Simulaciones atomísticas de materiales nanoestructurados bajo condiciones extremas / Atomistic simulations of nanostructured materials under extreme conditions.

Rodríguez Nieva, Joaquín (2010) Simulaciones atomísticas de materiales nanoestructurados bajo condiciones extremas / Atomistic simulations of nanostructured materials under extreme conditions. Maestría en Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
2547Kb

Resumen en español

Se estudiaron materiales nanoporosos bajo condiciones extremas de deformación y de radiación mediante simulaciones de dinámica molecular. En cuanto a la deformación plástica, se estudió la creación y dinámica de dislocaciones en oro y se obtuvieron las curvas de tensión-deformación y densidad de dislocaciones necesarias para los modelos continuos. La plasticidad del material es afectada por los nanoporos ya que facilitan la fluencia, aumenta el número de fuentes de dislocaciones y alteran el endurecimiento por deformación debido a la interacción de dislocaciones de diferentes poros. La velocidad de deformación es un parámetro importante, ya que modifica la generación y movimiento de dislocaciones. Se encontró que a mayores velocidades de deformación, mayores son las tensiones y deformación de fluencia, y también la densidad de dislocaciones alcanzada debido a que hay menor tiempo para mover y acomodar dislocaciones. En cuanto a la irradiación, se estudió el efecto de la porosidad durante el bombardeo por iones rápidos usando potenciales de interacción de Lennard-Jones. Se encontró que el número de átomos eyectados por ion no es afectado por la porosidad, contrariamente a lo que se usa en numerosos modelos. Para materiales con porosidades del 45% y temperaturas 15 veces superiores a las de fusión, el efecto de la irradiación es fuertemente localizado y superficial, sin observarse degradación del material debido a la disminución de la conductividad térmica. La geometría de los materiales nanoporosos tienen un efecto en las funciones de distribución de los átomos eyectados. Se estudió este efecto mediante simulaciones Monte Carlo.

Resumen en inglés

Nanoporous materials under extreme conditions of deformation and radiation were studied using molecular dynamics simulations. The creation and dynamics of dislocations in gold was studied, and stress-strain and dislocation density curves necesary for continuum models were obtained. Plasticity is affected by the nanopores. Fluency is achieved at lower stresses, the number of dislocation sources increases and the process of strain hardening is altered due to dislocation interaction. The speed of the deformation modifies the production and movemento of dislocations. At higher speeds, yield stress and strain is increased, and higher densities can be achieved due to the reduced time to move and accomodate dislocations. The effect of porosity was studied under irradiation of swift ions using Lennard-Jones potentials. It was found that the number of sputtered atoms is not affected by porosity, contraryto what is used in numerous models. For materials with 45% porosity and spike temperatures 15 times higher than the fusion temperature, the effect of irradiation is highly localized and superficial, and material degradation due to thermal conductivity reduction was not observed. The geometry of nanoporous materials has an effect on the distribution functions of the eyecta. This effect was using Monte Carlo simulations.

Tipo de objeto:Tesis (Maestría en Ingeniería)
Palabras Clave:Nanostructures; Nanoestructuras; Finite elecment method; Nanoscience; Nanociencia; Nanostructured materials; Materiales nanoestructurados; Molecular dynamics; Dinámica molecular
Referencias:[1] K.S. Kumar, H. Van Swygenhoven, and S. Suresh. Mechanical behaviour of nanocrystalline metals and alloys. Acta Materialia, 51:5743, 2003. [2] E.M. et al. Bringa. Ultrahigh strength in nanocrystalline materials under shock loading. Science, 309:1838, 2005. [3] M.A. Meyers and D.J. Mishra, A. Benson. Mechanical properties of nanocrystalline materials. Progress in Materials Science, 51:427, 2006. [4] M Samaras, P.M. Derlet, and H. et al. Van Swygenhoven. Computer simulation of displacement cascades in nanocrystalline ni. Physical Review Letters, 88:12505, 2002. [5] X. Li, Z. Xu, and R. Wang. In situ observation of nanograin rotation and deformation in nacre. Nanoletters, 6:2301, 2006. [6] Z.W. et al. Shan. Dislocation dynamics in nanocrystalline nickel. Physical Review Letters, 98:095502, 2007. [7] E.M. Bringa, A. Caro, and D. Farkas. Fivefold twin formation during annealing of nanocrystalline cu. Scripta Materialia, 59:1267, 2008. [8] Y.M. Wang, M.W. Chen, F. Zhou, and E. Ma. High tensile ductility in a nanostructures metal. Nature, 435:912–915, 2002. [9] Y.M. Wang, J. Li, A.V. Hamza, and T.W. Barbee Jr. Ductile crystallineamorphous nanolaminates. PNAS, 104:11155–11160, 2007. [10] L. Lu, Y.F. Shen, and X.H. et al. Chen. Ultrahigh strength and high electrical conductivity in copper. Science, 304:422, 2008. [11] J. Biener, A.M. Hodge, J.R. Hayes, C.A. Volkert, L.A. Zepeda-Ruiz, A.V. Hamza, and F.F. Abraham. Size effects on the mechanical behavior of nanoporous au. Nanoletters, 6:2379, 2006. [12] D. Schwen, C. Ronning, and H. Hofsa. Diamond Relat. Mater., 13:1032, 2004. [13] T. Bobek, S. Fackso, and H. Kurs. Temporal evolution of dot patterns during ion sputtering. Physical Review B, 68:085324, 2003. [14] J.P. Hirth and Lothe. Theory of dislocations. 1982. [15] B.D. Wirth, V. Bulatov, and T. Diaz de la Rubia. Atomistic simulation of stacking fault tetrahedra formation in cu. J. Nuc. Mat., 773:283–287, 2000. [16] S. et al. Van Petegen. Mat. Sci. Forum, 204:445–446, 2004. [17] M.F. Ashby and L.J. Gibson. Cellular Solids: Structure and Properties. Cambridge University Press, 1988. [18] J. Biener, A.M. Hodge, A.V. Hamza, L.M. Hsiung, and J.H. Satcher. Nanoporous gold: a high yield strengh material. Journal of Applied Physics, 97:024301, 2005. [19] J. Kotakoski, A.V. Krasheninnikov, and K.˜Nordlung. Energetics, structure and long-range interaction of vacancy-type defects in carbon nanotube: Atomistic simulations. Physical Review B, 71:245420, 2006. [20] M. Samaras, W. Hoffelner, and M. Victoria. Irradiation of pre-existing voids in nanocrystalline iron. J. Nucl. Mat., 50:352, 2006. [21] W. Voegeli, K. Albe, and H. Hahn. Nuclear Instruments and Methods B, 202:230–235, 2003. [22] M.J. Demkowicz, R.G Hoagland, and J.P. Hirth. Interface structure and radiation damage resistance in cu-nb multilayer nanocomposites. Physical Review Letters, 100:136102, 2008. [23] S. Takamura, N. Ohno, Dai Nishijima, and S. Kajita. Formation of nanostructured tungsten with arborescent shape due to helium plasma irradiation. Plasma and Fusion Research, 1:51, 2006. BIBLIOGRAF´IA 85 [24] T.A. Cassidy and R.E. Johnson. Monte carlo model of sputtering and other ejection processes within a regolith. Icarus, 176:499–507, 2005. [25] et al. Yamakov, V. Nature Materials, 45:1, 2002. [26] M.W. Chen, E. Ma, K.J. Hemker, H. Sheng, and X. Cheng. Deformation twinning in nanocrystalline aluminium. Science, 300:1275, 2003. [27] M.P. Allen and D.J. Tildesley. Computer Simulation of Liquids. Oxford University Press, 1987. [28] K.E. Sundman. Memoire sur le probleme de trois corps. Acta Mathematica, 36:105–179, 1912. [29] Q.D. Wang. The global solution of the n-body problem. Celestial Mechanics and Dynamical Astronomy, 50:73–88, 1991. [30] S.M. Foiles, M.I. Baskes, and M.S. Daw. Embedded-atom-method functions functions for the fcc metals cu, ag, au, ni, pd, pt and their alloys. Physical Review B, 33:7983–7991, 1986. [31] J.S. Stuart, A.B. Tutein, and J.A. Harrison. A reactive potential for hydrocarbons with intermolecular interactions. Journal of Chemical Physics, 112:64726486, 2000. [32] J. Tersoff. New empirical approach for the structure and energy of covalent systems. Phys. Rev. B, 37:69917000, 1988. [33] A. Strachan, E.M. Kober, A.C.T. van Duin, J. Oxgaard, and W.A. Goddard. Thermal decomposition of rdx from reactive molecular dynamics. Journal of Chemical Physics, 122:054502, 2005. [34] K. Chenoweth, A.C.T. van Duin, and W.A. Goddard. Reaxff reactive force field for molecular dynamics simulations of hydrocarbon oxidation. Journal of Physical Chemistry A, 112:1040, 2008. [35] K. Huang. Statistical Mechanics. John Wiley and Sons, 1963. [36] A. Lew, J.E. Marsden, M. Ortiz, and M. West. Variational time integrators. International Journal for Numerical Methods in Engineering, 60:153–212, 2004. [37] D. Cottrell and P.F. Tupper. Energy drift in molecular dynamics simulations. BIT Numerical Mathematics, 47:507–523, 2007. [38] L. Verlet. Computer ’experiments’ on classical fluids. i. thermodynamical properties of lennard-jones molecules. Physical Review, 159:98–103, 1967. [39] C.W. Gear. Numerical initial value problems in ordinary differential equations. Prentice-Hall, 1971. [40] L. Hairer, C. Lubich, and G. Wanner. Geometric numerical integration illustrated by the strmerverlet method. Acta Numerica, 12:399–450, 2003. [41] W.C. Swope, H.C. Andersen, P.H. Berens, and K.R. Wilson. A computer simulation mehotd for the calculation of equilibrium constants for the formation of physical clusters of molecules: applicarion to small water clusters. J. Chem. Phys, 76:637–49, 1982. [42] D.C. Rapaport. The Art of Molecular Dynamics Simulation. Cambridge University Press, 1995. [43] S.J. Plimpton. Fast parallel algorithms for shortrange molecular dynamics. J Comp Phys,, 117:1–19, 1995. [44] D. Hull and D.J. Bacon. Introduction to dislocations. Oxford University Press, 1989. [45] F.R.N. Nabarro. Dislocations in solids. Elsevier, 1979. [46] M.A. Meyers and K.K. Chawla. Mechanical Behavior of Materials. Prentice- Hall, 1998. [47] K. Kedarnath, M.R. Gungor, and D. Maroudas. Void nucleation in biaxially strained ultrathin films of face-centered cubic metals. Applied Physics Letters, 90:221907, 2007. [48] V.A. Lubarda, M.S. Schneider, D.H. Kalantar, B.A. Remington, and M.A. Meyers. Void growth by dislocation emission. Acta Materialia, 52:1397–1408, 2004. [49] E.T. Sepp˝al˝a, J. Belak, and R.E. Rudd. Onset of void coalescence during dynamic fracture of ductile metals. Physical Review Letters, 93:245503, 2004. [50] G.P. Potirniche, M.F. Horstemeyer, G.J.Wagner, and P.M. Gullett. A molecular dynamics study of void growth and coalescence in single crystal nickel. International Journal of Plasticity, 22:257–278, 2006. [51] K.J. Zhao, C.Q. Chen, Y.P. Shen, and T.J. Lu. Molecular dynamics study on the nano-void growth in face-centered cubis single crystal copper. Computational Materials Science, 46:749–754, 2009. [52] J. Segurado and J. Llorca. Discrete dislocation dynamics analysis of the effect of lattice orientation on void growth in single crystals (in press). International Journal of Plasticity, 2009. [53] J. Chen, Y. Xu, D. Chen, and J. Sun. Multi-scale method study of nano-void under the shock wave. Applied Physics A, 94:987–993, 2008. [54] J. Marian, J. Knap, and G.H. Campbell. A quasicontinuum study on nanovoid collapse under uniaxial loading in ta (in press). Acta Materialia, 56. [55] Y. Chen, Z. Lu, K.˜Nomura,W.Wang, R.K. Kalia, A.˜Nakano, and P. Vashishta. Interaction of voids and nanoductility in silica glass. Physical Review Letters, 99:155506, 2007. [56] S. Traiviratana, E.M. Bringa, D.J. Benson, and M.A. Meyers. Void growth in metals: Atomistic calculations. Acta Materialia, 2008. [57] C. Kelchner, S. Plimpton, and J.C. Hamilton. Dislocation nucleation and defect structure during surface indentation. Physical Review B, 58:11085–88, 1998. [58] H. Tsuzuki, P.S. Branicio, and J.P. Rino. Molecular dynamics simulation of fast dislocations in copper. Acta Materialia, 57:1834–1855, 2009. [59] D. Mordehai, I. Kelson, and G. Makow. Nonplanar core and dynamical behavior of screw dislocations in copper at high velocities. Physical Review B, 74:184115, 2006. [60] D.L. Olmsted, L.G. Hector, W.A. Curtin, and R.J. Clifton. Atomistic simulations of dislocation mobility in al, ni and al/mg alloys. Modelling and Simulation in Materials Science and Engineering, 13:371–388, 2005. [61] G. Kimminau, P. Erhart, E.M. Bringa, R. Remington, and J.S. Wark. Phonon instabilities in uniaxially compressed fcc metals as seen in molecular dynamics simulations. Physical Review B, 81:092102, 2010. [62] L. Davila, P. Erhart, E.M. Bringa, M.A. Mayers, and et al. Atomistic modeling of shocked induced void collapse in copper. Applied Physics Letters, 86:161902, 2005. [63] E.M. Bringa, S. Traiviratana, and M.A. Meyers. Void initiation in fcc metals: effects of loading orientation and nanocrystalline effects. Acta Materialia, 58:4458, 2010. [64] J. Schiotz, F.D. Di Tolla, and K.W. Jakobsen. Nature, 391:561, 1998. [65] H. Van Swygenhoven, M Spaczer, A. Caro, and D. Farkas. Physical Review B, 77:134108, 1999. [66] J. Schiotz and K.W. Jakobsen. Science, 301:1357, 2003. [67] S.R. Cooper, D.J. Benson, and V.F. Nesterenko. A numerical exploration of the role of void geometry on void collapse and hot spot formation in ductile materials. Int. J. Plasticity, 16:525, 2000. [68] W.H. Liu, X.M. Zhang, J.G. Tang, and Y.X. Du. Simulation of void growth and coalescence behavior with 3d crystal plasticity theory. Comp. Mat. Sci., 40:130, 2007. [69] P.J. Sanchez, A.E. Huespe, and J. Oliver. On some topics for the numerical simulation of ductile fracture. Int. J. Plasticity, 24:1009, 2008. [70] N.R. Barton, N.W. Winter, and J.E. Reaugh. Defect evolution and pore collapse in crystalline energetic materials. Modelling Simul. Mater. Sci. Eng., 17, 2009. [71] E.A. Mastny and J.J. de Pablo. Melting line of the lennard-jones system, infinite size, and full potential. The Journal of Chemical Physics, 127:104504, 2007. [72] D.A. Crowson, D. Farkas, and S.G. Corcoran. Mechanical stability of nanoporous metals with small ligament sizes. Scripta Materialia, 61:497– 499, 2009. [73] E.M. Bringa, R.E. Johnson, and L. Dutkiewicz. Molecular dynamics study of non-equilibrium energy transport from a cylindrical track. part ii: Spike model for sputtering yield. Nuclear Instruments and Methods un Physics Research B, 152:267–290, 1999. [74] R.S. Averback and T. Diaz de la Rubia. Displacement damage in irradiated metals and semiconductors. Sol. State Physics, 51:281, 1998. [75] E.M. Bringa and R.E. Johnson. Angular dependence of the sputtering yield from a cylindrical track. Nuclear Instruments and Methods un Physics Research B, 180:99–104, 2001.
Materias:Ingeniería > Medida de las propiedades mecánicas de los materiales
Divisiones:Aplicaciones de la energía nuclear > Tecnología de materiales y dispositivos > Mecánica computacional
Código ID:166
Depositado Por:Marisa G. Velazco Aldao
Depositado En:12 Aug 2010 11:12
Última Modificación:27 Mar 2012 14:20

Personal del repositorio solamente: página de control del documento