Desarrollo de modelos predictivos de vida a la fatiga de implantes de cadera de Ti-6Al-4V fabricados por manufactura aditiva / Development of predictive models for fatigue life of additively-manufactured Ti-6Al-4V hip implants

Gómez, Fernando R. (2024) Desarrollo de modelos predictivos de vida a la fatiga de implantes de cadera de Ti-6Al-4V fabricados por manufactura aditiva / Development of predictive models for fatigue life of additively-manufactured Ti-6Al-4V hip implants. Maestría en Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
79Mb

Resumen en español

La fabricación de implantes de cadera metálicos es una de las principales aplicaciones de los procesos de manufactura aditiva (MA), ya que ciertos requisitos como la personalización de la prótesis a un paciente en particular o la necesidad de generar de estructuras porosas complejas que favorecen la osteointegración pueden cumplirse debido a las características de los procesos de MA, y serían difíciles de lograr por métodos convencionales. La determinación de las propiedades de fatiga es un aspecto clave al momento de evaluar el comportamiento de los implantes de cadera, ya que las cargas que tienen que soportar in vivo son de carácter cíclico. Existen distintas normas que establecen las condiciones en que se evalúan las propiedades de fatiga, entre ellas, la norma ISO 7206 4, que busca evaluar las propiedades de fatiga en la zona del tallo del implante de cadera. Realizar ensayos siguiendo los lineamientos de la norma puede ser considerablemente costoso en tiempo y recursos. Por esta razón, con la visión de desarrollar un modelo predictivo de vida a la fatiga para implantes de cadera de Ti-6Al-4V fabricados por manufactura aditiva, en este trabajo se estudia el comportamiento a la fatiga de dos tamaños distintos de implantes de cadera provistos por la empresa Kinetical SRL al ensayarlos de acuerdo a la norma ISO 7206-4. Se estimaron las tensiones producidas en el implante durante el ensayo mediante dos enfoques: el primero de ellos consistió en fórmulas analíticas, mientras que en el segundo enfoque se utilizó el método de elementos finitos. Los niveles de tensiones obtenidos se compararon con curvas de las propiedades de fatiga del material ajustadas a partir de ensayos realizados en el Laboratorio de Propiedades Mecánicas. La vida estimada de esta manera se comparó con las vidas reales determinadas luego de ensayar los implantes. Al realizar esta comparación se notaron discrepancias, ya que para ambos implantes, la vida real superó ampliamente la vida estimada mediante los cálculos. Debido a esto, se evaluó la influencia de distintos factores que pueden haber afectado las propiedades de fatiga del implante, o la tensión aplicada en el ensayo, para intentar explicar el comportamiento observado: se midieron las tensiones residuales en la superficie del implante utilizando difracción de rayos X, y se estimó un posible factor de concentración de tensiones en la legión en la que se produjo la fractura del implante. Adicionalmente, se utilizaron técnicas de microscopía para estudiar las características de las superficies de fractura. A partir de los resultados teóricos y experimentales, se comprobó que la norma ISO 7206-4 puede no ser adecuada para evaluar la resistencia a la fatiga del tallo en los implantes ensayados por la presencia de niveles elevados de tensiones residuales de compresión. Este estudio teórico y experimental permite determinar variables de relevancia en la determinación de la vida a la fatiga de los implantes, aportando al desarrollo de metodologías predictivas.

Resumen en inglés

The manufacturing of metallic hip implants is one of the main applications of additive manufacturing (AM) processes, since they make it possible to fulfill certain requirements, such as customizing a prosthesis to a particular patient, or building complex porous structure that favor osseointegration due to the characteristics of the AM processes, and would be difficult to obtain by conventional methods. Proper determination of fatigue properties is a key aspect when assessing the behavior of hip implants, since the loads they have to withstand in vivo are cyclic in nature. There exist different standards that establish the conditions under which fatigue properties are to be evaluated, among them, the ISO 7206-4 standard seeks to evaluate the fatigue properties in the stem area of the hip implant. Performing tests following the guidelines of the standard can be considerably costly in terms of time and resources. Accordingly, with the aim of developing a predictive fatigue life model for Ti-6Al- 4V hip implants manufactured by additive manufacturing, this work studies the fatigue behavior of two different sizes of hip implants provided by the company Kinetical SRL when tested according to ISO 7206-4. The stresses produced in the implant during the test were estimated using two approaches: the first one consisted of analytical formulas, while the second approach used the finite element method. The stress levels thus obtained were compared to the material S-N curves fitted from tests performed in the Mechanical Properties Laboratory. The estimated fatigue life was then compared to the actual lives determined after testing of the implants. When this comparison was made, discrepancies were noted, since for both implants, the actual fatigue life greatly exceeded the calculated fatigue life. Because of this, the influence of different factors that may have affected the fatigue properties of the implant, or the stress applied in the test, were evaluated to try to explain the observed behavior: residual stresses on the implant surface were measured using X-ray diffraction, and a possible stress concentration factor was estimated in the region of the implant where the fracture occurred. Additionally, microscopy techniques were used to study the characteristics of the fracture surfaces. From the theoretical and experimental results, it was found that ISO 7206-4 may not be adequate to evaluate the fatigue resistance of the stem in the tested implants due to the presence of high levels of compressive residual stresses. This theoretical and experimental study allows for determining variables of relevance in the determination of the fatigue life of implants, contributing to the development of predictive methodologies.

Tipo de objeto:Tesis (Maestría en Ingeniería)
Palabras Clave:Fatigue; Fatiga; Finite element method; Método de elementos finitos; [Additive manufacturing; Manufactura aditiva; Hip implants; Implantes de cadera]
Referencias:[1] Liu, B., Hua, J., Cheng, C.-K. Frontiers in Orthopaedic Biomechanics, cap. Biomechanics of the hip, págs. 169–188. Singapore: Springer Nature Singapore, 2020. 1, 2 [2] Laterjet, M., Ruiz Liard, A. Anatomía Humana, tomo 1. 4a ed. Editorial Médica Panamericana, 2004. 1 [3] Brandes, M., Schomaker, R., Mollenhoff, G., Rosenbaum, D. Quantity versus quality of gait and quality of life in patients with osteoarthritis. Gait Posture, 28 (1), 74–79, nov. 2007. 2 [4] Baleani, M., Cristofolini, L., Viceconti, M. Endurance testing of hip prostheses: a comparison between the load fixed in ISO 7206 standard and the physiological loads. Clin Biomech (Bristol, Avon), 14 (5), 339–345, jun. 1999. 2 [5] Mohan Iyer, K. (ed.) The Hip Joint in Adults. Advances and Developments. Jenny Stanford Publishing, 2018. 3, 4 [6] Pivec, R., Johnson, A. J., Mears, S. C., Mont, M. A. Hip arthroplasty. Lancet, 380 (9855), 1768–1777, sep. 2012. 4 [7] Siopack, J. S., Jergesen, H. E. Total hip arthroplasty. West J Med, 162 (3), 243–249, Mar 1995. 4, 5 [8] Huang, Y. Hip arthroplasty. En: Hip Surgery, cap. 15. Springer Singapore, 2021. 4 [9] Knight, S. R., Aujla, R., Biswas, S. P. Total hip arthroplasty - over 100 years of operative history. Orthop. Rev. (Pavia), 3 (2), e16, sep. 2011. 4 [10] Merx, H., Dreinhofer, K., Schrader, P., Sturmer, T., Puhl, W., Gunther, K.-P., et al. International variation in hip replacement rates. Ann Rheum Dis, 62 (3), 222–226, mar. 2003. 4 [11] Kurtz, S., Ong, K., Lau, E., Mowat, F., Halpern, M. Projections of primary and revision hip and knee arthroplasty in the united states from 2005 to 2030. J Bone Joint Surg Am, 89 (4), 780–785, abr. 2007. 4 [12] Park, J. B., Lakes, R. S. Biomaterials. An Introduction. Springer New York, 2007. 5 [13] Windler, M., Klabunde, R. Titanium for Hip and Knee Prostheses, p´ags. 703–746. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. URL https://doi.org/10.1007/978-3-642-56486-4_21. 5 [14] Long, M., Rack, H. Titanium alloys in total joint replacement—a materials science perspective. Biomaterials, 19 (18), 1621–1639, 1998. 5 [15] Okazaki, Y., Mori, J. Mechanical performance of artificial hip stems manufactured by hot forging and selective laser melting using biocompatible Ti 15Zr-4Nb alloy. Materials, 14 (4), 2021. URL https://www.mdpi.com/1996-1944/14/4/732. 5, 23, 76 [16] Okazaki, Y., Ito, Y., Kyo, K., Tateishi, T. Corrosion resistance and corrosion fatigue strength of new titanium alloys for medical implants without V and Al. Materials Science and Engineering: A, 213 (1), 138–147, 1996. URL https://www.sciencedirect.com/science/article/pii/0921509396102471. 5 [17] McTighe, T., Brazil, D., Bruce, W. Metallic alloys in total hip arthroplasty. En: The Hip: Preservation, Replacement and Revision, p´ags. 14–1 to 14–12. Data Trace Publishing Company, 2015. 5 [18] Srivastava, M., Rathee, S., Maheshwari, S., Kundra, T. Additive Manufacturing. Taylor & Francis Group, 2021. 6 [19] Bandyopadhyay, A., Bose, S. Additive Manufacturing. Taylor & Francis, 2015. URL https://books.google.com.ar/books?id=eIW4swEACAAJ. 6 [20] Khalid Rafi, H., Karthik, N., Starr, T. L., Stucker, B. E. Mechanical property evaluation of Ti-6Al-4V parts made using electron beam melting. En: 2012 International Solid Freeform Fabrication Symposium. University of Texas at Austin, 2012. 6 [21] Hrabe, N., Gnaupel-Herold, T., Quinn, T. Fatigue properties of a titanium alloy (Ti–6Al–4V) fabricated via electron beam melting (EBM): Effects of internal defects and residual stress. International Journal of Fatigue, 94, 202–210, 2017. URL https://www.sciencedirect.com/science/article/pii/S0142112316300767. 6 [22] Chern, A. H., Nandwana, P., Yuan, T., Kirka, M. M., Dehoff, R. R., Liaw, P. K., et al. A review on the fatigue behavior of Ti-6Al-4V fabricated by electron beam melting additive manufacturing. International Journal of Fatigue, 119, 173–184, 2019. URL https://www.sciencedirect.com/science/article/pii/S0142112318305723. 6 [23] International Standardization Organization. ISO 7206-4:2010 – Implants for surgery – Partial and total hip joint prostheses – Part 4: Determination of endurance properties and performance of stemmed femoral components. Geneva, Switzerland, 2010. 7, 8, 22 [24] Colic, K., Sedmak, A., Legweel, K., Milosevic, M., Mitrovic, N., Miskovic, Z., et al. Experimental and numerical research of mechanical behaviour of titanium alloy hip implant. Tehnicki Vjesnik, 24, 709–713, 01 2017. 9 [25] Griza, S., Kwietniewski, C., Tarnowski, G., Bertoni, F., Reboh, Y., Strohaecker, T. R., et al. Fatigue failure analysis of a specific total hip prosthesis stem design. International Journal of Fatigue, 30 (8), 1325–1332, 2008. URL https://www.sciencedirect.com/science/article/pii/S0142112307003167. 9, 28 [26] Suresh, S. Fatigue of Materials. 2a ed. Cambridge University Press, 1998. 13 [27] Dieter, G. E. Mechanical Metallurgy. McGraw Hill, 1986. 14, 15 [28] Murakami, Y. Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions. Elsevier Science, 2019. URL https://books.google.com.ar/books?id=WZadDwAAQBAJ. 14 [29] Walker, K. The effect of stress ratio during crack propagation and fatigue for 2024-T3 and 7075-T6 aluminum. 1970. URL https://api.semanticscholar. org/CorpusID:137690461. 17 [30] Li, P., Warner, D., Fatemi, A., Phan, N. Critical assessment of the fatigue performance of additively manufactured Ti–6Al–4V and perspective for future research. International Journal of Fatigue, 85, 130–143, 2016. URL https://www.sciencedirect.com/science/article/pii/S0142112315004399. 17 [31] Palmgren, A. Die Lebensdauer von Kugellagern. Zeitschrift des Vereins Deutscher Ingenieure, 68, 339–341, 1924. 17 [32] Miner, M. A. Cumulative Damage in Fatigue. Journal of Applied Mechanics, 12 (3), 159–164, 03 2021. URL https://doi.org/10.1115/1.4009458. 17 [33] Ishihara, S., McEvily, A. J. A coaxing effect in the small fatigue crack growth regime. Scripta Materialia, 42 (5), 2 1999. URL https://www.osti.gov/biblio/338412. 19 [34] Murakami, Y., Tazunoki, Y., Endo, T. Existence of the coaxing effect and effects of small artificial holes on fatigue strength of an aluminum alloy and 70-30 brass. Metallurgical Transactions A, 15, 2029–2038, 1984. 19 [35] Zhang, X., Zhang, Y., Lu, J., Xuan, F., Wang, Z., Tu, S. Improvement of fatigue life of ti–6al–4v alloy by laser shock peening. Materials Science and Engineering: A, 527 (15), 3411–3415, 2010. URL https://www.sciencedirect.com/science/article/pii/S0921509310001085. 20 [36] Guo, W., Sun, R., Song, B., Zhu, Y., Li, F., Che, Z., et al. Laser shock peening of laser additive manufactured ti6al4v titanium alloy. Surface and Coatings Technology, 349, 503–510, 2018. URL https://www.sciencedirect.com/science/article/pii/S0257897218305954. 20 [37] Pascual, F. G., Meeker, W. Q. Estimating fatigue curves with the random fatiguelimit model. Technometrics, 41 (4), 277–290, 1999. URL http://www.jstor.org/stable/1271342. 20 [38] Chao, J. Is 7206 ISO standard enough to prove the endurance of femoral components of hip prostheses? Engineering Failure Analysis, 15 (1), 83–89, 2008. URL https://www.sciencedirect.com/science/article/pii/ S1350630706001907. 23, 76 [39] Chao, J., López, V. Failure analysis of a ti6al4v cementless hip prosthesis. Engineering Failure Analysis, 14 (5), 822–830, 2007. URL https://www.sciencedirect. com/science/article/pii/S135063070600152X. 23 [40] International Standardization Organization. ISO 7206-6:2013 – Implants for surgery– Partial and total hip joint prostheses – Part 6: Endurance properties testing and performance requirements of neck region of stemmed femoral components. Geneva, Switzerland, 2013. 23 [41] Waluyo, S. Minimizing Artificial Stiffness in Linear Tetrahedral Element Using Virtual Mesh Refinement. Journal of Mechanics, 34 (3), 291–297, 11 2016. URL https://doi.org/10.1017/jmech.2016.113. 28 [42] ANSYS, Inc. ANSYS Mechanical, Release 20.1. 2020. 28 [43] Campioni, I., Notarangelo, G., Andreaus, U., Ventura, A., Giacomozzi, C. Hip Prostheses Computational Modeling: FEM Simulations Integrated with Fatigue Mechanical Tests, págs. 81–108. Dordrecht: Springer Netherlands, 2013. URL https://doi.org/10.1007/978-94-007-4270-3_5. 28 [44] Bergant, M., Soria, S., Bustos, I., Soul, H., Yawny, A. An in-depth analysis of the role of surface roughness, internal defects and microstructure variation after hot isostatic pressing treatment in the fatigue behavior of electron beam powder bed fusion of ti-6al-4v, 2024. Manuscript submitted for publication. 32 [45] Zhang, O., Poirier, J., Barr, J. Modified locati method in fatigue testing. SAE Technical Paper Series, 2003. URL https://www.sae.org/publications/ technical-papers/content/2003-01-0919/. 42 [46] Pilkey, W., Pilkey, D. Peterson’s Stress Concentration Factors. Wiley, 2020. 48 [47] Lim, G., Lau, K., Cheng, W., Chiang, Z., Krishnan, M., Ardi, D. Residual stresses in ti-6al-4v parts manufactured by direct metal laser sintering and electron beam melting. Brit. Soc. Strain Meas, 71, 348–353, 2017. 62 [48] Takase, A., Ishimoto, T., Morita, N., Ikeo, N., Nakano, T. Comparison of phase characteristics and residual stresses in ti-6al-4v alloy manufactured by laser powder bed fusion (l-pbf) and electron beam powder bed fusion (eb-pbf) techniques. Crystals, 11 (7), 2021. URL https://www.mdpi.com/2073-4352/11/7/796. 62 [49] Noyan, I., Cohen, J. Residual Stress. Springer New York, 2013. URL https: //link.springer.com/book/10.1007/978-1-4613-9570-6. 66 [50] Rifat, M., Basu, S., De Meter, E. C., Manogharan, G. Effect of prior surface textures on the resulting roughness and residual stress during bead-blasting of electron beam melted ti-6al-4v. Crystals, 12 (3), 2022. URL https://www.mdpi.com/2073-4352/12/3/374. 66 [51] Soyama, H., Takeo, F. Effect of various peening methods on the fatigue properties of titanium alloy ti6al4v manufactured by direct metal laser sintering and electron beam melting. Materials, 13 (10), 2020. URL https://www.mdpi.com/1996-1944/13/10/2216. 66 [52] Berrocal, L. Elasticidad. McGraw-Hill Interamericana de España S.L., 1998. URL https://books.google.com.ar/books?id=iPSxOwAACAAJ. 76
Materias:Ingeniería > Ciencia de los materiales
Divisiones:Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Ciencias de materiales > Física de metales
Código ID:1275
Depositado Por:Tamara Cárcamo
Depositado En:12 Sep 2024 10:15
Última Modificación:12 Sep 2024 10:15

Personal del repositorio solamente: página de control del documento