Estudio numérico y experimental de almacenadores de hidrógeno basados en hidruros metálicos / Numerical and experimental study of hydrogen containers based on metal-hydrides

Melnichuk, Maximiliano (2010) Estudio numérico y experimental de almacenadores de hidrógeno basados en hidruros metálicos / Numerical and experimental study of hydrogen containers based on metal-hydrides. Tesis Doctoral en Ciencias de la Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
5Mb

Resumen en español

Entre los múltiples desafíos que representa el uso de hidrógeno como combustible alternativo a los combustibles fósiles, su almacenamiento es uno de los que más atención requiere. El almacenamiento de hidrógeno en aleaciones formadoras de hidruro se presenta como una posibilidad factible en vistas de las dificultades propias del almacenamiento del hidrógeno como gas o como líquido. En el presente trabajo de tesis se estudian los fenómenos asociados a absorción y desorción de hidrógeno en contenedores de hidruro metálico. Se hace énfasis en el fenómeno de transferencia de calor, principal limitante de los tiempos de carga y descarga de los almacenadores. Debido a la baja conductividad efectiva del hidruro en estado particulado, y a los valores de calor de formación asociados a la reacción con hidrógeno, se hace necesario facilitar el intercambio de calor entre el seno del hidruro y el medio exterior. Mediante estudios numéricos se optimizaron aletas internas conductoras de calor en función del tiempo de carga y del diámetro del almacenador. Se comprobó experimentalmente la validez de las simulaciones en dispositivos diseñados y construidos especialmente para tal fin. Se estudió el desempeño de un almacenador de hidruros prototipo, analizando la sensibilidad de la simulación respecto de los principales parámetros físicos de la aleación. La actividad experimental asociada a estos estudios requirió la elaboración de aleaciones mediante horno de arco y su caracterización metalúrgica. Para estudiar el comportamiento de absorción y desorción de las aleaciones a partir de la fase gaseosa se desarrolló un equipo volumétrico tipo Sieverts automatizado. Con estos elementos se propone un procedimiento de diseño de almacenadores de hidruros que define, dado un caudal de desorción y un diámetro de almacenador, la fracción volumétrica de material conductor de calor que se debe agregar para lograr un desempeño satisfactorio. Se comprobó que este procedimiento, que se desarrolló para aleaciones del tipo AB5, es aplicable a aleaciones con calores de formación del mismo orden.

Resumen en inglés

Among the multiple challenges associated with the use of hydrogen as an alternative to fossil fuels, the problem of its storage is the one that requires more attention. Given the difficulties inherent to the storage of compressed or liquified hydrogen, the use of hydride forming alloys as storage media could be a viable option. In the present work, the phenomena related to hydrogen absorption and desorption from metal hydride containers is studied. Emphasis is made on the heat transfer phenomenon, which is the main limiting factor of charge and discharge times. Due to the low effective thermal conductivity of the hydride powder and to the values of heat of formation associated to the reaction with hydrogen, it becomes necessary to facilitate the heat interchange between the hydride bed and the exterior. By means of numerical methods, heat conducting internal fins were optimized as a function of charge time and container diameter. The calculations were validated experimentally by using specially designed devices. The behavior of a hydride storage unit was studied, as well as the simulation sensitivity with respect to the main physical parameters of the alloy. The experimental activity related to these studies required the elaboration of alloys in an arc furnace and their metallurgical characterization. In order to study their hydrogen absorption and desorption behavior, an automatized Sieverts's type volumetric equipment was developed. With these elements, a design procedure for hydride storage containers is proposed, that defines the volumetric fraction of thermal conducting material, for a given desorption flow rate and container diameter.

Tipo de objeto:Tesis (Tesis Doctoral en Ciencias de la Ingeniería)
Palabras Clave:Almacenamiento de hidrógeno; Hidrogen storage; Hidruros; Hydrides; Contenedores; Containers; Transferencia de calor; Heat transfer; Aletas; Fins
Referencias:1-[Askri et al. 2003] “Study of two-dimensional and dynamic heat and mass transfer in a metal–hydrogen reactor”. Askri F., Jemni A., Ben Nasrallah S. International Journal of Hydrogen Energy 2003, Vol. 28, Issue 5, pag. 537-557. 2-[Askri et al. 2004] “Dynamic behavior of metal–hydrogen reactor during hydriding process”. Askri F., Jemni A., Ben Nasrallah S. International Journal of Hydrogen Energy 2004, Vol. 29, Issue 2, pag. 635- 647. 3-[Askri et al. 2004 b] “Prediction of transient heat and mass transfer in a closed metal–hydrogen reactor”. 4-Askri F., Jemni A., Ben Nasrallah S. International Journal of Hydrogen Energy 2004, Vol. 29, pag. 195- 208. 5-[Barkhordarian et al. 2004] “Effect of Nb2O5 content on hydrogen reaction kinetics of Mg” Barkhordarian G., Klassen T., Borman R. Journal of Alloys and Compounds 2004, Vol. 364, pag. 242- 246. 6-[Bouaricha et al. 2002] “Reactivity during cycling of nanocrystalline Mg-based hydrogen storage compounds”. Bouaricha S., Huot J., Guay D., Schulz R. International Journal of Hydrogen Energy 2002, Vol. 27, pag. 909 – 913. 7-[Bououdina et al. 2006] “Review on hydrogen absorbing materials—structure, microstructure, and thermodynamic properties”. Bououdina M., Grant D., Walker G. International Journal of Hydrogen Energy 2006, Vol. 31, Issue 2, pag. 177-182. 8-[Cohen y West 1983] “Intrinsic cycling degradation in LaNi5 and annealing procedures for re-formating the material” Cohen R., West W. Journal of Less-Common Metals 1983, Vol. 95, pag. 17-23. 9-[Corré et al. 1998] “Stabilization of high dissociation pressure hydrides of formula La1-xCexNi5 (x = 0-0,3) with carbon monoxide”. Corré S., Bououdina M., Fruchart D., Adachi G. Journal of Alloys and Compounds 1998, Vol. 275-277, pag. 99-104. 10-[Corso et al. 2005] “Magnesium based composite materials containing multicomponent alloys to store hydrogen from the gas phase”. Corso H., Molinas B., Peretti H. A. Proceedings of Hypothesis VI 2005, La Havana, Cuba. 11-[Cuscueta et al. 2007] “Influencia del Mg en las propiedades electroquímicas de la aleación base La-Ni para baterías de Ni-MH”. Cuscueta D., Melnichuk M., Ghilarducci A., Peretti H.A., Salva H. Acta del congreso Hidrógeno y Fuentes de Energías Sustentables de Energía (Hyfusen) 2007 – Posadas, Argentina. 12-[Cuscueta et al. 2008] “Mg influence in the electrochemical properties of La-Ni base alloy for Ni-MH batteries”. Cuscueta D. , Melnichuk M., Peretti H.A., Salva H.R., Ghilarducci A.A. International Journal of Hydrogen Energy 2008, Vol. 33, Issue 13, pag. 3566-3570. 13-[Challet et al. 2005] “Crystallographic and thermodynamic study of La0.55Y0.45Ni5–H2, a candidate system for hydrogen buffer tanks”. Challet S., Latroche M., Percheron-Guégan A., Heurtaux F. Journal of Alloys and Compounds 2005, Vol. 404-406, pag. 85-88. 14-[Dahou et al. 2007] “Measurement and modelling of kinetics of hydrogen sorption by LaNi5 and two related pseudobinary compounds”. Dhaou H, Askri F, Ben Salah M, Jemni A, Ben Nasrallah S, Lamloumi J. International Journal of Hydrogen Energy 2007, Vol. 32, Issue 5, pag. 576-587. 15-[Dantzer 1997] “Metal—hydride technology: A critical review.” Dantzer P. Topic in applied physics – hydrogen in materials III 1997, Vol. 73, pag. 297-340. 16-[De Piccoli et al. 2005] “Hydrogen storage in magnesium hydride doped with niobium and graphite” De Piccoli C., Dal Toé S., Lo Russo S., Maddalena A., Palade P., Saber A., Sartori S., Principi G. Proceedings of “H2-age: When, Where, Why” 2005, Pisa, Italia. 17-[Dehouche et al. 2002] “Cycling and thermal stability of nanostructured MgH2 – Cr2O3 composite for hydrogen storage“. Dehouche Z., Klassen T., Oelerich W., Goyette J., Bose T., Schulz R.. Journal of Alloys and Compounds 2002, Vol. 347, pag. 319–323. 18-[Dehouche et al. 2003] “Moisture effect on hydrogen storage properties of nanostructurated MgH2-VTi”. International Journal of Hydrogen Energy 2003, Vol. 28, pag. 983-988. 19-[Dehouche et al. 2005] “Hydride alloys properties investigations for hydrogen sorption compressor” Dehouche Z., Grimard N., Laurecelle F., Goyette J., Bose T.; Journal of Alloys and Compounds 2005, Vol. 399, pag. 224-236. 20-[Dehouche et al. 2008] “Effect of activated alloys on hydrogen discharge kinetics of MgH2 nanocrystals” Dehouche Z., Peretti H.A., Hamoudi S., Yoo Y., Belkacemi K. Journal of Alloys and Compounds 2008. Vol. 455, pag. 432-439. 21-[Demircan et al. 2005] “Experimental and theoretical analysis of hydrogen absorption in LaNi5–H2 reactors”. Demircan A., Demiralp M., Kaplan Y., Mat M., Veziroglu N. International Journal of Hydrogen Energy 2005, Vol. 30, Issue 13-14, pag. 1437-1446. 22-[DOE – Freedom car] sitio web: http://www.uscar.org/guest/view_team.php?teams_id=19. 23-[Ergenics] sitio web: http://www.ergenics.com/page4.htm 24-[Esquivel y Meyer 2007] “A comparison of the evolution during the mechanical alloying of both a MmNi5–Ni and a Mm–Ni mixtures: stages of milling and microstructural characterization”. Esquivel M., Meyer G. Journal of Alloys and Compounds 2007, Vol. 446-447, pag. 212-217. 25-[Fabing Li et al. 2007] “Hydrogenation properties of Mg-based composites prepared by reactive mechanical alloying”. International Journal of Hydrogen Energy 2007, Vol. 32, pag. 1855-1859. 26-[Feng et al. 2001] “Electrochemical behaviour of intermetallic-based metal hydrides used in Ni/metal hydride (MH) batteries: a review”. Feng F., Geng M., Northwood D. International journal of hydrogen energy 2001, Vol. 26, Issue 7, pag. 725-734. 27-[Fernández et al. 1998] Hydrogen absorption kinetics of MmNi4,7Al0,3. Fernández G., Rodríguez D., Meyer G., International Journal of Hydrogen Energy 1998, Vol. 23-12, pag. 1193-1196. 28-[Forker 1971] “Cinética electroquímica”. Forker W. 1971, Ed. Eudeba, Buenos Aires, pag.43. 29-[García 1998] “Acumuladores electroquímicos. Fundamentos nuevos desarrollos y aplicaciones”. García J. 1998, Ed. McGraw-Hill, Buenos Aires, pag. 28. 30-[Goodell et al. 1980] “Kinetics and dynamic aspects of rechargeable metal hydrides”. Goodell P., Sandrock G., Huston L. Journal of Less Common Metals 1980, Vol. 73, pag. 135–142. 31-[Goodell 1984] “Stability of rechargeable hydriding alloys during extended cycling”. Goodell P. Journal of Less-Common Metals 1984, Vol. 99, pag. 1-14. 32-[Gross y Carrington 2008] “Best practices for the characterization of hydrogen storage materials”. Gross K., Carrington R. National Renewable Energy Laboratory 2008. sitio web: ttp://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/bestpractices_h2_storage_materials.pdf 33-[Güvendiren et al. 2004] “Effects of additives on mechanical milling and hydrogenation of Mg powders”. Güvendiren M., Bayörü E., Östúrk T. International Journal of Hydrogen Energy 2004, Vol. 29, pag. 491-496. 34-[H-Solid] sitio web: http://www.hydrogencomponents.com/hydride.html 35-[Hahne y Kalleweit 1998] “Thermal conductivity of metal hydride materials for storage of hydrogen: experimental investigations”. Hahne E., Kalleweit J. International Journal of Hydrogen Energy 1998, Vol. 23, Issue 2, pag. 107-114. 36-[Hardy y Anton 2009] “Hierarchical methodology for modeling hydrogen storage systems. Part I: scoping models”. Hardy B., Anton D. International Journal of Hydrogen Energy 2009, Vol. 34, pag. 2269-2277. 37-[Heung 2003] “Using metal hydride to store hydrogen”. Heung L. sitio web: http://sti.srs.gov/fulltext/ 38-[Horizon] sitio web: http://www.horizonfuelcell.com/file/MH-10_Metal_Hydride_Canister_manual.pdf 39-[Hout et al. 1999] “Structural study and hydrogen sorption kinetics of ball milling magnesium hydride” Hout J., Liang G, Boily S., Van Neste A., Shultz R., Journal of Alloys and Compounds 1999, Vol. 292, pag. 247-252. 40-[Incropera y Dewitt 1996] “Fundamentos de transferencia de calor”, 4ta Edición. Incropera F., Dewitt D. 1996, Ed. Prentice Hall Hispanoamericana, Sección 3.5.2. 41-[Iosub et al. 2006] “Optimisation of MmNi5-xSnx (Mm = La, Ce, Nd and Pr; 0,27 < x < 0,5) composition as hydrogen storage materials”. Iosub V., Latroche M., Joubert J-M., Percheron-Guégan A. International Journal of Hydrogen Energy 2006, Vol. 31, pag. 101-108. 42-[IRAM-ISO TR 15916] Norma Argentina IRAM-ISO TR 15916:2007 43-[ISO/TS 16111] “Dispositivos para almacenamiento de gases transportables – Hidrógeno absorbido en un hidruro metálico reversible”. Norma ISO/TS 16111 2006. en revisión (Noviembre 2009). 44-[Ivey y Northwood 1983] “Storing energy in metal hydrides: a review of the physical metallurgy”. Ivey D., Northwood D. Journal of Materials Science 1983, Vol. 18, pag. 321-347. 45-[Jurczyk et al. 1999] “Mechanically alloyed MmNi5-type materiales for metal hydride electrodes”. Jurczyk M., Rajewski W., Majchrzcki W., Wójcik G., Journal of Alloys and Compounds 1999, Vol. 290, pag. 262-266. 46-[JSV] sitio web: http://www.jsw.co.jp/en/product/technology/msb/msb_02_02_e.htm 47-[Karty et al. 1979] “Hydriding and dehydriding kinetics of Mg in a Mg/Mg2Cu eutectic alloy: pressure sweep method”. Katy A., Grunzweig-Genossar J., Rudman P, Journal of Applyed Physics 1979, Vol. 50, Issue 11, pag. 7200-7209. 48-[Klyamkin et al. 1995] “Thermodynamic particularities of some CeNi5-based metal hydride systems with high dissociation pressure”. Klyamkin S., Verbetsky V., Karih A. Journal of Alloys and Compounds 1995, Vol. 231, pag. 475-482. 49-[Kumar Phate et al. 2007] “Simulation of transient heat and mass transfer during hydrogen sorption in cylindrical metal hydride beds”. Kumar Phate A., Prakash Maiya M., Srinivasa Murthy S. International Journal of Hydrogen Energy 2007, Vol. 32, Issue 12, pag. 1969-1981. 50-[Laurencelle et al. 2006] “Hydrogen sorption cycling performance of LaNi4.8Sn0.2”. Laurencelle F., Dehouche Z., Goyette J. Journal of alloys and compounds 2006, Vol. 424, Issue 1-2, pag. 266-271. 51-[Laurencelle y Goyette 2007] “Simulation of heat transfer in a metal hydride reactor with aluminiun foam.” Laurencelle F., Goyette J., International Journal of Hydrogen Energy 2007, Vol. 32, pag. 2957- 2964. 52-[Liang et al. 1998] “Mechanical alloying and hydrogen absorption properties of the Mg–Ni system”. Liang G., Huot J., Boily S., Van Neste A., Shultz R. Journal of Alloys and Compounds 1998, Vol. 292, Issue 1-2, pag. 247-252. 53-[MacDonald y Rowe 2006] “Impacts of external heat transfer enhancements on metal hydride storage tanks”. MacDonald B., Rowe A.. International Journal of Hydrogen Energy 2006, Vol. 31, pag. 1721 – 1731. 54-[Maddalena et al. 2006] “Study of Mg-based materials to be used in a functional solid state hydrogen reservoir for vehicular applications”. Maddalena A., Petris M., Palade P., Sartori S., Principi G., Settimo E., Molinas B., Lo Russo S. International Journal of Hydrogen Energy 2006, Vol. 31, pag. 2097-2103. 55-[Matsevity et al. 2007] “Development and creation of an effective design of a metal-hydride hydrogen accumulator”. Matsevity M., Solovey V., Chernaya N. Proceedings of World Hydrogen Technlogies Convention 2007, Montecatini, Italia. 56-[Mayer et al. 1987] “Heat and mass transfer in metal hydride reaction beds: experimental and theoretical results”. Mayer U., Groll M., Supper W. Journal of Less-Common Metals 1987, Vol. 131, pag. 235–244. 57-[Mc Killip et al. 1992] “Stress analysis of hydride vessels used for tritium storage”. McKillip T., Banister C., Clark E. Fusion Technology 1992. Vol.21, pag. 1011. 58-[Melnichuk et al. 2006] “Caracterización de un prototipo de almacenador de hidrógeno de pequeña escala basado en hidruro metálico”. Melnichuk M., Andreasen G., Peretti H. A. Actas del congreso CONAMET-SAM 2006 – Santiago de Chile, Chile. 59-[Melnichuk et al. 2007] “Study and characterization of a metal hydride container”. Melnichuk M., Andreasen G., Corso H., Visintin A., Peretti H. International Journal of Hydrogen Energy 2008, Vol. 33, Issue 13, pag. 5371-5375. 60-[Mendelson et al. 1977] “LaNi5-xAlx is a versatil alloy for metal hydride applications”. Mendelsohn M., Gruen D., Dwight A. Nature 1997, Vol. 269, pag. 45-47. 61-[Mosher et al. 2007] “Design, fabrication and testing of NaAlH4 based hydrogen storage systems”. Mosher D., Arsenault S., Tanga X., Anton D.. Journal of Alloys and Compounds 2007. Vol. 446-447, pag. 707-712. 62-[Mungole y Balasubramaniam 2000] “Effect of hydrogen cycling on the hydrogen storage properties of MmNi4.2Al0.8”. Mungole M., Balasubramaniam R. International Journal of Hydrogen Energy 2000, Vol. 25, pag. 55-60. 63-[Oelerich et al. 2001] “Oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials”. W. Oelerich, T. Klassen, R. Bormann, Journal of Alloys and Compounds 2001, Vol. 325, pag. 237-242. 64-[Oelerich et al. 2001 b] “Comparison of the catalitic effect of V, V2O5, VN and VC on the hydrogen sorption of nanocrystalline Mg”. Oelerich W., Klassen T., Bormann R., Journal of Alloys and Compounds 2001, Vol. 322, pag. L5-L9. 65-[Ovonic] sitio web: http://www.ovonic-hydrogen.com/products/portable.htm 66-[Palcan] sitio web: http://www.palcan.com/s/Products.asp 67-[Pragma] sitio web: http://www.fuelcellmarkets.com/3,1,28270,17,28285.html 68-[Principi et al. 2006] “Investigations of light metal hydrides at Padova, the city of San Antonio” Principi G., Palade P., Sartori S., Maddalena A., Agresti F., Lo Russo S., Molinas B., Peretti H. A. Proceedings of TMS 135th Annual Meeting & Exhibition 2006, Seattle, Estados Unidos. 69-[Rifkin 2002] “La economía del hidrógeno. La creación de la red energética mundial y la redistribución del poder en la tierra”. Rifkin J. Editorial Piados, Barcelona, España, 2002, ISBN 84-493-1280-9. 70-[Rodríguez et al. 1996] “Substitución parcial de níquel por aluminio en aleaciones mischmetal-niquel para compresión y purificación de hidrógeno”. Rodríguez D., Peretti H. A., Meyer G. Revista virtual Materia, ISSN 1517-7076, 1996 Vol. 1, No 2. sito web: http://www/materia.coppe.ufrj.br/notimat/Vol11N2/artigos.html 71-[Rodríguez 2000] “Estudio y optimización de aleaciones almacenadoras de hidrógeno”. Rodríguez D., Tesis doctoral Instituto Balseiro, Universidad Nacional de Cuyo – C.N.E.A. 2000, pag. 52. 72-[Ruiz 2009] “Almacenamiento electroquímico de energía en aleaciones formadoras de hidruro”. Ruiz F. Tesis doctoral Instituto Balseiro, Universidad Nacional de Cuyo – C.N.E.A. 2009, pag. 41. 73-[Sakai et al. 1995] “Chapter 142 Rare earth intermetallics for metal-hydrogen batteries”. Sakai T., Matsuoka M. and Iwakura C. Handbook on Physics and Chemistry of Rare Earths, Elsevier Science B.V. 1995, Vol. 21, pag. 133-178. 74-[Sandia files] sitio web: http://hydpark.ca. sandia.gov/Reference_introgrn.html#top 75-[Sandrock y Goodell 1984] “Cyclic life of metal hydrides with impure hydrogen: overview and engineering considerations” Sandrock G., Goodell P. Journal of Less-Common Metals 1984, Vol. 104, pag. 159-173. 76-[Sakintuna et al. 2007] “Metal hydride materials for solid hydrogen storage: a review” Sakintuna B., Lamari-Darkrim F., Hirscher M. International Journal of Hydrogen Energy 2007, Vol. 32, pag. 1121 – 1140. 77-[Sarma et al. 2001] “On the mechanically pulverized MmNi4,6Fe0,4 as a viable hydrogen storage material”. Saram V., Sai Raman S., Davidson D., Srivastava O. International Journal of Hydrogen Energy 2001, Vol. 26, pag. 231-236. 78-[Schlapbach et al. 1994] Schlapbach L., Meli F., Züttel A., Intermetallic compounds, Westbrook J., Freischer R. Ed. Jhon Wiley & Sons 1994, Vol. 2, pag. 475-483. 79-[Schmidtchen y Aprea 2008] “Seguridad para Sistemas de Hidrógeno”. Schmidtchen U., Aprea J. Curso de postgrado 2008. UTN – IEDS/CNEA, Buenos Aires, Argentina. 80-[Seo et al. 2003] “Effect of vanadium content on electrochemical properties of La-based AB5-type metal hydride electrodes”. Chan-Yeol Seo, Seung-Jun Choi, Jeon Choi, Choong-Nyeon Park, Jai-Young Lee. International Journal of Hydrogen Energy 2003, Vol. 28, pag. 967-975. 81-[Shan et al. 2007] “Improved durability of hydrogen storage alloys”. Shan X., Payer J., Wainright J. Journal of Alloys and Compounds 2007, Vol. 430, pag. 262-268. 82-[Shang et al. 2004] “Mechanical alloying and electronic simulations of (MgH2+M) systems (M=Al, Ti, Fe, Ni, Cu and Nb) for hydrogen storage”. Shang C., Bououdina M., Song Y., Guo Z., International Journal of Hydrogen Energy 2004, Vol. 29, pag. 73-80. 83-[Shang y Guo 2007] “Structural and desorption characteristics of milled (MgH2 + Y,Ce) powders mixtures for hydrogen energy”. Shang C., Guo Z. International Journal of Hydrogen Energy 2007, Vol. 32, pag. 2920-2925. 84-[Singh et al. 2004] “Studies on improvement of hydrogen storage capacity of AB5 type: MmNi4,6Fe0,4 alloy”. Singh A., Singh B., Davidson D., Srivastava O. International Journal of Hydrogen Energy 2004, Vol. 29, pag. 1151-1156. 85-[Solid-H] sitio web: http://www.hydrogencomponents.com/stor.html 86-[Srivastava et al. 2000] “On the synthesis and characterization of some new AB5 type MmNi4,3Al0,3Mn0,4, LaNi5-xSix (x = 0,1; 0,3; 0,5) and Mgx wt% CFMmNi5y wt% Si hydrogen storage materials” Srivastava S., Sai Raman S., Singh B., Srivastava O. International Journal of Hydrogen Energy 2000, Vol. 25, pag. 431-440. 87-[Taha 2004] “Investigación de Operaciones”. Taha H. 5ta edición 2004. Ed. Alfaomega. Secciones 20.1.1, 20.1.2. 88-[Triaca 2005] “Energía electroquímica limpia”. Triaca W. Escuela José A. Balseiro 2005. I.B. (UNCCNEA). Bariloche, Argentina. 89-[Uchida et al. 2002] “Development of a metal hydride tank for quick charge”. Uchida H., Oyakawa K., Watanabe S. Proceedings of 14th World Hydrogen Energy Conference 2002, Montreal, Canada. 90-[Valoen 2000] “Metal hydrides for rechargeable batteries”. Valoen L. Thesis Norwegian University of Science and Technology 2000, pag. 37. [Verga et al. 2007] “Experimental tests on high temperature hydride hydrogen storage system”. Verga M., Armanasco F., Guardamagna C., Valli C., Bianchin A., Lo Russo S., Maddalena A., Principi G. Proceedings of World Hydrogen Technlogies Convention 2007, Montecatini, Italia. 91-[Wang et al. 2004] “Microstructure and hydrogen sorption properties of Mg-Ni/MmM5 multi-layer by magnetron sputtering”. Wang H., Ouyang L., Zeng M., Zhu M. International Journal of Hydrogen Energy 2004, Vol. 29, pag. 1389-1392. 92-[Wang et al. 2006] “Hydrogen storage alloys for high-pressure suprapure hydrogen compressor”. Wang X., Chen R., Zhang Y., Chen C., Wang Q. Journal of Alloys and Compounds 2006, Vol. 420, pag. 322- 325. 93-[Willems 1984] “Metal hydride electrodes stability of LaNi5-related compounds”. Willems J. Phillips Journal of research 1984, pag. 18. 94-[Zhang 2004] “Processing of advanced materials using high-energy mechanical milling”. Zhang D. Progress in Materials Science 2004, Vol. 49, pag. 537-560. 95-[Züttel 2003] “Materials for hydrogen storage”. Züttel A. Materials Today 2003, pag 24-33. 96-[Züttel et al. 2005] “Hydrogen as an Energy Carrier”. Züttel A., Schlapbach L., Borgschulte A. Ed. John Wiley & Sons Inc 2005, ISBN-10: 3527308172 ISBN-13: 9783527308170.
Materias:Ingeniería
Metalurgia
Divisiones:Aplicaciones de la energía nuclear > Tecnología de materiales y dispositivos > Metalurgia
Código ID:132
Depositado Por:Samanta Tello
Depositado En:02 Jul 2010 13:34
Última Modificación:05 Jul 2010 10:59

Personal del repositorio solamente: página de control del documento