Transporte de carga y espín en grafeno

Guzmán Arellano, Robert Mikhail (2010) Transporte de carga y espín en grafeno. Maestría en Ciencias Físicas, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
14Mb

Resumen en español

En este trabajo se exponen inicialmente las herramientas usadas en el estudio de las cintas de grafeno con condiciones de borde tipo zig-zag (ZGNR), siendo estos cálculos analíticos de enlace fuerte y métodos recursivos de las funciones de Green. Usamos ZGNR porque tienen estados electrónicos localizados en los bordes de la cinta (estados de borde). Luego se analizaron las propiedades de las bandas de energía, densidad de estados y transmisión en ZGNR. Después adicionamos las interacciones electrón-electrón usando la interacción local de Hubbard en campo medio. Los resultados indican que los estados de borde permiten que el flujo de carga eléctrica esté separado en dos caminos dejando un agujero de carga en medio de la cinta, concluyendo que los ZGNR pueden ser usados en interferometría, este resultado es la motivación del estudio del transporte en ZGNR. Luego estudiamos las distintas fases magnéticas en ZGNR, calculando la energía del estado fundamental del ZGNR y su distribución electrónica en distintas fases a distintos dopajes electrónicos. En este punto concluimos que la ocupación parcial de los estados de borde es responsable de las distintas fases magnéticas. Por ultimo, estudiamos el transporte eléctrico a través de pozos de potencial, se encontró que el grafeno inmerso en un pozo de potencial modifica su distribución electrónica en carga y espín, permitiendo la existencia de regiones con orden magnético, formándose paredes de dominio. Estas distribuciones generan cambios bruscos en la distribución electrónica, permitiendo distintos comportamientos en el transporte eléctrico para cada espín.

Resumen en inglés

In this work, in the beginning we expose the tools used in the study of graphene nanoribbons with conditions of zigzag shaped border (ZGNR), these are analytical calculations of tight binding and recursive methods of the Green functions. We used ZGNR because they have electronic states located in the nanoribbon borders (edge states). Then, we analyzed the properties of the bands of energy, density of states and transmission in ZGNR. After that, we included the electron-electron interactions using the Hubbard local interaction in the mean field. The results indicate that the edge states allow that the electric charge flux is separated in two ways leaving a hole of charge in the middle of the nanoribbon, and we conclude that the ZGNR may be used in interpherometry; this result is the motivation of this study of the transport in ZGNR. Afterwards, we studied the different magnetic phases in ZGNR, calculating the energy of the fundamental state of the ZGNR and its electronic distribution in different phases to different electronic dopings. In this point we conclude that the partial occupation of the edge states is responsible of the different magnetic phases. Finally, we study the electric transport by means of potential wells.We found that the graphene immerse in a potential well modifies its electronic distribution in charge and spin, allowing the existence of regions with magnetic order, forming domain walls. These distributions generate strong changes in the electronic distribution, allowing different behaviors in the electric transport for each spin.

Tipo de objeto:Tesis (Maestría en Ciencias Físicas)
Palabras Clave:Espín; Spin; Densidad electrónica; Electron density; Magnetismo; Magnetism; Antiferromagnetismo; Antiferromagnetism; Cintas de grafeno
Referencias:[1] Graphene: Andrey K. Geim and Allan H. MacDonald. Physics Today, vol. 60, issue 8, p. 35. Exploring carbon flatland. [2] Xinglan Liu, Jeroen B. Oostinga, Alberto F. Morpurgo and Lieven M. K. Vandersypen1. Phys. Rev. B 80, 121407(R) (2009) [4 pages] Electrostatic confinement of electrons in graphene nanoribbons. [3] Supriyo Datta. Electronic Transport in Mesoscopic Systems. Cambridge University Press 1995. [4] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A.K. Geim. Rev. Mod. Phys. 81, 109–162 (2009). The electronic properties of graphene. February 29, 2008. [5] R. Saito, G. Dresselhaus, M. S. Dresselhaus. Physical properties of Carbon Nanotubes. Imperial College Press 2004. [6] Giuseppe Grosso, Giuseppe Pastori Parravicini. Solid State Physics. [7] Gonzalo Usaj. Phys. Rev. B 80, 081414(R) (2009) [4 pages] Edges states interferometry and spin rotations in zig zag graphene nanoribbons. [8] Pekka Kozkinen, Sami Malola, Hannu H´akkinen. Phys. Rev. B 80, 073401(2009) [3 pages] Evidence for graphene edges beyond zig zag and armchair. [9] Pekka Kozkinen, Sami Malola, Hannu H´akkinen. Phys. Rev. Lett. 101,115502 (2008) [4 pages] Self-Passivating Edge Reconstructions of Graphene. [10] L. Brey, H. A. Fertig. Phys. Rev. B 73, 235411(2006) [5 pages] Electronic states of graphene nanoribbons studied with the Dirac equation. [11] K. Sasaki, S. Murakami. R. Saito. Appl. Phys. Lett. 88, 113110(2006) [3 pages] Stabilization mechanism of edge states in graphene. [12] A. R. Akemerov, C. W. J. Beenakker. Phys. Rev. B 77, 085423(2008) [10 pages] Boundary conditions for Dirac fermions on a terminated honeycomb lattice. [13] Geunsik Lee, Kyeongjae Cho. Phys. Rev. B 79, 165440(2009) [12 pages] Electronic structures of zigzag graphene nanoribbons with edge hydrogenation and oxidation. [14] Hosik Lee, Young-Woo Son, Noejung Park, Seungwu Han, Jaejun Yu. Phys. Rev. B 72, 174431(2005) [8 pages] Magnetic ordering at the edges of graphitic fragments: Magnetic tail interactions between. [15] Oded Hod, Ver´onica Barone, Juan E. Peralta, Guztavo E. Scuseria. Nano Letters 2007 Vol. 7, No.8 2295-2299 Enhanced Half-Metallicity in Edge-Oxidized Zigzag Graphene Nanoribbons. [16] Shuhei Nakakura, Yuki Nagai, Daijiro Yoshioka. J. Phys. Soc. Jpn. 78 (2009) 065003 (2 pages). Uniform Current in Graphene Strip with Zigzag Edges. [17] Gordon W. Semenoff. Phys. Rev. Lett. 78 (2009) 065003 (4 pages). Quantum blockade and loop current induced by a single lattice defect in graphene nanoribbons. [18] Jie-Yun Yan, Ping Zhang, Bo Sun, Hai-Zhou Lu, Zhigang Wang, Suqing Duan and Xian- Geng Zhao. Phys. Rev. B 79, 115403 (2009) (5 pages). Condensed-Matter Simulation of a Three-Dimensional Anomaly. [19] Horacio M. Pastawski, Ernesto Medina. Revista Mexicana de Fisica, Vol. 47 S1 pag. 1-23 (2001). ‘Tight Binding’ methods in quantum transport through molecules and small devices: From the coherent to the decoherent description. [20] Young-Woo Son, Marvin L. Cohen, and Steven G. Louie. Nature Vol 444, 16 November 2006, Pages 347-349. Half-metallic graphene nanoribbons. [21] Hosik Lee, Young-Woo Son, Noejung Park, Seungwu Han, and Jaejun Yu Phys. Rev. B 72, 174431 (2005) [8 pages] Magnetic ordering at the edges of graphitic fragments: Magnetic tail interactions between the edge-localized states. [22] J. Jung and A. H. MacDonald Phys. Rev. B 79, 235433 (2009). Carrier density and magnetism in graphene zigzag nanoribbons. [23] Leslie E. Ballentine. Quantum Mechanics: A modern development. 1998 by World Scientific Publishing Co. Pte. Ltd. [24] H. Ibach, H. L¨uth Solid-State Physics. 2003 Springer. [25] S. Doniach, E.H. Sondheimer. Green’s functions for solid state physicists. 1998 World Scientific Publishing Company. [26] U. Fano. Phys. Rev. Volume 124 Number 6. 1866-1878. Effects of configuration Interaction on Intensities and Phase Shifts.
Materias:Física > Electromagnetismo
Física > Física de materiales
Divisiones:Investigación y aplicaciones no nucleares > Física > Teoría de sólidos
Código ID:131
Depositado Por:Samanta Tello
Depositado En:05 Jul 2010 09:47
Última Modificación:05 Jul 2010 09:47

Personal del repositorio solamente: página de control del documento