar, S., Das, B., et al. Combination therapy in combating cancer. Oncotarget, 8 (23), 38022-38043, 2017. URL https://doi.org/10.18632/oncotarget.16723. 5 [31] Alieva, M., van Rheenen, J., Broekman, M. L. D. Potential impact of invasive surgical procedures on primary tumor growth and metastasis. Clinical & Experimental Metastasis, 35 (4), 319-331, 2018. URL https://doi.org/10.1007/s10585-018-9896-8. 5 [32] Tohme, S., Simmons, R. L., Tsung, A. Surgery for cancer: A trigger for metastases. Cancer Research, 77 (7), 1548-1552, 2017. URL https://doi.org/10.1158/0008-5472.can-16-1536. 5 [33] Baskar, R., Lee, K. A., Yeo, R., Yeoh, K.-W. Cancer and radiation therapy: Current advances and future directions. International Journal of Medical Sciences, 9 (3), 193-199, 2012. URL https://doi.org/10.7150/ijms.3635. 5 [34] Sonveaux, P. ROS and radiotherapy: more we care. Oncotarget, 8 (22), 35482-35483, 2017. URL https://doi.org/10.18632/oncotarget.16613. 5 [35] Suwa, T., Kobayashi, M., Nam, J.-M., Harada, H. Tumor microenvironment and radioresistance. Experimental & Molecular Medicine, 53 (6), 1029-1035, 2021. URL https://doi.org/10.1038/s12276-021-00640-9. 5 [36] Anand, U., Dey, A., Chandel, A. K. S., Sanyal, R., Mishra, A., Pandey, D. K., et al. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes & Diseases, 10 (4), 1367-1401, 2023. URL https://doi.org/10.1016/j.gendis.2022.02.007. 5 [37] Gas, P. Essential facts on the history of hyperthermia and their connections with electromedicine. Przeglad Elektrotechniczny (Electrical Review), 87, 37-40, 2011. URL https://doi.org/10.48550/arXiv.1710.00652. 5 [38] Coley, W. B. Contribution to the knowledge of sarcoma. Annals of Surgery, 14, 199-220, 1891. URL https://doi.org/10.1097/00000658-189112000-00015.6 [39] Carlson, R. D., Flickinger, J. C., Snook, A. E. Talkin' toxins: From Coley's to modern cancer immunotherapy. Toxins, 12 (4), 241, 2020. URL https://doi.org/10.3390/toxins12040241. 6 [40] Heckel-Reusser, S. Whole-body hyperthermia (WBH): Historical aspects, current use, and future perspectives. En: Water-ltered Infrared A (wIRA) Irradiation, págs. 143-154. Springer International Publishing, 2022. URL https://doi.org/10.1007/978-3-030-92880-3_11. 6 [41] Kang, M., Liu, W.-Q., Qin, Y.-T., Wei, Z.-X., Wang, R.-S. Long-term efficacy of microwave hyperthermia combined with chemoradiotherapy in treatment of nasopharyngeal carcinoma with cervical lymph node metastases. Asian Pacic Journal of Cancer Prevention, 14 (12), 7395-7400, 2013. URL https://doi.org/10.7314/apjcp.2013.14.12.7395. 6 [42] Fiorentini, G., Sarti, D., Gadaleta, C. D., Ballerini, M., Fiorentini, C., Garfagno, T., et al. A narrative review of regional hyperthermia: Updates from 2010 to 2019. Integrative Cancer Therapies, 19, 153473542093264, 2020. URL https://doi.org/10.1177/1534735420932648. 6 [43] Rao, W., Deng, Z.-S., Liu, J. A review of hyperthermia combined with radiotherapy/ chemotherapy on malignant tumors. Critical ReviewsTM in Biomedical Engineering, 38 (1), 101-116, 2010. URL https://doi.org/10.1615/critrevbiomedeng.v38.i1.80. 6 [44] Obaidat, I. M., Narayanaswamy, V., Alaabed, S., Sambasivam, S., Gopi, C. V. V. M. Principles of magnetic hyperthermia: A focus on using multifunctional hybrid magnetic nanoparticles. Magnetochemistry, 5 (4), 67, 2019. URL https: //doi.org/10.3390/magnetochemistry5040067. 6 [45] Liu, X., Zhang, Y., Wang, Y., Zhu, W., Li, G., Ma, X., et al. Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeuticeficacy. Theranostics, 10 (8), 3793-3815, 2020. URL https://doi.org/10.7150/thno.40805. 6 [46] Gilchrist, R. K., Medal, R., Shorey, W. D., Hanselman, R. C., Parrott, J. C., Taylor, C. B. Selective inductive heating of lymph nodes. Annals of Surgery, 146 (4), 596-606, 1957. URL https://doi.org/10.1097/00000658-195710000-00007.7 [47] Cheng, Y., Weng, S., Yu, L., Zhu, N., Yang, M., Yuan, Y. The role of hyperthermia in the multidisciplinary treatment of malignant tumors. Integrative Cancer Therapies, 18, 153473541987634, 2019. URL https://doi.org/10.1177/1534735419876345. 7 [48] Medina, M. A., Oza, G., Ángeles-Pascual, A., M., M. G., Antaño-López, R., Vera, A., et al. Synthesis, characterization and magnetic hyperthermia of monodispersed cobalt ferrite nanoparticles for cancer therapeutics. Molecules, 25 (19), 4428, 2020. URL https://doi.org/10.3390/molecules25194428. 7 [49] Beola, L., Gutiérrez, L., Grazú, V., Asín, L. A roadmap to the standardization of in vivo magnetic hyperthermia. En: Nanomaterials for Magnetic and Optical Hyperthermia Applications, págs. 317-337. Elsevier, 2019. URL https://doi.org/10.1016/b978-0-12-813928-8.00012-0. 8 [50] Gavilán, H., Simeonidis, K., Myrovali, E., Mazarío, E., Chubykalo-Fesenko, O., Chantrell, R., et al. How size, shape and assembly of magnetic nanoparticles give rise to different hyperthermia scenarios. Nanoscale, 13 (37), 15631-15646, 2021. URL https://doi.org/10.1039/d1nr03484g. 8 [51] Torres, T. E., Lima, E., Calatayud, M. P., Sanz, B., Ibarra, A., Fernández- Pacheco, R., et al. The relevance of brownian relaxation as power absorption mechanism in magnetic hyperthermia. Scientic Reports, 9 (1), 2019. URL https://doi.org/10.1038/s41598-019-40341-y. 8, 25, 40, 131 [52] Kuimova, M. K., Yahioglu, G., Levitt, J. A., Suhling, K. Molecular rotor measures viscosity of live cells via fluorescence lifetime imaging. Journal of the American Chemical Society, 130 (21), 6672-6673, 2008. URL http://dx.doi.org/10.1021/ja800570d. 8, 24, 40, 84 [53] Kuimova, M. K., Botchway, S. W., Parker, A. W., Balaz, M., Collins, H. A., Anderson, H. L., et al. Imaging intracellular viscosity of a single cell during photoinduced cell death. Nature Chemistry, 1 (1), 69-73, 2009. URL http://dx.doi.org/10.1038/nchem.120. 40 [54] Kuimova, M. K. Mapping viscosity in cells using molecular rotors. Physical Chemistry Chemical Physics, 14 (37), 12671, 2012. URL http://dx.doi.org/10.1039/C2CP41674C. 8, 24, 84 [55] Corato, R. D., Espinosa, A., Lartigue, L., Tharaud, M., Chat, S., Pellegrino, T., et al. Magnetic hyperthermia efficiency in the cellular environment for different nanoparticle designs. Biomaterials, 35 (24), 6400-6411, 2014. URL https://doi.org/10.1016/j.biomaterials.2014.04.036. 8 [56] Alphandery, E., Chebbi, I., Guyot, F., Durand-Dubief, M. Use of bacterial magnetosomes in the magnetic hyperthermia treatment of tumours: A review. International Journal of Hyperthermia, 29 (8), 801-809, 2013. URL https://doi.org/10.3109/02656736.2013.821527. 8 [57] Gutiérrez, L., de la Cueva, L., Moros, M., Mazaro, E., de Bernardo, S., de la Fuente, J. M., et al. Aggregation effects on the magnetic properties of iron oxide colloids. Nanotechnology, 30 (11), 112001, 2019. URL https://doi.org/10.1088/1361-6528/aafbff. 8 [58] Guibert, C., Dupuis, V., Peyre, V., Fresnais, J. Hyperthermia of magnetic nanoparticles: Experimental study of the role of aggregation. The Journal of Physical Chemistry C, 119 (50), 28148-28154, 2015. URL https://doi.org/10.1021/acs.jpcc.5b07796. 8 [59] Hu, A., Pu, Y., Xu, N., Cai, Z., Sun, R., Fu, S., et al. Controlled intracellular aggregation of magnetic particles improves permeation and retention for magnetic hyperthermia promotion and immune activation. Theranostics, 13 (4), 1454-1469, 2023. URL https://doi.org/10.7150/thno.80821. 8 [60] Sanz, B., Calatayud, M. P., De Biasi, E., Lima, E., Mansilla, M. V., Zysler, R. D., et al. In silico before in vivo: how to predict the heating efficiency of magnetic nanoparticles within the intracellular space. Scientic Reports, 6 (1), 2016. URL http://dx.doi.org/10.1038/srep38733. 8, 25, 40, 51, 131, 140 [61] Simeonidis, K., Morales, M. P., Marciello, M., Angelakeris, M., de la Presa, P., Lazaro-Carrillo, A., et al. In-situ particles reorientation during magnetic hyperthermia application: Shape matters twice. Scientic Reports, 6 (1), 2016. URL https://doi.org/10.1038/srep38382. 8 [62] Balakrishnan, P. B., Silvestri, N., Fernández-Cabada, T., Marinaro, F., Fernández, S., Fiorito, S., et al. Exploiting unique alignment of cobalt ferrite nanoparticles, mild hyperthermia, and controlled intrinsic cobalt toxicity for cancer therapy. Advanced Materials, 32 (45), 2003712, 2020. URL https://doi.org/10.1002/adma.202003712. 8 [63] Coral, D. F., Zelis, P. M., Marciello, M., del Puerto Morales, M., Craievich, A., Sánchez, F. H., et al. Effect of nanoclustering and dipolar interactions in heat generation for magnetic hyperthermia. Langmuir, 32 (5), 1201-1213, 2016. URL https://doi.org/10.1021/acs.langmuir.5b03559. 8, 40 [64] Hugounenq, P., Levy, M., Alloyeau, D., Lartigue, L., Dubois, E., Cabuil, V., et al. Iron oxide monocrystalline nano flowers for highly efficient magnetic hyperthermia. The Journal of Physical Chemistry C, 116 (29), 15702-15712, 2012. URL https://doi.org/10.1021/jp3025478. 8 [65] Behrens, S., Habicht, W., Wagner, K., Unger, E. Assembly of nanoparticle ring structures based on protein templates. Advanced Materials, 18 (3), 284-289, 2006. URL https://doi.org/10.1002/adma.200501096. 8 [66] Martinez-Boubeta, C., Simeonidis, K., Makridis, A., Angelakeris, M., Iglesias, O., Guardia, P., et al. Learning from nature to improve the heat generation of ironoxide nanoparticles for magnetic hyperthermia applications. Scientic Reports, 3 (1), 2013. URL https://doi.org/10.1038/srep01652. 8, 40, 51 [67] Mehdaoui, B., Tan, R. P., Mere, A., Carrey, J., Lachaize, S., Chaudret, B., et al. Increase of magnetic hyperthermia eciency due to dipolar interactions in low-anisotropy magnetic nanoparticles: Theoretical and experimental results. Physical Review B, 87 (17), 2013. URL https://doi.org/10.1103/physrevb.87.174419. 8, 40 [68] Branquinho, L. C., Carriao, M. S., Costa, A. S., Zufelato, N., Sousa, M. H., Miotto, R., et al. Effect of magnetic dipolar interactions on nanoparticle heating efficiency: Implications for cancer hyperthermia. Scientic Reports, 3 (1), 2013. URL https://doi.org/10.1038/srep02887. 8, 40 [69] Abu-Bakr, A. F., Zubarev, A. Eect of interparticle interaction on magnetic hyperthermia: homogeneous spatial distribution of the particles. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 377 (2143), 20180216, 2019. URL https://doi.org/10.1098/rsta.2018.0216. [70] Zubarev, A. Y. Effect of internal chain-like structures on magnetic hyperthermia in non-liquid media. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 377 (2143), 20180213, 2019. URL https://doi.org/10.1098/rsta.2018.0213. 8, 40, 51 [71] Valdés, D. P. Estudio de interacción dipolar entre nanopartículas en hipertermia, 2017. Tesis de Licenciatura en Física. 8, 41 [72] Valdés, D. P. Modelando el efecto de las interacciones dipolares en cadenas de nanopartculas para hipertermia magnética, 2018. URL https://ricabib.cab.cnea.gov.ar/748, tesis de Maestra en Ciencias Físicas. 8 [73] Brezovich, I. A., Young, J. H., Wang, M.-T. Temperature distributions in hyperthermia by electromagnetic induction: A theoretical model for the thorax. Medical Physics, 10 (1), 57-65, 1983. URL https://doi.org/10.1118/1.595376. 9, 133 [74] von Lieven, H., Schwingen, G., Proske, R. Die temperaturverteilung bei interstitieller hyperthermie. Strahlentherapie und Onkologie, 164, 219-222, 1988. [75] Oleson, J., Dewhirst, M., Harrelson, J., Leopold, K., Samulski, T., Tso, C. Tumor temperature distributions predict hyperthermia effect. International Journal of Radiation Oncology - Biology - Physics, 16 (3), 559-570, 1989. URL https: //doi.org/10.1016/0360-3016(89)90472-0. [76] Darvishi, V., Navidbakhsh, M., Amanpour, S. Effects of temperature distribution in the tissue around the tumor on the quality of hyperthermia. En: 2018 25th National and 3rd International Iranian Conference on Biomedical Engineering (ICBME). IEEE, 2018. URL https://doi.org/10.1109/icbme.2018.8703501. [77] Rytov, R. A., Bautin, V. A., Usov, N. A. Towards optimal thermal distribution in magnetic hyperthermia. Scientic Reports, 12 (1), 2022. URL https://doi.org/10.1038/s41598-022-07062-1. 9 [78] Clegg, S. T., Das, S. K., Fullar, E., Anderson, S., Blivin, J., Oleson, J. R., et al. Hyperthermia treatment planning and temperature distribution reconstruction: a case study. International Journal of Hyperthermia, 12 (1), 65-76, 1996. URL https://doi.org/10.3109/02656739609023690. 9 [79] Andreu, I., Natividad, E. Accuracy of available methods for quantifying the heat power generation of nanoparticles for magnetic hyperthermia. International Journal of Hyperthermia, 29 (8), 739-751, 2013. URL https://doi.org/10.3109/02656736.2013.826825. 9, 32, 132 [80] Drizdal, T., Paulides, M. M., Trujilo-Romero, C. J., van Rhoon, G. C. Prediction of temperature distribution for superficial hyperthermia treatment: Accuracy of temperature dependent blood perfusion model. En: 2014 44th European Microwave Conference. IEEE, 2014. URL https://doi.org/10.1109/eumc.2014.6986551. 9 [81] Usamentiaga, R., Venegas, P., Guerediaga, J., Vega, L., Molleda, J., Bulnes, F. Infrared thermography for temperature measurement and non-destructive testing. Sensors, 14 (7), 12305-12348, 2014. URL https://doi.org/10.3390/s140712305. 9 [82] Song, C. W., Choi, I. B., Nah, B. S., Sahu, S. K., Osborn, J. L. Microvasculature and perfusion in normal tissues and tumors. En: Thermoradiotherapy and Thermochemotherapy, págs. 139-156. Springer Berlin Heidelberg, 1995. URL https://doi.org/10.1007/978-3-642-57858-8_7. 9 [83] Hassanpour, S., Saboonchi, A. Interstitial hyperthermia treatment of countercurrent vascular tissue: A comparison of Pennes, WJ and porous media bioheat models. Journal of Thermal Biology, 46, 47-55, 2014. URL https://doi.org/10.1016/j.jtherbio.2014.10.005. 9 [84] Goldfarb, R., Frickett, F. R. Units for Magnetic Properties. Boulder, Estados Unidos de América: US Department of Commerce, National Bureau of Standards, 1985. URL https://ieeemagnetics.org/files/ieeemagnetics/2022-04/magnetic_units.pdf. 11 [85] Jascur, M. Many-body systems. En: Quantum Theory of Magnetism, págs. 7-18. Pavol Jozef Safarik University in Kosice, 2013. 11 [86] Kusminskiy, S. V. Electromagnetism. En: Quantum Magnetism, Spin Waves, and Optical Cavities, págs. 1-15. Springer International Publishing, 2019. URL https://doi.org/10.1007/978-3-030-13345-0_1. 11 [87] Ruiz, E. Exchange coupling in di- and polynuclear complexes. En: Comprehensive Inorganic Chemistry II, págs. 501-549. Elsevier, 2013. URL https://doi.org/10.1016/b978-0-08-097774-4.00922-0. 12 [88] Pauli, W. Uber den zusammenhang des abschlusses der elektronengruppen im atom mit der komplexstruktur der spektren. Zeitschrift fur Physik, 31 (1), 765-783, 1925. URL https://doi.org/10.1007/bf02980631. 12 [89] Ashcroft, N. W., Mermin, N. D. Chapter 32. Electron interactions and magnetic structure. En: Solid State Physics. Filadela, Estados Unidos de America: Saunders College Publishing, 1976. 12 [90] Levine, I. N. 11: Many-electron atoms. En: Quantum Chemistry. Nueva Jersey, Estados Unidos de América: Prentice-Hall, 2013. 12 [91] Hurd, C. M. Varieties of magnetic order in solids. Contemporary Physics, 23 (5), 469-493, 1982. URL https://doi.org/10.1080/00107518208237096. 12, 14,15, 16 [92] Cullity, B., Graham, C. Chapter 7: Magnetic anisotropy. En: Introduction to Magnetic Materials. Nueva Jersey, Estados Unidos de América: John Wiley & Sons, 2009. 13, 14, 18, 74, 79, 125 [93] Usov, N. A., Serebryakova, O. N. Deconvolution of ferromagnetic resonance spectrum of magnetic nanoparticle assembly using genetic algorithm. Scientic Reports, 12 (1), feb. 2022. URL http://dx.doi.org/10.1038/s41598-022-07105-7. 13 [94] Clemons, T. D., Kerr, R. H., Joos, A. Multifunctional magnetic nanoparticles: Design, synthesis, and biomedical applications. En: Comprehensive Nanoscience and Nanotechnology, Vol. 3: Biological nanoscience. Amsterdam, Pases Bajos: Elsevier, 2019. 13 [95] N. Kostevsek, I. S. Chapter nine - Characterization of metal-based nanoparticles as contrast agents for magnetic resonance imaging. En: Analysis and Characterisation of Metal-Based Nanomaterials, tomo 93 de Comprehensive Analytical Chemistry. Amsterdam, Pases Bajos: Elsevier, 2021. 14 [96] Rey, C., Malozemo, A. 2: Fundamentals of superconductivity. En: Superconductors in the Power Grid, págs. 29-73. Amsterdam, Pases Bajos: Elsevier, 2015. URL https://doi.org/10.1016/b978-1-78242-029-3.00002-9. 14 [97] Feynman, R. P., Sands, M. Chapter 34: The magnetism of matter. En: The Feynman Lectures on Physics: Vol II. London, England: Basic Books, 2011. 14, 15 [98] Van Vleck, J. The classical theory of magnetic susceptibilities. The Theory of Electric and Magnetic Susceptibilities; Oxford University Press: Londres, Reino Unido, pags. 91-94, 1932. 14 [99] Winsett, J., Moilanen, A., Paudel, K., Kamali, S., Ding, K., Cribb, W., et al. Quantitative determination of magnetite and maghemite in iron oxide nanoparticles using Mossbauer spectroscopy. SN Applied Sciences, 1 (12), 2019. URL http://dx.doi.org/10.1007/s42452-019-1699-2. 16 [100] Cullity, B., Graham, C. Chapter 9: Domains and the magnetization structure. En: Introduction to Magnetic Materials. Nueva Jersey, Estados Unidos de América: John Wiley & Sons, 2009. 17 [101] Majetich, S. A., Wen, T., Meord, O. T. Magnetic nanoparticles. MRS Bulletin, 38 (11), 899-903, 2013. URL https://doi.org/10.1557/mrs.2013.230. 18 [102] Butler, R. F., Banerjee, S. K. Theoretical single-domain grain size range in magnetite and titanomagnetite. Journal of Geophysical Research, 80 (29), 4049-4058, 1975. URL https://doi.org/10.1029/jb080i029p04049. [103] Fabian, K., Kirchner, A., Williams, W., Heider, F., Leibl, T., Huber, A. Threedimensional micromagnetic calculations for magnetite using FFT. Geophysical Journal International, 124 (1), 89-104, 1996. URL https://doi.org/10.1111/j.1365-246x.1996.tb06354.x. [104] Dutz, S. Nanopartikel in der Medizin. Hamburgo, Alemania: Verlag Dr. Kovac, 2008. 18 [105] Kittel, C. Physical theory of ferromagnetic domains. Reviews of Modern Physics, 21 (4), 541-583, 1949. URL http://dx.doi.org/10.1103/RevModPhys.21.541.18 [106] Ruiz-Gomez, S., Perez, L., Mascaraque, A., Quesada, A., Prieto, P., Palacio, I., et al. Geometrically defined spin structures in ultrathin Fe3O4with bulk like magnetic properties. Nanoscale, 10 (12), 5566-5573, 2018. URL http://dx.doi.org/10.1039/C7NR07143D. 18 [107] Cullity, B., Graham, C. Chapter 6: Ferrimagnetism. En: Introduction to Magnetic Materials. Nueva Jersey, Estados Unidos de América: John Wiley & Sons, 2009. 18, 80 [108] Wu, W., Xiao, X. H., Zhang, S. F., Peng, T. C., Zhou, J., Ren, F., et al. Synthesis and magnetic properties of maghemite (-Fe2O3) short-nanotubes. Nanoscale Research Letters, 5 (9), 1474-1479, 2010. URL http://dx.doi.org/10.1007/s11671-010-9664-4. 18 [109] Figueroa, A., Bartolome, J., Garca, L., Bartolome, F., Arauzo, A., Millan, A., et al. Magnetic anisotropy of maghemite nanoparticles probed by RF transverse susceptibility. Physics Procedia, 75, 1050-1057, 2015. URL http://dx.doi.org/10.1016/j.phpro.2015.12.174. 18 [110] Cao, D., Li, H., Pan, L., Li, J., Wang, X., Jing, P., et al. High saturation magnetization of-Fe2O3 nano-particles by a facile one-step synthesis approach. Scientific Reports, 6 (1), 2016. URL http://dx.doi.org/10.1038/srep32360. 18 [111] Torres, T. E., Lima, E., Mayoral, A., Ibarra, A., Marquina, C., Ibarra, M. R., et al. Validity of the Neel-Arrhenius model for highly anisotropic CoxFe3xO4 nanoparticles. Journal of Applied Physics, 118 (18), 2015. URL http://dx.doi.org/10.1063/1.4935146. 18 [112] Schenck, J. F. Magnetic resonance in medicine, pág. 959-981. Elsevier, 2003. URL http://dx.doi.org/10.1016/B0-12-227410-5/00395-1. 19 [113] Stoner, E. C., Wohlfarth, E. P. A mechanism of magnetic hysteresis in heterogeneous alloys. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 240 (826), 599-642, 1948. URL https://doi.org/10.1098/rsta.1948.0007. 20 [114] Moreno, R., Poyser, S., Meilak, D., Meo, A., Jenkins, S., Lazarov, V. K., et al. The role of faceting and elongation on the magnetic anisotropy of magnetite Fe3O4 nanocrystals. Scientic Reports, 10 (1), 2020. URL https://doi.org/10.1038/s41598-020-58976-7. 20 [115] Gandia, D., Gandarias, L., Marcano, L., Orue, I., Gil-Carton, D., Alonso, J., et al. Elucidating the role of shape anisotropy in faceted magnetic nanoparticles using biogenic magnetosomes as a model. Nanoscale, 12 (30), 16081-16090, 2020. URL https://doi.org/10.1039/d0nr02189j. 20 [116] Ozerov, R. P., Vorobyev, A. A. Elements of quantum mechanics, pág. 423-496. Elsevier, 2007. URL http://dx.doi.org/10.1016/B978-044452830-8/50009-X.21 [117] Neel, L. Thermoremanent magnetization of ne powders. Reviews of Modern Physics, 25 (1), 293-295, 1953. URL https://doi.org/10.1103/revmodphys.25.293. 22 [118] Brown, W. F. Thermal fluctuations of a single-domain particle. Journal of Applied Physics, 34 (4), 1319-1320, 1963. URL https://doi.org/10.1063/1.1729489. 22 [119] Debye, P. J. W. Polar molecules. Nueva York, Estados Unidos de América: The Chemical Catalog Company, Inc., 1929. 23 [120] Coey, W. T., Cregg, P. J., Kalmykov, Y. U. P. On the theory of Debye and Neel relaxation of single domain ferromagnetic particles, 1992. URL https://doi.org/10.1002/9780470141410.ch5. 23 [121] Rosensweig, R. Heating magnetic fluid with alternating magnetic field. Journal of Magnetism and Magnetic Materials, 252, 370-374, 2002. URL https://doi.org/10.1016/s0304-8853(02)00706-0. 24, 48 [122] Huang, S., Wang, S.-Y., Gupta, A., Borca-Tasciuc, D.-A., Salon, S. J. On the measurement technique for specic absorption rate of nanoparticles in an alternating electromagnetic eld. Measurement Science and Technology, 23 (3), 035701, 2012. URL http://dx.doi.org/10.1088/0957-0233/23/3/035701. 32 [123] Schutzhold, J., Hofmann, W. Analysis of the temperature dependence of losses in electrical machines. En: 2013 IEEE Energy Conversion Congress and Exposition. IEEE, 2013. URL http://dx.doi.org/10.1109/ECCE.2013.6647114. 32 [124] Mendo, S. G., Alves, A. F., Ferreira, L. P., Cruz, M. M., Mendonca, M. H., Godinho, M., et al. Hyperthermia studies of ferrite nanoparticles synthesized in the presence of cotton. New Journal of Chemistry, 39 (9), 7182-7193, 2015. URL http://dx.doi.org/10.1039/C5NJ00009B. 32 [125] Coisson, M., Barrera, G., Appino, C., Celegato, F., Martino, L., Safronov, A. P., et al. Specific loss power measurements by calorimetric and thermal methods on-Fe2O3 nanoparticles for magnetic hyperthermia. Journal of Magnetism and Magnetic Materials, 473, 403-409, 2019. URL http://dx.doi.org/10.1016/j.jmmm.2018.10.107. 32 [126] Wildeboer, R. R., Southern, P., Pankhurst, Q. A. On the reliable measurement of specic absorption rates and intrinsic loss parameters in magnetic hyperthermia materials. Journal of Physics D: Applied Physics, 47 (49), 495003, 2014. URL http://dx.doi.org/10.1088/0022-3727/47/49/495003. 132 [127] de Almeida, A. A., De Biasi, E., Mansilla, M. V., Valdés, D. P., Troiani, H. E., Urretavizcaya, G., et al. Magnetic hyperthermia experiments with magnetic nanoparticles in claried butter oil and paran: A thermodynamic analysis. The Journal of Physical Chemistry C, 124 (50), 27709-27721, 2020. URL http://dx.doi.org/10.1021/acs.jpcc.0c06843. 32, 132 [128] Ruta, S., Fernandez-Afonso, Y., Rannala, S. E., Morales, M. P., Veintemillas- Verdaguer, S., Jones, C., et al. A device-independent approach to evaluate the heating performance during magnetic hyperthermia experiments: peak analysis and zig-zag protocol, 2023. 32 [129] De Biasi, E., Zysler, R., Ramos, C., Knobel, M. A new model to describe the crossover from superparamagnetic to blocked magnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 320 (14), e312-e315, 2008. URL http: //dx.doi.org/10.1016/j.jmmm.2008.02.160. 35, 41 [130] Anand, M., Banerjee, V., Carrey, J. Relaxation in one-dimensional chains of interacting magnetic nanoparticles: Analytical formula and kinetic Monte Carlo simulations. Physical Review B, 99 (2), 2019. URL http://dx.doi.org/10.1103/PhysRevB.99.024402. 36, 40 [131] Niculaes, D., Lak, A., Anyfantis, G. C., Marras, S., Laslett, O., Avugadda, S. K., et al. Asymmetric assembling of iron oxide nanocubes for improving magnetic hyperthermia performance. ACS Nano, 11 (12), 12121-12133, 2017. URL http: //dx.doi.org/10.1021/acsnano.7b05182. 42, 119 [132] Tan, R. P., Carrey, J., Respaud, M. Magnetic hyperthermia properties of nanoparticles inside lysosomes using kinetic Monte Carlo simulations: Influence of key parameters and dipolar interactions, and evidence for strong spatial variation of heating power. Physical Review B, 90 (21), 2014. URL http://dx.doi.org/10.1103/PhysRevB.90.214421. 36, 40, 42, 119 [133] McNamara, K., Tofail, S. A. M. Nanoparticles in biomedical applications. Advances in Physics: X, 2 (1), 54-88, 2016. URL http://dx.doi.org/10.1080/23746149.2016.1254570. 39 [134] He, S., Zhang, H., Liu, Y., Sun, F., Yu, X., Li, X., et al. Maximizing specific loss power for magnetic hyperthermia by hard-soft mixed ferrites. Small, 14 (29), 2018. URL http://dx.doi.org/10.1002/smll.201800135. 40 [135] Boskovic, M., Goya, G. F., Vranjes-Djuric, S., Jovic, N., Jancar, B., Antic, B.Influence of size distribution and field amplitude on specific loss power. Journal of Applied Physics, 117 (10), 2015. URL http://dx.doi.org/10.1063/1.4914074. 40 [136] Ma, M., Wu, Y., Zhou, J., Sun, Y., Zhang, Y., Gu, N. Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field. Journal of Magnetism and Magnetic Materials, 268 (1-2), 33-39, 2004. URL http://dx.doi.org/10.1016/S0304-8853(03)00426-8. [137] Ghayour, H., Abdellahi, M., Nejad, M. G., Khandan, A., Saber-Samandari, S. Study of the effect of the Zn2+ content on the anisotropy and specific absorption rate of the cobalt ferrite: the application of Co1xZnxFe2O4 ferrite for magnetic hyperthermia. Journal of the Australian Ceramic Society, 54 (2), 223-230, 2017. URL http://dx.doi.org/10.1007/s41779-017-0144-5. [138] Rashid, A. u., Manzoor, S. Optimizing magnetic anisotropy of La1xSrxMnO3 nanoparticles for hyperthermia applications. Journal of Magnetism and Magnetic Materials, 420, 232-240, 2016. URL http://dx.doi.org/10.1016/j.jmmm.2016.07.008. 40 [139] Guardia, P., Batlle-Brugal, B., Roca, A., Iglesias, O., Morales, M., Serna, C., et al. Surfactant effects in magnetite nanoparticles of controlled size. Journal of Magnetism and Magnetic Materials, 316 (2), e756-e759, 2007. URL http: //dx.doi.org/10.1016/j.jmmm.2007.03.085. 40 [140] Roca, A. G., Costo, R., Rebolledo, A. F., Veintemillas-Verdaguer, S., Tartaj, P., González-Carreño, T., et al. Progress in the preparation of magnetic nanoparticles for applications in biomedicine. Journal of Physics D: Applied Physics, 42 (22), 224002, 2009. URL http://dx.doi.org/10.1088/0022-3727/42/22/224002. [141] Khandhar, A. P., Ferguson, R. M., Simon, J. A., Krishnan, K. M. Tailored magnetic nanoparticles for optimizing magnetic fluid hyperthermia. Journal of Biomedical Materials Research Part A, 100A (3), 728-737, 2011. URL http: //dx.doi.org/10.1002/jbm.a.34011. 40 [142] Kekalo, K., Baker, I., Meyers, R., Shyong, J. Magnetic nanoparticles with high specific absorption rate at low alternating magnetic field. Nano LIFE, 05 (02), 1550002, 2015. URL http://dx.doi.org/10.1142/S1793984415500026. 40 [143] Yuan, Y., Tasciuc, D.-A. B. Comparison between experimental and predicted specific absorption rate of functionalized iron oxide nanoparticle suspensions. Journal of Magnetism and Magnetic Materials, 323 (20), 2463-2469, 2011. URL http://dx.doi.org/10.1016/j.jmmm.2011.05.018. 40 [144] Carrey, J., Mehdaoui, B., Respaud, M. Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization. Journal of Applied Physics, 109 (8), 2011. URL http://dx.doi.org/10.1063/1.3551582. 40, 47 [145] Perigo, E. A., Hemery, G., Sandre, O., Ortega, D., Garaio, E., Plazaola, F., et al. Fundamentals and advances in magnetic hyperthermia. Applied Physics Reviews, 2 (4), 041302, 2015. URL http://dx.doi.org/10.1063/1.4935688. 40 [146] Landi, G. T. Role of dipolar interaction in magnetic hyperthermia. Physical Review B, 89 (1), 2014. URL http://dx.doi.org/10.1103/PhysRevB.89.014403. [147] Fu, R., Yan, Y., Roberts, C., Liu, Z., Chen, Y. The role of dipole interactions in hyperthermia heating colloidal clusters of densely-packed superparamagnetic nanoparticles. Scientific Reports, 8 (1), 2018. URL http://dx.doi.org/10.1038/s41598-018-23225-5. [148] Lima, E., De Biasi, E., Mansilla, M. V., Saleta, M. E., Granada, M., Troiani, H. E., et al. Heat generation in agglomerated ferrite nanoparticles in an alternating magnetic field. Journal of Physics D: Applied Physics, 46 (4), 045002, 2012. URL http://dx.doi.org/10.1088/0022-3727/46/4/045002. [149] Sanz, B., Cabreira-Gomes, R., Torres, T. E., Valdes, D. P., Lima, E., De Biasi, E., et al. Low-dimensional assemblies of magnetic MnFe2O4 nanoparticles and direct in vitro measurements of enhanced heating driven by dipolar interactions: Implications for magnetic hyperthermia. ACS Applied Nano Materials, 3 (9), 8719-8731, 2020. URL http://dx.doi.org/10.1021/acsanm.0c01545. 40, 41,132 [150] Jeun, M., Kim, Y. J., Park, K. H., Paek, S. H., Bae, S. Physical contribution of Neel and Brown relaxation to interpreting intracellular hyperthermia characteristics using superparamagnetic nano fluids. Journal of Nanoscience and Nanotechnology, 13 (8), 5719-5725, 2013. URL http://dx.doi.org/10.1166/jnn.2013.7524. 40 [151] Fortin, J.-P., Gazeau, F., Wilhelm, C. Intracellular heating of living cells through Neel relaxation of magnetic nanoparticles. European Biophysics Journal, 37 (2), 223-228, 2007. URL http://dx.doi.org/10.1007/s00249-007-0197-4. 40 [152] Anand, M. Thermal and dipolar interaction eect on the relaxation in a linear chain of magnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 522, 167538, 2021. URL http://dx.doi.org/10.1016/j.jmmm.2020.167538.40 [153] Usov, N. A., Grebenshchikov, Y. B. Hysteresis loops of an assembly of superparamagnetic nanoparticles with uniaxial anisotropy. Journal of Applied Physics, 106 (2), 2009. URL http://dx.doi.org/10.1063/1.3173280. 40 [154] Rodrigo, I., Castellanos-Rubio, I., Garaio, E., Arriortua, O. K., Insausti, M., Orue, I., et al. Exploring the potential of the dynamic hysteresis loops via high field, high frequency and temperature adjustable ac magnetometer for magnetic hyperthermia characterization. International Journal of Hyperthermia, 37 (1), 976-991, 2020. URL http://dx.doi.org/10.1080/02656736.2020.1802071. 40, 44, 94, 132 [155] Anand, M. Hysteresis in a linear chain of magnetic nanoparticles. Journal of Applied Physics, 128 (2), 2020. URL http://dx.doi.org/10.1063/5.0010217.40 [156] Anand, M., Carrey, J., Banerjee, V. Spin morphologies and heat dissipation in spherical assemblies of magnetic nanoparticles. Physical Review B, 94 (9), 2016. URL http://dx.doi.org/10.1103/PhysRevB.94.094425. 40 [157] Palihawadana-Arachchige, M., Nemala, H., Naik, V. M., Naik, R. Effect of magnetic dipolar interactions on temperature dependent magnetic hyperthermia in ferro fluids. Journal of Applied Physics, 121 (2), 2017. URL http://dx.doi.org/10.1063/1.4973879. 40 [158] Sanchez, F. H., Mendoza Zelis, P., Arciniegas, M. L., Pasquevich, G. A., Fernández van Raap, M. B. Dipolar interaction and demagnetizing effects in magnetic nanoparticle dispersions: Introducing the mean-field interacting superparamagnet model. Physical Review B, 95 (13), 2017. URL http://dx.doi.org/10.1103/PhysRevB.95.134421. [159] Laslett, O., Ruta, S., Barker, J., Chantrell, R. W., Friedman, G., Hovorka, O. Interaction eects enhancing magnetic particle detection based on magnetorelaxometry. Applied Physics Letters, 106 (1), 2015. URL http://dx.doi.org/10.1063/1.4905339. [160] Myrovali, E., Maniotis, N., Makridis, A., Terzopoulou, A., Ntomprougkidis, V., Simeonidis, K., et al. Arrangement at the nanoscale: Effect on magnetic particle hyperthermia. Scientific Reports, 6 (1), 2016. URL http://dx.doi.org/10.1038/srep37934. 40, 51 [161] Morales, I., Costo, R., Mille, N., da Silva, G., Carrey, J., Hernando, A., et al. High frequency hysteresis losses on-Fe2O3 and Fe3O4: Susceptibility as a magnetic stamp for chain formation. Nanomaterials, 8 (12), 970, 2018. URL http://dx.doi.org/10.3390/nano8120970. [162] Orue, I., Marcano, L., Bender, P., Garca-Prieto, A., Valencia, S., Mawass, M. A., et al. Configuration of the magnetosome chain: a natural magnetic nanoarchitecture. Nanoscale, 10 (16), 7407-7419, 2018. URL http://dx.doi.org/10.1039/C7NR08493E. 40, 51 [163] Serantes, D., Simeonidis, K., Angelakeris, M., Chubykalo-Fesenko, O., Marciello, M., Morales, M. d. P., et al. Multiplying magnetic hyperthermia response by nanoparticle assembling. The Journal of Physical Chemistry C, 118 (11), 5927-5934, 2014. URL http://dx.doi.org/10.1021/jp410717m. 45, 54, 119 [164] Ghaisari, S., Winklhofer, M., Strauch, P., Klumpp, S., Faivre, D. Magnetosome organization in magnetotactic bacteria unraveled by ferromagnetic resonance spectroscopy. Biophysical Journal, 113 (3), 637-644, 2017. URL http://dx.doi.org/10.1016/j.bpj.2017.06.031. 40 [165] Valdes, D. P., Lima, E., Zysler, R. D., De Biasi, E. Modeling the magnetichyperthermia response of linear chains of nanoparticles with low anisotropy: A key to improving specific power absorption. Physical Review Applied, 14 (1), 2020. URL http://dx.doi.org/10.1103/PhysRevApplied.14.014023. 41, 51, 52, 62, 119 [166] De Toro, J. A., Normile, P. S., Lee, S. S., Salazar, D., Cheong, J. L., Muñiz, P., et al. Controlled close-packing of ferrimagnetic nanoparticles: An assessment of the role of interparticle superexchange versus dipolar interactions. The Journal of Physical Chemistry C, 117 (19), 10213-10219, 2013. URL http://dx.doi.org/10.1021/jp402444x. 42, 119 [167] Coduri, M., Masala, P., Del Bianco, L., Spizzo, F., Ceresoli, D., Castellano, C., et al. Local structure and magnetism of Fe2O3 maghemite nanocrystals: The role of crystal dimension. Nanomaterials, 10 (5), 867, 2020. URL http://dx.doi.org/10.3390/nano10050867. 43 [168] Parmar, H. G., Smolkova, I. S., Kazantseva, N. E., Babayan, V., Pastorek, M., Pizurova, N. Heating efficiency of iron oxide nanoparticles in hyperthermia: Effect of preparation conditions. IEEE Transactions on Magnetics, 50 (11), 1-4, 2014. URL http://dx.doi.org/10.1109/TMAG.2014.2329553. 44 [169] Hilger, I. In vivo applications of magnetic nanoparticle hyperthermia. International Journal of Hyperthermia, 29 (8), 828-834, 2013. URL http://dx.doi.org/10.3109/02656736.2013.832815. 44 [170] Bobo, D., Robinson, K. J., Islam, J., Thurecht, K. J., Corrie, S. R. Nanoparticlebased medicines: A review of FDA-approved materials and clinical trials to date. Pharmaceutical Research, 33 (10), 2373-2387, 2016. URL http://dx.doi.org/10.1007/s11095-016-1958-5. 44 [171] Zhu, L., Zhou, Z., Mao, H., Yang, L. Magnetic nanoparticles for precision oncology: theranostic magnetic iron oxide nanoparticles for image-guided and targeted cancer therapy. Nanomedicine, 12 (1), 73-87, 2017. URL http://dx.doi.org/10.2217/nnm-2016-0316. [172] Anselmo, A. C., Mitragotri, S. A review of clinical translation of inorganic nanoparticles. The AAPS Journal, 17 (5), 1041-1054, 2015. URL http://dx.doi.org/10.1208/s12248-015-9780-2. 44 [173] Garaio, E., Collantes, J., García, J., Plazaola, F., Mornet, S., Couillaud, F., et al. A wide-frequency range ac magnetometer to measure the specific absorption rate in nanoparticles for magnetic hyperthermia. Journal of Magnetism and Magnetic Materials, 368, 432{437, 2014. URL http://dx.doi.org/10.1016/j.jmmm.2013.11.021. 44, 49 [174] Conde-Leboran, I., Serantes, D., Baldomir, D. Orientation of the magnetization easy axes of interacting nanoparticles: In uence on the hyperthermia properties. Journal of Magnetism and Magnetic Materials, 380, 321-324, 2015. URL http://dx.doi.org/10.1016/j.jmmm.2014.10.022. 45 [175] Armijo, L. M., Brandt, Y. I., Mathew, D., Yadav, S., Maestas, S., Rivera, A. C., et al. Iron oxide nanocrystals for magnetic hyperthermia applications. Nanomaterials, 2 (2), 134-146, 2012. URL http://dx.doi.org/10.3390/nano2020134.49 [176] Dutz, S., Hergt, R. Magnetic nanoparticle heating and heat transfer on a microscale: Basic principles, realities and physical limitations of hyperthermia for tumour therapy. International Journal of Hyperthermia, 29 (8), 790-800, 2013. URL http://dx.doi.org/10.3109/02656736.2013.822993. 49 [177] Atkinson, W. J., Brezovich, I. A., Chakraborty, D. P. Usable frequencies in hyperthermia with thermal seeds. IEEE Transactions on Biomedical Engineering, BME-31 (1), 70-75, 1984. URL http://dx.doi.org/10.1109/TBME.1984.325372. 49 [178] De Biasi, E., Curiale, J., Zysler, R. Quantitative study of FORC diagrams in thermally corrected Stoner-Wohlfarth nanoparticles systems. Journal of Magnetism and Magnetic Materials, 419, 580-587, 2016. URL http://dx.doi.org/10.1016/j.jmmm.2016.06.075. 57 [179] Mylkie, K., Nowak, P., Rybczynski, P., Ziegler-Borowska, M. Polymer-coated magnetite nanoparticles for protein immobilization. Materials, 14 (2), 248, 2021. URL http://dx.doi.org/10.3390/ma14020248. 65 [180] Marcano, L., Muñoz, D., Martin-Rodríguez, R., Orue, I., Alonso, J., Garca-Prieto, A., et al. Magnetic study of Co-doped magnetosome chains. The Journal of Physical Chemistry C, 122 (13), 7541-7550, 2018. URL http://dx.doi.org/10.1021/acs.jpcc.8b01187. 66 [181] Alphandery, E., Ding, Y., Ngo, A. T., Wang, Z. L., Wu, L. F., Pileni, M. P. Assemblies of aligned magnetotactic bacteria and extracted magnetosomes: Whatis the main factor responsible for the magnetic anisotropy? ACS Nano, 3 (6), 1539-1547, 2009. URL http://dx.doi.org/10.1021/nn900289n. 66 [182] Kumari, S., Raturi, S., Kulshrestha, S., Chauhan, K., Dhingra, S., Andras, K., et al. A comprehensive review on various techniques used for synthesizing nanoparticles. Journal of Materials Research and Technology, 27, 1739-1763, 2023. URL http://dx.doi.org/10.1016/j.jmrt.2023.09.291. 66 [183] Unni, M., Uhl, A. M., Savliwala, S., Savitzky, B. H., Dhavalikar, R., Garraud, N., et al. Thermal decomposition synthesis of iron oxide nanoparticles with diminished magnetic dead layer by controlled addition of oxygen. ACS Nano, 11 (2), 2284-2303, 2017. URL http://dx.doi.org/10.1021/acsnano.7b00609.66 [184] Roca, A. G., Gutierrez, L., Gavilan, H., Fortes Brollo, M. E., Veintemillas-Verdaguer, S., Morales, M. d. P. Design strategies for shape-controlled magnetic iron oxide nanoparticles. Advanced Drug Delivery Reviews, 138, 68-104, 2019. URL http://dx.doi.org/10.1016/j.addr.2018.12.008. 66, 67 [185] LaMer, V. K., Dinegar, R. H. Theory, production and mechanism of formation of monodispersed hydrosols. Journal of the American Chemical Society, 72 (11), 4847-4854, 1950. URL http://dx.doi.org/10.1021/ja01167a001. 66 [186] Viswanatha, R., Sarma, D. D. Growth of nanocrystals in solution, 2007. URL http://dx.doi.org/10.1002/9783527611362.ch4. 67 [187] Madras, G., McCoy, B. J. Transition from nucleation and growth to ostwald ripening. Chemical Engineering Science, 57 (18), 3809-3818, 2002. URL http://dx.doi.org/10.1016/S0009-2509(02)00313-5. 67, 74 [188] Gommes, C. J. Ostwald ripening of conned nanoparticles: chemomechanical coupling in nanopores. Nanoscale, 11 (15), 7386{7393, 2019. URL http://dx.doi.org/10.1039/C9NR01349K. 67, 74 [189] Cotin, G., Kiefer, C., Perton, F., Ihiawakrim, D., Blanco-Andujar, C., Moldovan, S., et al. Unravelling the thermal decomposition parameters for the synthesis of anisotropic iron oxide nanoparticles. Nanomaterials, 8 (11), 881, 2018. URL http://dx.doi.org/10.3390/nano8110881. 67 [190] Barbaro, D., Di Bari, L., Gandin, V., Marzano, C., Ciaramella, A., Malventi, M., et al. Glucose-coated superparamagnetic iron oxide nanoparticles prepared by metal vapor synthesis can target GLUT1 overexpressing tumors: In vitro tests and in vivo preliminary assessment. PLOS ONE, 17 (6), e0269603, 2022. URL http://dx.doi.org/10.1371/journal.pone.0269603. 70 [191] Malerz, S., Mudryk, K., Tomank, L., Stemer, D., Hergenhahn, U., Buttersack, T., et al. Following in Emil Fischer's footsteps: A site-selective probe of glucose acid-base chemistry. The Journal of Physical Chemistry A, 125 (32), 6881-6892, 2021. URL http://dx.doi.org/10.1021/acs.jpca.1c04695. 70 [192] Granqvist, C. G., Buhrman, R. A. Ultrane metal particles. Journal of Applied Physics, 47 (5), 2200-2219, 1976. URL http://dx.doi.org/10.1063/1.322870.74 [193] Zi, R. M., McGrady, E. D., Meakin, P. On the validity of Smoluchowski's equation for cluster-cluster aggregation kinetics. The Journal of Chemical Physics, 82 (11), 5269-5274, 1985. URL http://dx.doi.org/10.1063/1.448600. 74 [194] Williams, D. B., Carter, C. B. 18. Obtaining and indexing parallel-beam diffraction patterns. En: Transmission Electron Microscopy. Boston, Estados Unidos de América: Springer US, 2009. 75 [195] Ponomar, V. Crystal structures and magnetic properties of spinel ferrites synthesized from natural Fe-Mg-Ca carbonates. Materials Research Bulletin, 158, 112068, 2023. URL http://dx.doi.org/10.1016/j.materresbull.2022.112068. 75 [196] Noval, V. E., Carriazo, J. G. Fe3O4-TiO2 and Fe3O4-SiO2 core-shell powders synthesized from industrially processed magnetite (Fe3O4) microparticles. Materials Research, 22 (3), 2019. URL http://dx.doi.org/10.1590/1980-5373-mr-2018-0660. 76 [197] Lohr, J., de Almeida, A. A., Moreno, M. S., Troiani, H., Goya, G. F., Torres Molina, T. E., et al. Eects of Zn substitution in the magnetic and morphological properties of Fe-oxide-based core-shell nanoparticles produced in a single chemical synthesis. The Journal of Physical Chemistry C, 123 (2), 1444-1453, 2018. URL http://dx.doi.org/10.1021/acs.jpcc.8b08988. 76 [198] Gatan Inc., A. Interactive periodic table - EDAX. URL https://www.edax.com/resources/interactive-periodic-table. 78 [199] Bearden, J. A. X-ray wavelengths. Reviews of Modern Physics, 39 (1), 78-124,1967. URL http://dx.doi.org/10.1103/RevModPhys.39.78. 78 [200] Goss, C. Saturation magnetisation, coercivity and lattice parameter changes in the system Fe3O4-Fe2O3, and their relationship to structure. Physics and Chemistry of Minerals, 16 (2), 1988. URL http://dx.doi.org/10.1007/BF00203200. 80 [201] Verwey, E. J. W. Electronic conduction of magnetite (Fe3O4) and its transition point at low temperatures. Nature, 144 (3642), 327-328, 1939. URL http://dx.doi.org/10.1038/144327b0. 82 [202] de Araujo, A., Duque, J., Knobel, M., Schnitzler, M., Zarbin, A. Evidence of Verwey transition in iron- and iron oxide-encapsulated carbon nanotubes. Journal of Magnetism and Magnetic Materials, 312 (1), 32-34, 2007. URL http://dx.doi.org/10.1016/j.jmmm.2006.09.005. 82 [203] Alva-Valdivia, L. M., López-Loera, H. A review of iron oxide transformations, rock magnetism and interpretation of magnetic anomalies: El Morro Mine (Brazil), a case study. Geofísica Internacional, 50 (3), 2011. URL http: //dx.doi.org/10.22201/igeof.00167169p.2011.50.3.231. 82 [204] Hou, Y., Liu, Y., Yang, X., Mao, H., Shi, Z.,Wu, S., et al. Modulating the Verwey transition of epitaxial magnetite thin lms by ionic gating. Advanced Functional Materials, 31 (47), 2021. URL http://dx.doi.org/10.1002/adfm.202104816. 82 [205] Hu, G., He, B. Magnetoacoustic imaging of electrical conductivity of biological tissues at a spatial resolution better than 2 mm. PLoS ONE, 6 (8), e23421, 2011. URL http://dx.doi.org/10.1371/journal.pone.0023421. 84 [206] Bruvera, I., Actis, D., Calatayud, M., Mendoza Zelis, P. Typical experiment vs. in-cell like conditions in magnetic hyperthermia: Effects of media viscosity and agglomeration. Journal of Magnetism and Magnetic Materials, 491, 165563, 2019. URL http://dx.doi.org/10.1016/j.jmmm.2019.165563. [207] Lee, M. B., Kim, H. J., Kwon, O. I. Decomposition of high-frequency electrical conductivity into extracellular and intracellular compartments based on two-compartment model using low-to-high multi-b diusion MRI. BioMedical Engineering OnLine, 20 (1), 2021. URL http://dx.doi.org/10.1186/s12938-021-00869-5. 84 [208] Usov, N. A., Liubimov, B. Y. Dynamics of magnetic nanoparticle in a viscous liquid: Application to magnetic nanoparticle hyperthermia. Journal of Applied Physics, 112 (2), 2012. URL http://dx.doi.org/10.1063/1.4737126. 84 [209] Cabrera, D., Lak, A., Yoshida, T., Materia, M. E., Ortega, D., Ludwig, F., et al. Unraveling viscosity eects on the hysteresis losses of magnetic nano cubes. Nanoscale, 9 (16), 5094-5101, 2017. URL http://dx.doi.org/10.1039/C7NR00810D. 84 [210] Rousseau, A., Tellier, M., Marin, L., Garrow, M., Madelaine, C., Hallali, N., et al. Influence of medium viscosity on the heating power and the high-frequency magnetic properties of nanobeads containing magnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 518, 167403, ene. 2021. URL http://dx.doi.org/10.1016/j.jmmm.2020.167403. 84 [211] Puchkov, E. O. Intracellular viscosity: Methods of measurement and role in metabolism. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 7 (4), 270{279, 2013. URL http://dx.doi.org/10.1134/S1990747813050140. 84 [212] Fushimi, K., Verkman, A. S. Low viscosity in the aqueous domain of cell cytoplasm measured by picosecond polarization microfluorimetry. The Journal of cell biology, 112 (4), 719-725, 1991. URL http://dx.doi.org/10.1083/jcb.112.4.719. 84 [213] Yano, T., Kumagai, H., Fujii, T., Inukai, T. Concentration dependence of mechanical properties of polyacrylamide near the sol-gel transition point. Bioscience, Biotechnology, and Biochemistry, 57 (4), 528{531, 1993. URL http://dx.doi.org/10.1271/bbb.57.528. 84 [214] Wang, Y.-L., Pelham, R. J. [39] Preparation of a flexible, porous polyacrylamide substrate for mechanical studies of cultured cells, pág. 489{496. Elsevier, 1998. URL http://dx.doi.org/10.1016/s0076-6879(98)98041-7. 84 [215] Skidmore, M. A., Turnbull, J. E. Chapter 6 - Separation and sequencing of heparin and heparan sulphate saccharides. En: H. G. Garg, R. J. Linhardt, C. A. Hales (eds.) Chemistry and Biology of Heparin and Heparan Sulfate, págs. 179-201. Amsterdam: Elsevier Science, 2005. URL https://www.sciencedirect.com/science/article/pii/B9780080448596500071. 84 [216] Flood, P., Page, H., Reynaud, E. G. Using hydrogels in microscopy: A tutorial.Micron, 84, 7-16, 2016. URL http://dx.doi.org/10.1016/j.micron.2016.02.002. 86 [217] McMahon, R., Hahn, M., Pendleton, M., Ellis, E. A simple preparation method for mesh brin hydrogel composites for conventional SEM. Microscopy and Microanalysis,16 (S2), 1030-1031, jul. 2010. URL http://dx.doi.org/10.1017/S1431927610058484. 87 [218] Muri, H., Hoang, L., Hjelme, D. Mapping nanoparticles in hydrogels: A comparison of preparation methods for electron microscopy. Applied Sciences, 8 (12),2446, dic. 2018. URL http://dx.doi.org/10.3390/app8122446. 87 [219] Giannuzzi, L. A. Chapter 24: FIB-SEM for biomaterials. En: R. A. Fleck, B. M. Humbel (eds.) Biological Field Emission Scanning Electron Microscopy, I, pág. 517-532. Hoboken, Estados Unidos de América: Wiley, 2019. URL http://dx. doi.org/10.1002/9781118663233.ch24. 87 [220] Dubochet, J., Lepault, J., Freeman, R., Berriman, J. A., Homo, J. Electron microscopy of frozen water and aqueous solutions. Journal of Microscopy, 128 (3), 219-237, dic. 1982. URL http://dx.doi.org/10.1111/j.1365-2818.1982.tb04625.x. 87 [221] Hayles, M., De Winter, D. An introduction to cryo-FIB-SEM cross-sectioning of frozen, hydrated Life Science samples. Journal of Microscopy, 281 (2), 138-156, 2020. URL http://dx.doi.org/10.1111/jmi.12951. 87 [222] Sansinena, M., Santos, M., Zaritzky, N., Chirife, J. Comparison of heat transfer in liquid and slush nitrogen by numerical simulation of cooling rates for french straws used for sperm cryopreservation. Theriogenology, 77 (8), 1717-1721, mayo 2012. URL http://dx.doi.org/10.1016/j.theriogenology.2011.10.044. 87 [223] Gill, P., Moghadam, T. T., Ranjbar, B. Differential scanning calorimetry techniques: applications in biology and nanoscience. Journal of Biomolecular Techniques, 21 (4), 167-193, 2010. 92 [224] Hohne, G., Hemminger, W., Flammersheim, H.-J. Applications of dierential scanning calorimetry. En: Differential Scanning Calorimetry, pags. 147-244. New York: Springer-Verlag Berlin Heidelberg, 2003. 93 [225] Ferguson., A., Cockett., A. H. Specic heat of a liquid at different temperatures. Nature, 138 (3498), 842-843, 1936. URL http://dx.doi.org/10.1038/138842b0. 93 [226] Hadadian, Y., Masoomi, H., Dinari, A., Ryu, C., Hwang, S., Kim, S., et al. From flow to high saturation magnetization in magnetite nanoparticles: The crucial role of the molar ratios between the chemicals. ACS Omega, 7 (18), 15996-16012, 2022. URL http://dx.doi.org/10.1021/acsomega.2c01136. 102 [227] Gubanova, E. M., Usov, N. A., Oleinikov, V. A. Heating ability of elongated magnetic nanoparticles. Beilstein Journal of Nanotechnology, 12, 1404-1412, dic. 2021. URL http://dx.doi.org/10.3762/bjnano.12.104. 102 [228] McGhie, A. A., Marquina, C., O'Grady, K., Vallejo-Fernandez, G. Measurement of the distribution of anisotropy constants in magnetic nanoparticles for hyperthermia applications. Journal of Physics D: Applied Physics, 50 (45), 455003, oct. 2017. URL http://dx.doi.org/10.1088/1361-6463/aa88ed. 106 [229] Clarke, D., Marquina, C., Lloyd, D., Vallejo-Fernández, G. Effect of the distribution of anisotropy constants on the magnetic properties of iron oxide nanoparticles. Journal of Magnetism and Magnetic Materials, 559, 169543, 2022. URL http://dx.doi.org/10.1016/j.jmmm.2022.169543. 106 [230] Weis, J.-J. Simulation of quasi-two-dimensional dipolar systems. Journal of Physics: Condensed Matter, 15 (15), S1471-S1495, 2003. URL http://dx.doi.org/10.1088/0953-8984/15/15/311. 119 [231] Babukutty, B., Ponnamma, D., Nair, S. S., Thomas, S. Correlating the rheological and magneto-optical properties of cobalt substituted magnetite ferro fluids (CoxFe1xFe2O4) with theoretical studies. Results in Materials, 17, 100382, 2023. URL http://dx.doi.org/10.1016/j.rinma.2023.100382. 125 [232] Alvarado-Leyva, P. G., Aguilera-Granja, F., Balbas, L. C., Vega, A. Antiferromagnetic-like coupling in the cationic iron cluster of thirteen atoms. Physical Chemistry Chemical Physics, 15 (34), 14458, 2013. URL http://dx.doi.org/10.1039/C3CP51377G. 126 [233] Martins, M., Wurth, W. Magnetic properties of supported metal atoms and clusters. Journal of Physics: Condensed Matter, 28 (50), 503002, 2016. URL http://dx.doi.org/10.1088/0953-8984/28/50/503002. 126 [234] Calatayud, M. P., Soler, E., Torres, T. E., Campos-González, E., Junquera, C., Ibarra, M. R., et al. Cell damage produced by magnetic fluid hyperthermia on microglial BV2 cells. Scientic Reports, 7 (1), 2017. URL http://dx.doi.org/10.1038/s41598-017-09059-7. 131, 140 [235] Nguyen, L., Phong, P., Nam, P., Manh, D., Thanh, N., Tung, L., et al. The role of anisotropy in distinguishing domination of Neel or Brownian relaxation contribution to magnetic inductive heating: Orientations for biomedical applications. Materials, 14 (8), 1875, 2021. URL http://dx.doi.org/10.3390/ma14081875.132 [236] Creixell, M., Bohorquez, A. C., Torres-Lugo, M., Rinaldi, C. EGFR-targeted magnetic nanoparticle heaters kill cancer cells without a perceptible temperature rise. ACS Nano, 5 (9), 7124-7129, 2011. URL http://dx.doi.org/10.1021/nn201822b. 132 [237] Asn, L., Goya, G. F., Tres, A., Ibarra, M. R. Induced cell toxicity originates dendrifitic cell death following magnetic hyperthermia treatment. Cell Death & Disease, 4 (4), e596{e596, 2013. URL http://dx.doi.org/10.1038/cddis.2013.121. 132 [238] Carlton, H., Ivkov, R. A new method to measure magnetic nanoparticle heating efficiency in non-adiabatic systems using transient pulse analysis. Journal of Applied Physics, 133 (4), 2023. URL http://dx.doi.org/10.1063/5.0131058.132 [239] Teran, F. J., Casado, C., Mikuszeit, N., Salas, G., Bollero, A., Morales, M. P., et al. Accurate determination of the specific absorption rate in superparamagnetic nanoparticles under non-adiabatic conditions. Applied Physics Letters, 101 (6), 062413, 2012. URL http://dx.doi.org/10.1063/1.4742918. 132 [240] Iglesias, C. A. M., de Araujo, J. C. R., Xavier, J., Anders, R. L., de Araujo, J. M., da Silva, R. B., et al. Magnetic nanoparticles hyperthermia in a nonadiabatic and radiating process. Scientic Reports, 11 (1), 2021. URL http://dx.doi.org/10.1038/s41598-021-91334-9. 132 [241] Rodrigues, H. F., Mello, F. M., Branquinho, L. C., Zufelato, N., Silveira-Lacerda, E. P., Bakuzis, A. F. Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform eld configuration. International Journal of Hyperthermia, 29 (8), 752{767, 2013. URL http://dx.doi.org/10.3109/02656736.2013.839056. 133 [242] Lahiri, B., Ranoo, S., Philip, J. Infrared thermography based magnetic hyperthermia study in Fe3O4 based magnetic uids. Infrared Physics & Technology, 78, 173-184, 2016. URL http://dx.doi.org/10.1016/j.infrared.2016.08.002.133 [243] Bosque, J. J., Calvo, G. F., Perez-Garca, V. M., Navarro, M. C. The interplay of blood flow and temperature in regional hyperthermia: a mathematical approach. Royal Society Open Science, 8 (1), 201234, 2021. URL http://dx.doi.org/10.1098/rsos.201234. 133 [244] Nabil, M., Decuzzi, P., Zunino, P. Modelling mass and heat transfer in nanobased cancer hyperthermia. Royal Society Open Science, 2 (10), 150447, 2015. URL http://dx.doi.org/10.1098/rsos.150447. [245] Hassanpour, S., Saboonchi, A. Modeling of heat transfer in a vascular tissue-like medium during an interstitial hyperthermia process. Journal of Thermal Biology,62, 150-158, 2016. URL http://dx.doi.org/10.1016/j.jtherbio.2016.06.022. 133 [246] Song, C. W. Eect of hyperthermia on vascular functions of normal tissues and experimental tumors: Brief communication. JNCI: Journal of the National Cancer Institute, 60 (3), 711-713, 1978. URL http://dx.doi.org/10.1093/jnci/60.3.711. 133 [247] Suriyanto, Ng, E. Y. K., Kumar, S. D. Physical mechanism and modeling of heat generation and transfer in magnetic uid hyperthermia through Neelian and Brownian relaxation: a review. BioMedical Engineering OnLine, 16 (1), 2017. URL http://dx.doi.org/10.1186/s12938-017-0327-x. 133 [248] Schuster, A., Thielecke, M., Raharimanga, V., Ramarokoto, C. E., Rogier, C., Krantz, I., et al. High-resolution infrared thermography: a new tool to assess tungiasis-associated in ammation of the skin. Tropical Medicine and Health, 45 (1), 2017. URL http://dx.doi.org/10.1186/s41182-017-0062-9. 133 [249] Arthur, R. M., Straube, W. L., Trobaugh, J. W., Moros, E. G. Non-invasive estimation of hyperthermia temperatures with ultrasound. International Journal of Hyperthermia, 21 (6), 589-600, 2005. URL http://dx.doi.org/10.1080/02656730500159103. 133 [250] Maenhout, G., Markovic, T., Nauwelaers, B. Non-invasive microwave hyperthermia and simultaneous temperature monitoring with a single theranostic applicator. En: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2021. URL http://dx.doi.org/10.1109/EMBC46164.2021.9629592. [251] De Senneville, B. D., Mougenot, C., Desbarats, P., Quesson, B., W. Moonen,C. T. On-line mobile organ tracking for non-invasive local hyperthermia. En: 2006 International Conference on Image Processing. IEEE, 2006. URL http://dx.doi.org/10.1109/ICIP.2006.313001. [252] Delgado-SanMartin, J., Ehrhardt, B., Paczkowski, M., Hackett, S., Smith, A., Waraich, W., et al. An innovative non-invasive technique for subcutaneous tumour measurements. PLOS ONE, 14 (10), e0216690, 2019. URL http://dx.doi.org/10.1371/journal.pone.0216690. [253] Meyer, C. W., Ootsuka, Y., Romanovsky, A. A. Body temperature measurements for metabolic phenotyping in mice. Frontiers in Physiology, 8, 2017. URL http://dx.doi.org/10.3389/fphys.2017.00520. 133 [254] Valdes, D. P., Lima, E., Zysler, R. D., Goya, G. F., De Biasi, E. Role of anisotropy, frequency, and interactions in magnetic hyperthermia applications: Noninteracting nanoparticles and linear chain arrangements. Phys. Rev. Appl., 15 (4), 2021. URL http://dx.doi.org/10.1103/PhysRevApplied.15.044005. 144, 145 [255] Allia, P., Barrera, G., Tiberto, P. Hysteresis effects in magnetic nanoparticles: A simplied rate-equation approach. Journal of Magnetism and Magnetic Materials, 496, 165927, 2020. URL http://dx.doi.org/10.1016/j.jmmm.2019.165927. 151 [256] Leliaert, J., Dvornik, M., Mulkers, J., De Clercq, J., Milosevic, M. V., Van Waeyenberge, B. Fast micromagnetic simulations on GPU|recent advances made with mumax3. Journal of Physics D: Applied Physics, 51 (12), 123002, 2018. URL http://dx.doi.org/10.1088/1361-6463/aaab1c. 153 |
Materias: | Física |
Divisiones: | Investigación y aplicaciones no nucleares > Física > Resonancias magnéticas |
Código ID: | 1267 |
Depositado Por: | Tamara Cárcamo |
Depositado En: | 12 Sep 2024 11:15 |
Última Modificación: | 12 Sep 2024 11:15 |
Personal del repositorio solamente: página de control del documento