Mecanismos de relajación intrínsecos y extrínsecos para controlar la intensidad de la corriente de espín en bicapas Fe_100-x Co_x/Ta / Intrinsic and extrinsic relaxation mechanisms for controlling spin current intensity in Fe_100-x Co_x/Ta bilayers

Velázquez Rodriguez, D. y Gómez , J.E. y Avilés-Félix, L. y Ampuero Torres, J.L. y Torres , T.E. y Pérez Martínez, A.A. y Morbidel , L. y Goijman, D. y Rojas Sánchez , J.C. y Aguirre, M.H. y Milano, J. y Butera, A. (2024) Mecanismos de relajación intrínsecos y extrínsecos para controlar la intensidad de la corriente de espín en bicapas Fe_100-x Co_x/Ta / Intrinsic and extrinsic relaxation mechanisms for controlling spin current intensity in Fe_100-x Co_x/Ta bilayers. Journal of Physics D: Applied Physics, 57 (39). pp. 1-19. ISSN 1361-6463

[img]
Vista previa
PDF (Submitted version) - Versión aceptada
Español
1977Kb

Resumen en español

El control del parámetro de amortiguamiento en películas delgadas ferromagnéticas metálicas es un paso clave para aplicaciones espintrónicas en las que las corrientes de espín se generan por bombeo de espín. La coexistencia de dos estados con valores de constante de amortiguamiento bajos y altos permitiría obtener estados de intensidad de corriente de espín alta y baja, respectivamente. Hemos fabricado bicapas Fe_100-x Co_x/Ta (con x nominal = 0, 15, 20, 25, 30 y 35) en las que las capas Fe_100-x Co_x crecen epitaxialmente y la capa Ta es policristalina. Hemos encontrado la coexistencia del amortiguamiento tipo Gilbert y de mecanismos de dispersión de dos magnones vinculados a un cambio de signo en la constante de anisotropía magnetocristalina que permite la manipulación de estados de baja y alta intensidad del voltaje de efecto Hall de espín inverso medido. Las bicapas con concentraciones de Co más bajas ( x≤25%) presentan mecanismos de relajación diferentes (amortiguación de Gilbert isótropa y dispersión de dos magnones) y un ensanchamiento adicional del ancho de línea de resonancia ferromagnética producido debido a la mosaicidad. Las bicapas con concentración de Co x > 25% presentan una amortiguación de Gilbert dominante para todas las direcciones en el plano de la película. Sin embargo, en este rango de concentración la constante de amortiguamiento es anisotrópica y cuando el campo magnético se aplica a lo largo de la dirección de magnetización difícil α aumenta ∼420% con respecto al valor obtenido para la dirección de magnetización fácil. La coexistencia de amortiguamiento de Gilbert isotrópico y la dispersión de dos magnones generó corrientes de espín 2,5 veces mayores cuando el campo se aplica a lo largo del eje de magnetización dura en comparación con el valor observado en el eje de magnetización fácil. Estos hallazgos hacen del sistema Fe_100-x Co_x/Ta un excelente candidato para aplicaciones de dispositivos espintrónicos.

Resumen en inglés

Controlling the damping parameter in metallic ferromagnetic thin films is a key step for spintronic applications in which spin currents are generated by spin pumping. The coexistence of two states with low and high damping constant values would allow to obtain states of high and low spin current intensity, respectively. We have fabricated Fe_100-x Co_x/Ta (with nominal x = 0, 15, 20, 25, 30 and 35) bilayers in which the Fe_100-x Co_x layers grow epitaxially and the Ta layer is polycrystalline. We have found the coexistence of Gilbert damping and two magnon scattering mechanisms linked to a sign change in the magnetocrystalline anisotropy constant that allows the manipulation of low and high intensity states of the measured inverse spin Hall effect voltage. Bilayers with lower Co concentrations ( x≤25%) present different relaxation mechanisms (isotropic Gilbert damping and two magnon scattering) and an extra ferromagnetic resonance linewidth broadening produced due to mosaicity. Bilayers with Co concentration x > 25% present a dominating Gilbert damping for all directions in the film plane. However, in this concentration range the damping constant is anisotropic and when the magnetic field is applied along the hard magnetization direction α increases ∼420% with respect to the value obtained for the easy magnetization direction. Coexistence of isotropic Gilbert damping and two magnon scattering generated spin currents 2.5 times larger when the field is applied along the hard magnetization axis compared to the value observed in the easy magnetization axis. Thesefindings make the Fe_100-x Co_x/Ta system an excellent candidate for spintronic device applications.

Tipo de objeto:Artículo
Editor:IOP
Palabras Clave:Ferromagnetic resonance; Resonancia ferromagnética; [Anisotropic damping; Amortiguación anisotrópica; spin current; Corriente de giro; spin pumping]
Referencias:[1]Puebla J, Kim J, Kondou K and Otani Y 2020 Spintronic devices for energy-efficient data storage and energy harvesting Commun. Mater. 1 1–9 [2]Speliotis D E 1999 Magnetic recording beyond the first 100 years J. Magn. Magn. Mater. 193 29–35 [3]Cowburn R P 2007 Change of direction Nat. Mater. 6 255–6 [4]Bhatti S, Sbiaa R, Hirohata A, Ohno H, Fukami S and Piramanayagam S N 2017 Spintronics based random access memory: a review Mater. Today 20 530–48 [5]Joshi V K 2016 Spintronics: a contemporary review of emerging electronics devices Eng. Sci. Technol. Int. J. 19 1503–13 [6]Eschrig M 2015 Spin-polarized supercurrents for spintronics: a review of current progress Rep. Prog. Phys. 78 104501 [7]Hirohata A, Yamada K, Nakatani Y, Prejbeanu I L, Diény B, Pirro P and Hillebrands B 2020 Review on spintronics: principles and device applications J. Magn. Magn. Mater. 509 166711 [8]Bader S D and Parkin S S P 2010 Spintronics Annu. Rev. Condens. Matter Phys. 1 71–88 [9]Chandrasekar L B, Gnanasekar K and Karunakaran M 2019 Spintronics: a mini review Superlattices Microstruct. 136 106322 [10]Felser C, Fecher G H and Balke B 2007 Spintronics: a challenge for materials science and solid-state chemistry Angew. Chem. Int. Ed. 46 668–99 [11]Tserkovnyak Y, Brataas A and Bauer G E W 2002 Enhanced Gilbert damping in thin ferromagnetic films Phys. Rev. Lett. 88 117601 [12]Saitoh E, Ueda M, Miyajima H and Tatara G 2006 Conversion of spin current into charge current at room temperature: inverse spin-Hall effect Appl. Phys. Lett. 88 182509 [13]Yang F and Hammel P C 2018 FMR-driven spin pumping in Y3Fe5O12-based structures J. Phys. D: Appl. Phys. 51 253001 [14]Iguchi R and Saitoh E 2017 Measurement of spin pumping voltage separated from extrinsic microwave effects J. Phys. Soc. Japan 86 011003 [15]Azevedo A, Leão L H V, Suárez R L R, Santos A F L and Rezende S M 2011 Spin pumping and anisotropic magnetoresistance voltages in magnetic bilayers: theory and experiment Phys. Rev. B 83 144402 [16]Rojas Sánchez J C, Reyren N, Laczkowski P, Savero W, Attané J P, Deranlot C, Jamet M, George J M, Vila L and Jaffrès H 2014 Spin pumping and inverse spin Hall effect in platinum: the essential role of spin-memory loss at metallic interfaces Phys. Rev. Lett. 112 106602 [17]Valenzuela S O and Tinkham M 2006 Direct electronic measurement of the spin Hall effect Nature 442 176–9 [18]Ohe J I, Takeuchi A and Tatara G 2007 Charge current driven by spin dynamics in disordered Rashba spin-orbit system Phys. Rev. Lett. 99 266603 [19]Gómez J E, Tedlla B Z, Álvarez N R, Alejandro G, Goovaerts E and Butera A 2014 Spin transport parameters in Ni80Fe20/Ru and Ni80Fe20/Ta bilayers Phys. Rev. B 90 184401 [20]Ando K et al 2011 Inverse spin-Hall effect induced by spin pumping in metallic system J. Appl. Phys. 109 103913 [21]Rodriguez D V, Gómez J E, Morbidel L, Caso P A C, Milano J and Butera A 2021 High spin pumping efficiency in Fe80Co20/Ta bilayers J. Phys. D: Appl. Phys. 54 325002 [22]Schoen M A W, Thonig D, Schneider M L, Silva T J, Nembach H T, Eriksson O, Karis O and Shaw J M 2016 Ultra-low magnetic damping of a metallic ferromagnet Nat. Phys. 12 839–42 [23]Li Y et al 2019 Giant anisotropy of Gilbert damping in epitaxial CoFe films Phys. Rev. Lett. 122 117203 [24]Gómez J E, Guillén M, Butera A and Albaugh N P 2016 High performance electronic device for the measurement of the inverse spin Hall effect Rev. Sci. Instrum. 87 024705 [25]Velázquez Rodriguez D, Gómez J E, Alejandro G, Félix L A, Vvan Landeghem M, Goovaerts E and Butera A 2020 Relaxation mechanisms in ultra-low damping Fe80Co20 thin films J. Magn. Magn. Mater. 504 166692 [26]Coey J M D 2010 Magnetism and Magnetic Materials 2nd edn (Cambridge University Press) [27]Gilbert T L 2004 A phenomenological theory of damping in ferromagnetic materials IEEE Trans. Magn. 40 3443–9 [28]Smit J and Beljers H G 1955 Philips res Rep 10 92 [29]Rio S M, Pomar A, Balcells L L, Bozzo B, Frontera C and Martínez B 2020 Temperature dependence of spin pumping and inverse spin Hall effect in permalloy/Pt bilayers J. Magn. Magn. Mater. 500 166319 [30]Getzlaff M 2008 Fundamentals of Magnetism (Springer) pp 98–99 [31]Pelzl J, Meckenstock R, Spoddig D, Schreiber F, Pflaum J and Frait Z 2003 Spin-orbit-coupling effects on g-value and damping factor of the ferromagnetic resonance in Co and Fe films J. Phys.: Condens. Matter 15 S451 [32]Arias R and Mills D L 1999 Extrinsic contributions to the ferromagnetic resonance response of ultrathin films Phys. Rev. B 60 7395 [33]Hurben M J and Patton C E 1998 Theory of two magnon scattering microwave relaxation and ferromagnetic resonance linewidth in magnetic thin films J. Appl. Phys. 83 4344–65 [34]Zakeri K et al 2007 Spin dynamics in ferromagnets: Gilbert damping and two-magnon scattering Phys. Rev. B 76 104416 [35]Butera A, Weston J L and Barnard J A 2004 Ferromagnetic resonance of epitaxial Fe81Ga19 (110) thin films J. Magn. Magn. Mater. 284 17–25 [36]Fermin J R, Azevedo A, De Aguiar F M, Li B and Rezende S M 1999 Ferromagnetic resonance linewidth and anisotropy dispersions in thin Fe films J. Appl. Phys. 85 7316–20 [37]Butera A, Gómez J, Weston J L and Barnard J A 2005 Growth and magnetic characterization of epitaxial Fe81Ga19/MgO (100) thin films J. Appl. Phys. 98 033901 [38]Gómez J and Butera A 2004 Ferromagnetic resonance line width in Co -SiO granular films Physica B 354 145–8 [39]Schoen M A W, Shaw J M, Nembach H T, Weiler M and Silva T J 2015 Radiative damping in waveguide-based ferromagnetic resonance measured via analysis of perpendicular standing spin waves in sputtered permalloy films Phys. Rev. B 92 184417 [40]Zhu L, Ralph D C and Buhrman R A 2019 Effective spin-mixing conductance of heavy-metal-ferromagnet interfaces Phys. Rev. Lett. 123 057203 [41]Deorani P and Yang H 2013 Role of spin mixing conductance in spin pumping: enhancement of spin pumping efficiency in Ta/Cu/Py structures Appl. Phys. Lett. 103 232408 [42]Tokaç M, Bunyaev S A, Kakazei G N, Schmool D S, Atkinson D and Hindmarch A T 2015 Interfacial structure dependent spin mixing conductance in cobalt thin films Phys. Rev. Lett. 115 056601 [43]Mankovsky S, Ködderitzsch D, Woltersdorf G and Ebert H 2013 First-principles calculation of the Gilbert damping parameter via the linear response formalism with application to magnetic transition metals and alloys Phys. Rev. B 87 014430 [44]Guillemard C, Petit-Watelot S, Andrieu S and Rojas-Sánchez J C 2018 Charge-spin current conversion in high quality epitaxial Fe/Pt systems: isotropic spin Hall angle along different in-plane crystalline directions Appl. Phys. Lett. 113 262404
Número de Identificación:10.1088/1361-6463/ad5b6d
Materias:Física
Divisiones:Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Ciencias de materiales > Resonancias magnéticas
Código ID:1287
Depositado Por:Marisa G. Velazco Aldao
Depositado En:12 Sep 2024 14:35
Última Modificación:13 Sep 2024 09:58

Personal del repositorio solamente: página de control del documento