Elaboración, caracterización e hidruración de materiales para electrodos negativos de baterías

Cuscueta, Diego J. (2010) Elaboración, caracterización e hidruración de materiales para electrodos negativos de baterías. Tesis Doctoral en Ciencias de la Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF
Español
3775Kb

Resumen en español

Las baterías de Ni‐MH permiten acumular y liberar energía eléctrica mediante una re‐acción electroquímica donde los materiales activos que intervienen son el hidróxido de Níquel en el electrodo positivo, el cual está ampliamente estudiado, y una aleación metálica capaz de almacenar hidrógeno en forma de hidruro en el electrodo negativo. En esta tesis doctoral se planteó como objetivos generales estudiar nuevas aleaciones absorbedoras de hidrógeno y construir los dispositivos (prototipos de batería de Ni‐MH) y equipos (galvanostato) que permitan llevar a cabo los estudios necesarios, tanto en la inves‐tigación sobre los electrodos como en el desarrollo industrial de baterías. Para eso, primero se propuso aprender diversas técnicas que permitan fabricar y carac‐terizar un material y correlacionar sus resultados. Se estudió un compuesto obtenido luego de sinterizar la mezcla de polvos de la aleación LaNi_4,7Al_0,3 y Cu, utilizados como material activo y ligante mecánico respectivamente. Los resultados mostraron que el desempeño electroquímico fue afectado debido al prolongado tratamiento térmico, el cual provocó cam‐bios en la composición de la aleación debido a la interdifusión de Ni y Cu. Los resultados obtenidos por la técnica de espectroscopía mecánica permitieron comprobar la fragmenta‐ción de las partículas que se produce durante la hidruración electroquímica. Además se pudo apreciar el arrastre de dislocaciones con hidruros segregados en sus núcleos y la preci‐pitación y disolución de hidruros. Posteriormente se fabricó en forma satisfactoria y se estudió la aleación LmNi_4Co_0,31Mn_0,31Al_0,42 (Lm = Mischmetal rico en La). Esta aleación es interesante por su reducido contenido de Co, elemento que ha demostrado mejorar notablemente el desempeño electroquímico, pero que presenta una notable incidencia en el costo de la batería. Durante el estudio de la aleación también se optimizó el tamaño inicial de partícula para la preparación de los electrodos. Los resultados de la caracterización electroquímica mostraron que la alea‐ción estudiada presenta una capacidad de descarga superior a una típica aleación comercial, con la ventaja de su reducido contenido de Co, por lo que presenta atractivas perspectivas para ser utilizada en electrodos comerciales. También se estudió la influencia del Mg en la aleación La_1‐xMg_xNi_3,8Co_0,3Mn_0,3Al_0,4 (0<x<0,2), la cual también presenta reducido contenido de Co. El objetivo fue analizar si la sustitución de La por Mg mejoraba el desempeño electroquímico de la aleación. El agregado de Mg, a aleaciones madre previamente fabricadas, se realizó mediante la técnica de aleado por molienda mecánica. Este proceso originó un reducido tamaño inicial de partícula que determinó un buen comportamiento electroquímico en estabilidad cíclica y en “rate capabili‐ty”, pero con una reducida capacidad de descarga. Además, con el objetivo de probar diferentes materiales como almacenadores electro‐químicos de energía, se analizaron electrodos fabricados con carbón activado, el cual se destaca por su elevada área superficial, conocido proceso de fabricación y reducido costo. Se determinaron las características superficiales mediante la obtención del área superficial y la distribución del tamaño de los poros. Se realizó la caracterización electroquímica de diversos electrodos y se determinaron posibles aplicaciones y usos del carbón activado como almace‐nador de energía. Con el objetivo de analizar en forma controlada algunas variables propias de un desa‐rrollo comercial, se fabricaron prototipos de batería de Ni‐MH. Se estudiaron y caracterizaron 3 diseños, explicando las dificultades y errores que surgieron y la forma en que se resolvieron. Se presenta un dispositivo final que tiene la posibilidad de extender el estudio a variables que no se pueden considerar en una celda de laboratorio. Posteriormente se muestran resultados de pruebas realizadas en los prototipos desarrollados. Con la finalidad de determinar el desempeño como separador eléctrico de una batería de Ni‐MH, se estudiaron materiales de fibra de vidrio, construidos con distintas estructuras y tipos de vidrios. También se presentan los resultados de como afecta al desem‐peño electroquímico de una batería, la presión con que es compactado el sistema electrodos y separador. Se utilizan masas de diferente peso para regular con precisión la compactación entre electrodos. Además se caracterizó la presión interna de gases producidos en el prototi‐po durante sobrecargas, y se determinan condiciones de uso que optimizan el desempeño, manteniendo la seguridad del usuario. Por último y como parte de una necesidad en el laboratorio, pero también con posibles aplicaciones comerciales o didácticas, se desarrolla el diseño completo y la construcción de un galvanostato, equipo utilizado para estudiar el desempeño de baterías. El mismo es to‐talmente configurable mediante un software de PC, presenta 4 canales independientes de trabajo, 4 rangos de corriente (0,3 – 3A) y un amplio rango de lectura de potencial (‐10 a 10 V). Se describen en forma detallada las especificaciones técnicas.

Resumen en inglés

The Ni‐MH batteries are capable of storing and releasing energy by means of an elec‐trochemical reaction taking place between a positive Nickel hydroxide electrode, which has been already widely studied, and a hydrogen storage alloy in the negative electrode. The general aim of this doctoral thesis work was the search and study of new hydro‐gen storage alloys and the construction of devices (Ni‐MH battery prototypes) and equipments (galvanostat) that allows carry out the necessary studies, both in research of electrodes as in the industrial development of batteries. For this, it was first proposed to learn various techniques to fabricate and characterize a material and the correlation of their results. A compound obtained from the powder mixture sintering of the LaNi_4.7Al_0.3 alloy and Cu, as active material and mechanical binder respec‐tively, was studied. The results showed that the electrochemical performance was affected due to prolonged heating, which caused changes in the composition of the alloy due to in‐terdiffusion of Ni and Cu. The results of mechanical spectroscopy technique let show the fragmentation of the particles produced during the electrochemical hydriding. Results also show the dragging of dislocations with hydrides segregated in their nuclei, and precipitation and dissolution of hydrides. The LmNi_4Co_0.31Mn_0.31Al_0.42 alloy (Lm = La rich Mischmetal) was satisfactorily fabricated and studied. The attraction of this alloy is the low‐Co content, an element that had demostrated the significantly improvement of the electrochemical performance but has a significant impact on the cost of the battery. During the study of the alloy, the initial particle size for the preparation of the electrodes was also optimized. The electrochemical characteri‐zation showed that the studied alloy has a higher discharge capacity than a typical commercial one, with the advantage of low‐Co content, thus offering attractive prospects for its use in commercial electrodes. The Mg influence in the La_1‐xMg_xNi_3.8Co_0.3Mn_0.3Al_0.4 (0 <x <0.2) alloy, which has also low‐Co content, was studied. The aim was to analyze whether the substitution of La by Mg improves electrochemical performance of the alloy. The Mg addition over master alloys previously prepared was made by the mechanical alloying technique. This process produced a reduced initial particle size of the alloy, resulting in a good behavior in cyclic stability and high‐rate capability, but a reduced discharge capacity. Furthermore, with the aim of testing different materials for electrochemical storage of energy, the use of negative electrodes prepared with activated carbon was examined, which is notable for its high surface area, known manufacturing process and reduced cost. Surface characteristics of carbon were determined by means of surface area and pore size distribu‐tion measurements. The electrochemical characterization of different electrodes was performed, and the possible applications and uses of activated carbon as energy storage were determined. Ni‐MH battery prototypes were fabricated in order to analyze, in a controlled way, some variables of a commercial development. Three designs were studied and characterized, explaining the difficulties and errors found and how they were resolved. A final prototype with the possibility of extending the study to variables that cannot be considered in a labora‐tory cell is presented. Abstract Then, tests results obtained from the developed battery prototype are shown. Some fi‐ber glass materials, with different structures and glass types were studied in order to determine its performance acting as electrical separator of electrodes in a Ni‐MH battery. The prototype was also used to analyze how is affected the electrochemical performance of a battery due to the mechanical pressure used to assemble the system formed by the electrodes and the separator. The pressure was regulated in a precise way by means of masses of differ‐ent weight attached to the device. Moreover, the inner pressure of gases produced during overcharge was characterized and use rules were determined for optimize performance while maintaining user safety. Finally, the complete design and construction of a galvanostat was developed as a part of the laboratory requirements, but also with potential commercial and educational applica‐tions. The galvanostat is one of the main equipments used to study the performance of batteries. It is fully configurable by a PC software, presents 4 independent work channels, 4 current ranges (0.3 – 3 A) and a wide potential range (‐10 to 10 V). The technical specifica‐tions are described in detail.

Tipo de objeto:Tesis (Tesis Doctoral en Ciencias de la Ingeniería)
Palabras Clave:Activated carbon; Carbón activado; Negative electrode alloy; Aleaciones de electrodo negativo; Battery prototype; Prototipo de batería; Galvanostat; Galvanostato
Referencias:1 T. R. Crompton, “Battery Reference Book” 3rd Edition, Newnes, 2000. 2 R. Kötz, M. Carlen. Principles and applications of electrochemical capacitors. Electro‐chimica Acta 45 (2000) 2483–2498. 3 D. Linden y Reddy T.B. “Handbook of batteries”, 3rd Edition, McGraw‐Hill, 2002. 4 A. J. Bard, L. R. Faulkner. “Electrochemical Methods. Fundamentals and Applications”, 2nd Edition, John Wiley & Sons, Ney York, 2001. 5 http://www.panasonic.com/industrial/includes/pdf/Panasonic_NiMH_ChargeMethods.pdf. 6 R.H. Milocco, B.E. Castro. State of charge estimation in Ni–MH rechargeable batteries. J. of Power Sources 194 (2009) 558–567. 7 F. Feng,M. Geng, D.O. Northwood. Electrochemical behaviour of intermetallic‐based metal hydrides used in Ni/metal hydride (MH) batteries: a review. International Journal of Hydrogen Energy 26 (2001) 725–734. 8 http://www.hardingenergy.com/pdfs/3 Nickel Metal Hydride.pdf 9 W.K. Hu, M.M. Geng, X.P. Gao, T. Burchardt, Z.X. Gong, D. Noréus, N.K. Nakstad. Effect of long‐term overcharge and operated temperature on performance of rechargea‐ble NiMH cells. J. of Power Sources 159 (2006) 1478–1483. 10 http://www.steatite.co.uk/batteries/pdf/NiMH_technical.pdf. 11 H. A. Kiehne. “Battery technology handbook”, 2nd edition, Expert Verlag, Breckerfeld, Germany, 2003. 12 M.M. Moorthi. Field experience with large Nickel Metal Hydride (NiMH) batteries in stationary applications. IEEE 1‐4244‐0431 (2006) 112‐118. 13 http://www.mpoweruk.com/chemistries.htm 14 http://www.chemistryexplained.com/Di‐Fa/Electrochemistry.htm 15 N. Kuriyama, T. Sakai, H. Miyamura, H. Tanaka, H. Ishikawa, I. Uehara. Hydrogen storage alloys for nickel/metal‐hydride battery. Vacuum 47 (1996) 889‐892. 16 J.‐G. Park, H.‐Y. Jang, S.‐C. Han, P. S. Lee, J.‐Y. Lee.Hydrogen storage properties of TiMn2‐based alloys for metal hydride heat pump.Materials Science and Engineering A 329–331 (2002) 351–355 17 M. Ben Moussa, M. Abdellaoui, C. Khaldi, H. Mathlouthi, J. Lamloumi, A. Percheron Guégan, Effect of substitution of Mm for La on the electrochemical properties of the LaNi3.55Mn0.4Al0.3Co0.75 compound. J. of Alloys and Compounds, 399 (2005) 264–269. 18 M.V. Ananth, M. Raju, K. Manimaran, G. Balachandran, L.M. Nair. Influence of rare earth content on Mm‐based AB5 metal hydride alloys for Ni‐MH batteries—An X‐ray fluorescence study. J. of Power Sources 167 (2007) 228‐233. 19 Y. Zhang, X. Dong, G. Wang, S. Guo, X. Wang. Effect of substituting Mm with La on the electrochemical performances of Co‐free LaxMm1−x(NiMnSiAlFe)4.9 (x = 0–1) electrode al‐loys prepared by casting and rapid quenching. J. of Power Sources 140 (2005) 381–387. 20 P. Zhang , X. Wei, Y. Liu, J. Zhu, Z. Zhang, T. Zhao. The microstructures and electro‐chemical properties of non‐stoichiometric low‐Co AB5 alloys containing small amounts of Mg. J. of Alloys and Compounds, 399 (2005) 270–275. 21 F. Lichtenberg, U. Köhler, A. Fölzer, N.J.E. Adkins, A. Züttel. Development of AB5 type hydrogen storage alloys with low Co content for rechargeable Ni–MH batteries with re‐spect to electric vehicle applications. J. of Alloys and Compounds, 353–254 (1997) 570–573. 22 W. Hu, H. Lee, D. Kim, S. Jeon, J. Lee. Electrochemical behaviors of low‐Co Mm‐based alloys as MH electrodes. J. Alloys Compd 268 (1998) 261–265. 23 R. Tang, Z. Zhang, L. Liu, Y. Liu, J. Zhu, G. Yu. Study on a low‐cobalt Ml0.8Mg0.2Ni3.2Co0.3Al0.3 alloy. International J. of Hydrogen Energy 29 (2004) 851–858. 24 C Seo, S. Choi, J. Choi, C. Park, P. S. Lee, J. Lee. Effect of Ti and Zr additions on the characteristics of AB5‐type hydride electrode for Ni–MH secondary battery. Internatio‐nal Journal of Hydrogen Energy 28 (2003) 317 – 327 25 C. Seo, S. Choi, J. Choi, C. Park, J. Lee. Effect of V and Zr on the electrochemical proper‐ties of La‐based AB‐type 5 metal hydride electrodes. J. Alloys Compd. 351 (2003) 255–263. 26 Y. Chai, W. Yin, Zhiying Li, X. Zhang, M. Zhao, Structure and electrochemical characte‐ristics of Ti0.25‐xZrxV0.35Cr0.1Ni0.3 (x=0.05–0.15) alloys. Intermetallics 13 (2005) 1141–1145 27 K. Ramya, N. Rajalakshmi, P. Sridhar, B. Sivasankar.Electrochemical studies on the effect of nickel substitution in TiMn2alloys J. Alloys Compd 352 (2003) 315–324 28 M. Kandavel, S. Ramaprabhu.Hydriding properties of Ti‐substituted non‐stoichiometric AB2 alloys.J. Alloys Compd 381 (2004) 140–150. 29 B. Knosp, L. Vallet, Ph. Blanchard. Performance of an AB2 alloy in sealed Ni–MH batte‐ries for electric vehicles: quantification of corrosion rate and consequences on the battery performance. J. Alloys Compounds 293‐295 (1999) 770‐774 30 A. R. dos Santos, R. C. Ambrosio, E. A. Edson, A. Ticianelli. Electrochemical and struc‐tural studies on nonstoichiometric AB2‐type metal hydride alloys. International Journal of Hydrogen Energy 29 (2004) 1253‐1261. 31 K. Young, T. Ouchi, M.A. Fetcenko. Roles of Ni, Cr, Mn, Sn, Co, and Al in C14 Laves phase alloys for NiMH battery application. J. Alloys Compd 476, 1‐2 (2009) 774‐781. 32 M.A. Fetcenko, S.R. Ovshinsky, B. Reichman, K. Young, C. Fierro, J. Koch, A. Zallen, W. Mays, T. Ouchi. Recent advances in NiMH battery technology. J. Power Sources 165 (2007) 544–551. 33 T.‐K. Ying, X.‐P. Gao, W.‐K. Hu, F. Wu, D. Noréus. Studies on rechargeable NiMH batteries. International Journal of Hydrogen Energy 31 (2006) 525‐530. 34 R. Tang, Z. Zhang, L. Liu, Y. Liu, J. Zhu, G. Yu. Study on a low‐cobalt Ml0.8Mg0.2Ni3.2Co0.3Al0.3 alloy. International Journal of Hydrogen Energy 29 (2004) 851 – 858 35 F. Zhang, Y. Luo, J. Chen, R. Yan, L. Kang, J. Chen. Effect of annealing treatment on structure and electrochemical properties of La0.67Mg0.33Ni2.5Co0.5 alloy electrodes. J. Po‐ wer Sources 150 (2005) 247–254. 36 F. Li, K. Young, T. Ouchi, M.A. Fetcenko. Annealing effects on structural and electro‐chemical properties of (LaPrNdZr)0.83Mg0.17(NiCoAlMn)3.3 alloy. J. Alloys Compd, 471 (2009) 371‐377. 37 A. Ebrahimi‐Purkani, S.F. Kashani‐Bozorg. Nanocrystalline Mg2Ni‐based powders produced by high‐energy ball milling and subsequent annealing. J. Alloys Compd 456 (2008) 211–215. 38 Y.H. Zhang, X.P. Dong, G.Q. Wang, S.H. Guo, J.Y. Ren, X.L. Wang. Effects of rapid quenching on microstructures and electrochemical properties of La0.7Mg0.3Ni2.55Co0.45Bx (x=0−0.2) hydrogen storage alloy.Transactions of Nonferrous Metals Society of China, 16 (2006) 800‐807. 39 F.S. Wei, Y.Q. Lei, L.X. Chen, G.L. Lü, Q.D. Wang. Influence of rapid quenching on the microstructure and electrochemical properties of Co‐free LaNi4.92Sn0.33 hydrogen storage electrode alloy. International Journal of Hydrogen Energy 32 (2007) 2935‐2942. 40 J.J. Reilly, G.D. Adzic, J.R. Johnson, T. Vogt, S. Mukerjee, J. McBreen. The correlation between composition and electrochemical properties of metal hydride electrodes. J. Al‐loys Compd 293–295 (1999) 569–582 41 C. Suryanarayana. Mechanical alloying and milling. Progress in Materials Science 46, (2001) 1‐184. 42 http://www.sdm.buffalo.edu/scic/sem‐eds.html 43 http://www.vcbio.science.ru.nl/en/fesem/eds/ 44 http://www.science.smith.edu/departments/SEM/Manual99.pdf 45 B. D. Cullity. “Elements of x‐ray diffraction”, 2nd Edition, Addison‐Wesley, 1978. 46 http://epswww.unm.edu/xrd/xrdbasics.pdf 47 K. Petrov, A. Rostami, A. Visintin, S. Srinivasan. Optimization of Composition and Structure of Metal‐Hydride Electrodes. J. Electrochem Soc. 141 (1994) 1747. 48 J.E. Thomas, B.E. Castro, S. Real, A. Visintin. Behavior prediction of metal hydride electrodes in operation used in alkaline batteries. International Journal of Hydrogen Energy 33 (2008) 3475‐3479. 49 F.C. Ruiz. Almacenamiento electroquímico de energía en aleaciones formadoras de hidruro. Tesis Doctoral, 2009. 50 A.S. Nowick, B.S. Berry. Anelastic relaxation in crystalline solids. Academic Press. New York, 1972. 51 G. D’Anna, Sc.D. Thesis No. 980, EPFL, Institut Polytechnique de Lausanne, Switzer‐land, 1991. 52 L. O. Valøen. Metal Hydrides for Rechargeable Batteries. Tesis Doctoral, 2000. 53 K. Asano, Y. Hashimoto, T. Iida, M. Kondo, Y. Iijima. Hydrogen diffusion by substitu‐tion of aluminum and cobalt for a part of nickel in LaNi5‐H alloy. J. Alloys Compd. 395 (2005) 201‐208. 54 S. Pyun, J. Han, T. Yang. Performance evaluation of LaNi4.7Al0.3 and LaNi5 electrodes used as anodes in nickel/metal hydride secondary batteries by analysis of current tran‐sient. J. Power Sources 65 (1997) 9‐13. 55 F. Feng, D.O. Northwood. Effect of surface modification on the performance of negative electrodes in Ni/MH batteries. International Journal of Hydrogen Energy 29 (2004) 955– 960. 56 D.Y. Yan, S. Suda. Electrochemical characteristics of LaNi4.7Al0.3 alloy activated by alka‐line solution containing hydrazine. J. of Alloys and Compounds 223 (1995) 28‐31. 57 J. Liu, Y. Yang, P, Yu, Y, Li, H, Shao. Electrochemical characterization of LaNi5−xAlx (x = 0.1–0.5) in the absence of additives. J. of Power Sources 161 (2006) 1435–1442. 58 A. Merzouki, C. Cachet‐Vivier, V. Vivier, J.‐Y. Nédélec, L.T. Yu, N. Haddaoui, J.‐M. Joubert, A. Percheron‐Guégan. Microelectrochemistry study of metal‐hydride battery materials. Cycling behavior of LaNi3.55Mn0.4Al0.3Co0.75 compared with LaNi5 and its mo‐no‐substituted derivatives. J. of Power Sources 109 (2002) 281–286 59 M. Latroche, J. Rodríguez‐Carvajal, A. Percheron‐Guégan, F. Bourée‐Vigneron. Structu‐ral studies of LaNi4CoD6.11 and LaNi3.55Mn0.4Al0.3Co0.75D5.57 by means of neutron powder diffraction. J of Alloys and Compd 218 (1995) 64‐72. 60 A. Furrer, P. Fischer, W. Hilg, L. Schlapbach. Hydrides for Energy Storage. Proceedings of the International Symposium on Hydrides for Energy Storage, Geilo, 1977, A. F. An‐dresen and A. J. Maeland, Eds., Pergamon Press, Elmsford, NY, and Oxford, 1978, p73 61 H. Nowotny. Intermetallische Verbindungen vom Flussspattyp. Z. Metallkd. 34 (1942) 237–241. 62 D.J. Chakrabarti, D.E. Laughlin, S.W. Chen, Y.A. Chang. Binary Alloy Phase Diagrams. ASM International, Materials Park, OH (1991) 1442–1446. 63 Y.Y. Pan, P. Nash. Binary Alloy Phase Diagrams. ASM International, Materials Park, OH (1991) 2046–2048. 64 J. G. Willems, K. H. J. Buschow. From permanent magnets to rechargeable hydride electrodes. Journal of the Less Common Metals 129 (1987) 13‐30 65 M. B. Dutt, S. K. Sen, A. K. Barua. The diffusion of nickel into copper and copper ‐ nickel alloys. Phys. Stat. Sol. (a) 56 (1979) 149‐155. 66 P. Heitjans, J. Karger, “Diffusion in condensed matter: Methods, Materials, Models,” 2nd Edition, Birkhauser, 2005. 67 http://www.timedomaincvd.com/CVD_Fundamentals/xprt/intro_diffusion.html 68 J. Liu, F. Ma, Y. Zhuang, F. Jiao, J. Yan. The isothermal section of the phase diagram of the La–Ni–Cu ternary system at 673 K. J. Alloys Compd. 386 (2005) 174‐176. 69 C. Bonjour. Effets des impuretes substitutionnelles sur le spectre des pics de Bordoni de l’or ecroui. Tesis Doctoral, 1977. 70 R. Schaller, G. Fantozzi, G. Gremaud (Eds), Mechanical spectroscopy Q‐1 2001, Trans Tech Publications LTD, Switzerland, 2001, Chapters 1, 3. 71 T. Ozaki, H‐B. Yang, T. Iwaki, S. Tanase, T. Sakai, H. Fukunaga, N. Matsumoto, Y. Katayama, T. Tanaka, T. Kishimoto, M. Kuzuhara. Development of Mg‐containing MmNi5‐based alloys for low‐cost and high‐power Ni–MH battery. J. of Alloys and Compounds, 408–412 (2006) 294–300. 72 N. Aldea, E. Indrea, G. Borodi, Referente pattern 00‐042‐1191. Inorganic Alloy, metal or intermetalic Common Phase 34 (1989) 337. 73 C. Iwakura, T. Oura, H. Inoue, M. Matsuoka. Effects of substitution with foreign metals on the crystallographic, thermodynamic and electrochemical properties of AB5‐type hydrogen storage alloys. Electrochimica Acta, 41 (1996) 117–121. 74 J. Chen, S. X. Dou, H. K. Liu. Effect of partial substitution of La with Ce, Pr and Nd on the properties of LaNi5‐based alloy electrodes. J. of Power Sources, 63 (1996) 267–270. 75 J. J. Reilly, G. D. Adzic, J. R. Johnson, T. Vogt, S. Mukerjee, J. McBreen. The correlation between composition and electrochemical properties of metal hydride electrodes. J. Al‐loys Compd 293‐295 (1999) 569‐582. 76 D. Linden. Handbook of batteries. 2nd Edition, McGraw‐Hill, New York, 1995, p. 32.4. 77 P.H.L. Notten, R.E.F. Einerhand, J.L.C. Daams. On the nature of the electrochemical cycling stability of non‐stoichiometric LaNi5‐based hydride‐forming compounds Part I. crystallography and electrochemistry.J. Alloys Compd 210 (1994) 221‐232. 78 C. Rongeat, L. Roué Effect of particle size on the electrode performance of MgNi hydro‐gen storage alloy. J. Power Sources 132 (2004) 302–308 79 A. Zuttel, D. Chartouni, K. Gross, P. Spartz, M. Bächler, F. Lichtenberg, A. Fölzer, N.J.E. Adkins. Relationship between composition, volume expansion and cyclic stability of AB5‐type metalhydride electrodes. J. Alloys Comp. 253‐254 (1997) 626‐628. 80 M. Ayari, V. Paul‐Boncour, J. Lamloumi, H. Mathlouthi, A. Percheron‐Guégan. Study of the structural, thermodynamic and electrochemical properties of La‐Ni3.55Mn0.4Al0.3(Co1−xFex)0.75 (0 ≤ x ≤ 1) compounds used as negative electrode in Ni‐MH batteries. J. Alloys Comp. 420 (2006) 251‐255. 81 C. Li, F. Wang, W. Cheng, W. Li, W. Zhao. The influence of high‐rate quenching on the cycle stability and the structure of the AB5‐type hydrogen storage alloys with different Co content. J. Alloys Comp. 315 (2001) 218‐223. 82 M. Li, S.M. Han, Y. Li, W. Guan, L.R. Mao, L.Hu. Study on the phase structure and electrochemical properties of RE0.93Mg0.07Ni2.96Co0.60Mn0.37Al0.17 hydrogen storage allo Electrochimica Acta 51 (2006) 5926‐5931. 83 Y. Liu, H. Pan, M. Gao, R. Li, Y. Lei. Effect of Co content on the structural and electro‐chemical properties of the La0.7Mg0.3Ni3.4−xMn0.1Cox hydride alloys: II. Electrochemical properties. J. Alloys Comp. 376 (2004) 304‐313. 84 Y. Liu, H. Pan, M. Gao, Y. Zhu, Y. Lei, Q. Wang. The electrochemical performance of a La–Mg–Ni–Co–Mn metal hydride electrode alloy in the temperature range of −20 to 30 °C. Electrochimica Acta 49 (2004) 545‐555. 85 D. Linden, T.B. Reddy. Handbook of batteries. 3rd Edition, McGraw‐Hill, New York, 2002, p. 30.9. 86 E. Frackowiak, F. Béguin. Carbon materials for the electrochemical storage of energy in Capacitors. Review. Carbon 39 (2001) 937–50 87 BE. Conway. Electrochemical supercapacitors – scientific fundamentals and technologi‐cal applications, New York: Kluwer Academic/Plenum, 1999. 88 BE. Conway. Transition from ‘supercapacitor’ to ‘battery’ behavior in electrochemical energy storage. J Electrochem Soc. 138 (1991) 1539–1548. 89 S. Sarangapani, BV. Tilak, CP. Chen. Review – materials for electrochemical capacitors. J Electrochem Soc. 143 (1996) 3791–3799. 90 K. Jurewicz, E. Frackowiak. Carbon fibers for electrochemical capacitors. Extended abstracts, 50th ISE Meeting, Pavia (Italy), 1999, p. 924. 91 K. Jurewicz, E. Frackowiak. Modified carbon materials for electrochemical capacitors. Mol Phys Reports 27 (2000) 36–43. 92 MD. Ingram, AJ. Pappin, F. Delalande, D. Poupard, G. Terzulli. Development of elec‐trochemical capacitors incorporating processable polymer gel electrolytes. Electrochim Acta 43 (1998) 1601. 93 I. Tanahashi, A. Yoshida, A. Nishino. Comparison of the electrochemical properties of electric double‐layer capacitors with an aqueous electrolyte and with a nonaqueous electrolyte. Bull Chem Soc Jpn 63 (1990) 3611–3614. 94 H. Shi. Activated carbons and double layer capacitance. Electrochim Acta 41 (1996) 1633–1639. 95 D. Qu, H. Shi. Studies of activated carbons used in double layer capacitors. J. Power Sourc 74 (1998) 99–107. 96 H. Shi. Porous activated carbons and electric double layer capacitance. Extended abs‐tracts. Carbon ’97 PennState (USA), 1997, pp. 826–7. 97 MF. Rose, SA. Merryman, WT. Owens. Chemical double layer capacitor technology for space applications. Extended abstracts, 33rd Aerospace Sciences Meeting and Exhibit Reno (NV USA), 1995, pp. 1–8. 98 MF Rose, C Johnson, T Owens, B. Stephens. Limiting factors for carbon based chemical double‐layer capacitance. J Power Sourc 47 (1994) 303. 99 I. Tanahashi, A. Yoshida, A. Nishino. Activated carbon fiber sheets as polarizable elec‐trodes of electric double layer capacitors. Carbon 28 (1990) 477–482. 100 I. Tanahashi, A. Yoshida, A. Nishino. Electrochemical characterization of activated carbon‐fiber cloth polarizable electrodes for electric double‐layer capacitors. J Electro‐chem Soc 137 (1990) 3052–3757. 101 MJB Evans, E. Halliop. Porous carbon electrodes for electrical double layer capacitors. Extended abstracts, Eurocarbon ’98, Strasbourg (France). 11 (1998) 803–804. 102 L. Bonnefoi, P. Simon, JF. Fauvarque, C. Sarrazin, JF. Sarrau, P. Lailler. Multi electrode prismatic power prototype carbon/carbon supercapacitors. J Power Sourc 83 (1999) 162–169. 103 L. Bonnefoi, P. Simon, JF. Fauvarque, C. Sarrazin, A. Dugast. Electrode optimisation for carbon power supercapacitors. J Power Sources 79 (1999) 37–42. 104 L. Bonnefoi, P. Simon, JF. Fauvarque, C. Sarrazin, IF. Sarrau, A. Dugast. Electrode com‐positions for carbon power supercapacitors. J Power Sources 80 (1999) 149–155. 105 Y. Kibi, T. Saito, M. Kurata, J. Tabuchi, A. Ochi. Fabrication of high‐power electric double‐layer capacitors. J Power Sourc 60 (1996) 219–224. 106 P. Webb, C. Orr. Analytical Methods in Fine Particle Technology. Micromeritics Ins‐trument Corporation. 1997. 107 J. N. Barisci, G. G. Wallace, R. H. Baughman. Electrochemical Characterization of Sin‐gle‐Walled Carbon Nanotube Electrodes. Journal of Electroanalytical Chemistry 488 (2000) 92–98 108 K. Kinoshita, J.A.S. Bett. Potentiodynamic analysis of surface oxides on carbon blacks. Carbon 11 (1973) 403‐411. 109 R.L. McCreery. A.J. Bard (Ed.), Electroanalytical Chemistry, vol. 17, Marcel Dekker, New York, 1990, p. 221. 110 G. Che, B. Lakshmi, E. Fisher and C. Martin, Carbon nanotubule membranes for elec‐trochemical energy storage and production, Nature 393 (1998) 346. 111 K. Jurewicz, E. Frackowiak, F. Béguin. Electrochemical storage of hydrogen in activated carbons. Fuel Processing Technology 77–78 (2002) 415– 21. 112 M.D. Becker, G. Garaventta, D. Barsellini, S.G. Real, E.B. Castro y A. Visintin. Construc‐ción de electrodos de níquel para baterías Ni‐H2 de uso espacial. Anales XV Congreso Argentino de Fisicoquímica y Química Inorgánica, Tandil, 2007, p. 89. 113 http://composite.about.com/library/glossary/g/bldef‐g2440.htm. 114 C. Cha, J. Yu, J. Zhang. Comparative experimental study of gas evolution and gas con‐sumption reactions in sealed Ni‐Cd and Ni‐MH cells. J. Power Sources 129 (2004) 347‐357. 115 J. Zhang, J. Yu, C. Cha, H. Yang. The effects of pulse charging on inner pressure and cycling characteristics of sealed Ni/MH batteries. J. Power Sources 136 (2004) 180‐185. 116 J. Shi, F. Wu, D. Hu, S. Chen, L. Mao, G. Wang. The influence of hydrogen intercalation on inner pressuer of Ni/MH battery during fast charge. J. Power Sources 161 (2006) 692‐701. 117 http://data.energizer.com/PDFs/nh12‐900.pdf 118 http://www.vapextech.com.hk/pdf/aaa/oter/VTE1100AAA Specification.pdf 119 F. Rodríguez Reinoso. Carbón activado: estructura, preparación y aplicaciones. http://www.ua.es/grupo/lma/web%20cyted/publicaciones/cyted%20librotallerV/II.3%20Rodriguez%20Reinoso.pdf
Materias:Ingeniería > Ensayo de materiales
Metalurgia > Aleaciones
Divisiones:Investigación y aplicaciones no nucleares > Física > Física de metales
Código ID:167
Depositado Por:Marisa G. Velazco Aldao
Depositado En:12 Aug 2010 13:54
Última Modificación:09 May 2011 11:24

Personal del repositorio solamente: página de control del documento