Ausas, Roberto F. (2010) Simulación numérica en flujo de dos fases inmiscibles con aplicaciones en lubricación hidrodinámica / Numerical simulation of immiscible two-phase flows with applications to hydrodynamic lubrication. Tesis Doctoral en Ciencias de la Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Español 13Mb |
Resumen en español
En esta tesis se discute el modelado numérico del problema de lubricación hidrodinámica en los aros de pistón de motores a explosión. Este modelado ha sido abordado con dos enfoques bien distintos. Por un lado, se ha propuesto una formulación numérica basada en el método de volúmenes finitos para resolver el modelo p–θ de Elrod–Adams, que no es otra cosa que un modelo de orden reducido para el problema de lubricación en presencia de cavitación. Por otro lado, se ha propuesto una formulación numérica completa para la simulación de flujos de dos fases inmiscibles, es decir, un modelo de mayor orden para el problema fluido–dinámico considerando la presencia por separado del lubricante y los gases. Con respecto al primer enfoque considerado, la formulación que proponemos permite resolver la ecuación de Reynolds e imponer las llamadas condiciones JFO, propuestas por Jacobson & Floberg y Olsson, resultando en una formulación estrictamente conservativa. El método está basado en un esquema de relajación y permite resolver al mismo tiempo la dinámica de las partes lubricadas. Luego de describir detalladamente el esquema, se aplica a varias situaciones prácticas y luego al problema de los aros de pistón. Si bien el método es ampliamente usado, notamos que debe ser modificado para estudiar esta clase específica de dispositivos, por lo cual proponemos una variación del mismo. La evidencia numérica en este caso parece indicar que el modelo matem ático, con esta modificación, presenta multiplicidad de soluciones, lo cual motiva el estudio del problema por medio de las ecuaciones de Navier–Stokes incompresibles. En relación con el segundo enfoque, en esta tesis se adopta una formulación de elementos finitos para las ecuaciones de Navier–Stokes, con un método de tipo level set para el seguimiento de la interfase móvil que separa las dos fases presentes en el sistema. La formulación propuesta utiliza interpolación lineal para la velocidad, presión y función de level set. Se estudian varias cuestiones particulares que deben ser tomadas en cuenta en una formulación de este tipo. Por un lado se estudia de manera exhaustiva un método de reinicialización para mantener la regularidad de la función de level set y se lo extiende al caso de mallas curvilíneas. Además, proponemos un nuevo espacio de elementos finitos, que no introduce incógnitas adicionales y está basado en simples modificaciones del espacio P_1 conforme, para capturar las discontinuidades en el campo de presiones debido a la presencia de la tensión superficial, la cual es incluida mediante una formulación de Laplace–Beltrami. La formulaciódn propuesta es monolítica, es decir, se computan simultáneamente todas las variables fluido–dinámicas (velocidad y presión) y la posición de la interfase (embebida en la función de level set), con un esquema iterativo de Newton–Raphson, para lo cual se propone un cómputo mejorado del Jacobiano. Luego, se introduce un nuevo método para acondicionar la velocidad de transporte en las cercanías de la interfase y mejorar así, en algunos casos, la precisión de los cálculos. El método está basado en la resolución de una ecuación a derivadas parciales y es por lo tanto mucho más simple de implementar que otras metodologías de tipo geométrico. Finalmente, se aplica la formulación numérica al problema fluido–dinámico en aros de pistón y los resultados son comparados con los correspondientes al modelo de lubricación propuesto.
Resumen en inglés
This thesis deals with the numerical modeling of the piston ring lubrication problem typical of internal combustion engines in the hydrodynamic regime. This modeling has been addressed by means of two very distinct approaches. On the one hand, we have proposed a numerical formulation based on a finite volume method to solve the Elrod–Adams p–θ model, which is a low order model of the lubrication problem in the presence of cavitation. On the other hand, we have proposed a complete numerical formulation for the simulation of two phase inmiscible flows, i.e. a higher order model of the problem, considering separately the presence of the lubricant fluid and the combustion gases. With respect to the first approach, the proposed formulation allows us to solve the Reynolds equation imposing the so called JFO conditions introduced by Jacobson & Floberg and Olsson, leading to a formulation that exactly preserves mass. The computational method that we propose is based on a relaxation scheme and also allows a simulataneous computation of the dynamical behavior of the lubricated device. After detailed description of the scheme, we apply it to various practical cases and then to the piston ring lubrication problem. Though widely used, we notice that the model fails for this specific type of lubricated devices, thus needing a suitable modification. The numerical evidence in this case, seems to indicate that the mathematical model, with the aforementioned modification, exhibits multiplicity of solutions, which motivates to study the problem by means of the incompresible Navier–Stokes equations. Regarding the second approach, in this thesis we adopt a finite element formulation of the Navier–Stokes problem with a level set method to follow the moving interface that separates both phases present in the system. The proposed formulation uses linear interpolation for the velocity, pressure and level set function. We study several issues that need to be addressed in this type formulations. On the one hand, we study with great detail a reinitialization method to keep the distorsion of the level set function under control and extend it for the case of curvilinear grids. We also propose a new finite element space with no additional degrees of freedom based on extremely simple modifications to the P1–conforming space, to capture the discontinuities that appear in the pressure field due to the presence of surface tension, which is included by means of a Laplace–Beltrami formulation. The proposed methodology is monolithic, i.e., all variables, velocity, pressure and interface position (which is embedded in the level set function) are computed simultaneously by means of a Newton–Raphson iterative procedure, for which we propose an improved computation of the Jacobian. Additionally, we introduce a new method to increase, in some cases, the accuracy of computations by means of a fix near the interface in the velocity field used for transport of the level set function. The method is based on the resolution of a partial differential equation and thus much easier to implement than other geometrical methodologies. We finally apply the numerical methodology to the piston ring system and compare results with those of the previously mentioned lubrication models.
Tipo de objeto: | Tesis (Tesis Doctoral en Ciencias de la Ingeniería) |
---|---|
Palabras Clave: | Two-phase flow; Flujo bifásico; Simulación numérica |
Referencias: | [1] M-T Ma, E.H. Smith, and I. Sherrington. A three-dimensional analysis of piston ring lubrication. part 1: modelling. Proc. Instn. Mech. Engrs., 209, 1995. [2] M-T Ma, E.H. Smith, and I. Sherrington. A three-dimensional analysis of piston ring lubrication. part 2: sensitivity analysis. Proc. Instn. Mech. Engrs., 209, 1995. [3] M. Organisciak, G. Cavallaro, and A. A. Lubrecht. Variable lubricant supply of a starved hydrodynamic linear contact: lubricant lateral flow for smooth and laser textured surfaces. Proc. Instn. Mech. Engrs., 221:247–258, 2007. [4] Optimisation de la microgeometrie des chemises de moteurs a combustion interne. Organisciak, M. PhD thesis, l’Institut National des Sciences Appliqu´ees de Lyon, 2007. [5] P. Bach and O. Hassager. An algorithm for the use of the Lagrangian finite element method for the analysis of two dimensional fluid mechanics with applications to free surface flow. J. Fluid Mech., 152:173–190, 1985. [6] B. Ramaswamy, M. Kawahara, and T. Nakayama. Lagrangian finite element method for the simulation of two dimensional sloshing problems. Int. J. Num. Meth. Fluids, 6:659–670, 1986. [7] R Radovitzky and M. Ortiz. Lagrangian finite element analysis of newtonian fluid flows. Int. J. Num. Meth. Engrg., 43:607–619, 1998. [8] C.W. Hirt, A.A. Amsden, and J.L. Cook. An Arbitrary–Lagrangian–Eulerian computing method for all flow speeds. J. Comput. Phys., 14:227–253, 1974. [9] T.J.R. Hughes, W.K. Liu, and T.K. Zimmermann. Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput. Meth. Appl. Mech. Engrg., 29:329– 349, 1981. [10] T.E. Tezduyar, M. Behr, and J. Liou. A new strategy for finite element computations involving moving boundaries and interfaces - the deforming-spatial-domain/space-time procedure: I. The concept and the preliminary numerical tests. Comput. Methods Appl. Mech. Engrg., 94:339–351, 1992. [11] R. L¨ohner, C. Yang, E. O˜nate, and S. Idelsohn. An unstructured grid-based, parallel free surface solver. Applied Numerical Mathematics, 31:271–293, 1999. [12] M.A. Cruchaga, D.J. Calentano, and T.E. Tezduyar. Moving-interface computations with the edge-tracked interface locator technique (ETILT). Int. J. Numer. Meth. Fluids, 47:451– 469, 2004. [13] L. Battaglia, J. D’El´ıa, M. Storti, and N. Nigro. Numerical simulation of transient free surface flows using a moving mesh technique. J. Appl. Mech., 73:1017–1026, 2006. 192 Roberto F. Ausas [14] C.W. Hirt and H.D. Nichols. Volume of fluid (VOF) methods for the dynamics of free boundaries. Applied Numerical Mathematics, 39:201–225, 1981. [15] S. Osher and J. Sethian. Front propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys., 79:12–49, 1988. [16] C. Marangoni. ¨Uber die ausbreitung der tropfen einer fl¨ussigkeit auf der oberfl¨ache einer anderen, . leipzig. Ann. Phys. Leipzig, 143:337–354, 1871. [17] S. M. Troian, X. L. Wu, and S. A. Safran. Fingering instability in thin wetting films. Phys. Rev. Lett., 62:1496–1499, 1989. [18] M.R.E Warner, R.V. Craster, and O.K. Matar. Fingering phenomena created by a soluble surfactant deposition on a thin liquid film. Phys. Fluids, 16:2933–2951, 2004. [19] J-F Gerbeau and T. Lelievre. Variational formulation of the generalized Navier boundary condition. http://www.scientificcommons.org/16619301, 2006. [20] T.Z. Qian, X.P. Wang, and P. Sheng. Molecular hydrodynamics of the moving contact line in two-phase immicible flows. CiCP, 1:1–52, 2006. [21] D. Bonn, J. Eggers, J. Indekeu, J. Meunier, and E. Rolley. Wetting and spreading. Review of Modern Physics, 81:739–767, 2009. [22] R. F. Ausas, G. C. Buscaglia, and E. A. Dari. A geometric mass-preserving redistancing scheme for the level set function. Int. J. Num. Meth. Fluids, DOI: 10.1002/fld.2227, 2010. [23] R. F. Ausas, G. C. Buscaglia, and E. A. Dari. A mass-preserving geometry-based reinitialization method for the level set function. Serie M´ecanica Computacional, XXVII:13–32, 2008. [24] R. Clift and M. Weber. Bubbles, Drops and Particles. Academic Press, New York, 1978. [25] G. Bayada and J. Du Parquet. The influence of operating parameters on the cavitation in a dynamically loaded journal bearing. 1st LEEDS LYON Symposium on Cavitation and Related Phenomena in Lubrication, I.M.E., 1974. [26] G. Bayada and M. Chambat. Existence and uniqueness for a lubrication problem with non regular conditions on the free boundary. Boll. U.M.I., 6,3b:543–557, 1984. [27] H. G. Elrod and M. Adams. A computer program for cavitation and starvation problems. Technical report 190. 1st LEEDS LYON Symposium on Cavitation and Related Phenomena in Lubrication, I.M.E., 103:37–41, 1974. [28] B. Jakobson and L. Floberg. The finite journal bearing considering vaporization. Tran. Chalmers University of Technology, 190:1–116, 1957. [29] G. Bayada and M. Chambat. Sur quelque modelisation de la zone de cavitation en lubri- fication hydrodynamique. Journal de m´ecanique th´eorique et appliqu´e, 5:703–729, 1986. [30] R. Ausas, P. Ragot, J. Leiva, M. Jai, G. Bayada, and G.C. Buscaglia. The impact of the cavitation model in the analysis of micro-textured lubricated journal bearings. ASME Journal of Tribology, 129:868–875, 2007. Bibliograf´ıa 193 [31] R.F. Ausas, M. Jai, and G.C. Buscaglia. A mass-conserving algorithm for dynamical lubrication problems with cavitation. ASME Journal of Tribology, 131:031702–1–7, 2009. [32] H. G. Elrod and M. Adams. A computer program for cavitation. Technical report 190. 1st LEEDS LYON Symposium on Cavitation and Related Phenomena in Lubrication, I.M.E., 103:354, 1974. [33] V. Optasanu and D. Bonneau. Finite element mass-conserving cavitation algorithm in pure squeeze motion. Validation/Application to a connecting rod small end bearing. Transactions of the ASME, 122:162–169, 2000. [34] T. Geike and V. Popov. Cavitation within the framework of reduced description of mixed lubrication. Tribology International, 42:93–98, 2009. [35] P.D. Swales. A review of cavitation phenomena in engineering situation. 1st LEEDS LYON Symposium on Tribology, Cavitation and Related Phenomena in Lubrication, Mechanical Engineering Publications, London, pages 3–9, 1975. [36] B. Jakobsson and L. Floberg. The finite journal bearing considering vaporization. Tran. Chalmers University of Technology, 190:1–116, 1957. [37] K. Olsson. Cavitation in dynamically loaded bearings. Tran. Chalmers University of Technology, 308, 1965. [38] M. Hajjam and D. Bonneau. A transient finite element algorithm with application to radial lip seals. Tribology International, 40:1258–1269, 2007. [39] S. Boedo and J. Booker. Cavitation in normal separation of square and circular plates. ASME Journal of Tribology, 117:403–409, 1995. [40] T. Kato and S. Obara. Improvement in dynamic characteristics of circular journal bearings by means of longitudinal microgrooves. Tribology Transactions, 39:462–468, 1996. [41] G. Ryk, Y. Kligerman, and I. Etsion. Experimental investigation of laser texturing for reciprocating automotive components. Tribology Transactions, 45:444–449, 2002. [42] A. Kovalchenko, O. Ajayi, A. Erdemir, G. Fenske, and I. Etsion. The effect of laser texturing of steel surfaces and speed-load parameters on the transition of lubrication regime from boundary to hydrodynamic. Tribology Transactions, 47:299–307, 2004. [43] Q. Jane Wang and D. Zhu. Virtual texturing: Modeling the performance of lubricated contacts of engineered surfaces. ASME Journal of Tribology, 127:722–728, 2005. [44] G. Bayada, S. Martin, and C. Vazquez. An average flow model of the Reynolds roughness including a mass-flow preserving cavitation model. ASME Journal of Tribology, 127:793– 802, 2005. [45] I. Etsion and G. Halperin. A laser surface textured hydrostatic mechanical seal. Tribology Transactions, 45:430–434, 2002. [46] V. Brizmer, Y. Kligerman, and I. Etsion. A laser surface textured parallel thrust bearing. Tribology Transactions, 46:397–403, 2003. 194 Roberto F. Ausas [47] G.C. Buscaglia, S. Ciuperca, and M. Jai. The effect of periodic textures on the static characteristics of thrust bearings. ASME Journal of Tribology, 127:899–902, 2005. [48] G.C. Buscaglia, A.F. Quiroga, G. Bayada, and M. Jai. Sensitivity of lubricated devices to changes in their macro/microscopic shape. Proceedings of the 6th World Congresses of Structural and Multidisciplinary Optimization, Rio de Janeiro, 2005. [49] G.C. Buscaglia, R.F Ausas, and M. Jai. Optimization tools in the analysis of microtextured lubricated devices. Inverse Problems in Science and Engineering, 14:365–378, 2006. [50] I. Etsion. State of the art in laser surface texturing. ASME Journal of Tribology, 127:248– 253, 2005. [51] G. Bayada and M. Chambat. The transition between the Stokes equation and the Reynolds equation: A mathematical proof. Appl. Math. Opt., 14:73–93, 1986. [52] I. Etsion and O. Pinkus. Analysis of short journal bearings with new upstream boundary conditions. Journal of Lubrication Technology, Trans. ASME, 96:489–496, 1974. [53] D. Dowson and G. Higgison. Elastohydrodynamic Lubrication. Int. Series on Materials Science and Technology, Pergamon Press, 1977. [54] A.P. Panayi and H.J. Schock. Approximation of the integral of the asperity height distribution for the greenwood tripp asperity contact model. Proc. IMechE, Part J: J. Engineering Tribology, 222, 2008. [55] C. Shu and S. Osher. Efficient implementation of essentially non-oscillatory shockcapturing schemes. J. Comput. Phys., 77:439–471, 1988. [56] C. Shu and S. Osher. Efficient implementation of essentially non-oscillatory shockcapturing schemes II (two). J. Comput. Phys., 83:32–78, 1989. [57] A. Harten and S. Osher. Uniformly high-order accurate essentially non-oscillatory schemes I. SIAM J. Numer. Anal, 24:279–309, 1987. [58] A. Harten, B. Engquist, S. Osher, and S. Chakravarthy. Uniformly high-order accurate essentially non-oscillatory schemes III. J. Comput. Phys., 71:231–303, 1987. [59] G-S Jiang and D. Peng. Weighted ENO schemes for Hamilton-Jacobi equations. SIAM J. Sci. Comput., 21:2126–2144, 2000. [60] F. Losasso, R. Fedkiw, and S. Osher. Spatially adaptive techniques for level set methods and incompressible flow. Computers and fluids, 35:995–1010, 2006. [61] W. Yue, C-L Lin, and V.C. Patel. Numerical simulation of unsteady multidimensional free surface motions by level set method. International Journal for Numerical Methods in Fluids, 42:853–884, 2003. [62] P. Carrica, R.V Wilson, R. Noack, T. Xing, M. Kandasamy, J. Shao, N Sakamoto, and F. Stern. A dynamic overset, single-phase level set approach for viscous ship flows and large amplitude motions and maneuvering. 26th Symposium on Naval Hydrodynamics, Rome, Italy, 2006. Bibliograf´ıa 195 [63] E. Olsson and G. Kreiss. A conservative level set method for two phase flow. J. Comput. Phys., 210:225–246, 2005. [64] D. Di Pietro, S. Lo Forte, and N. Parolini. Mass preserving finite element implementations of the level set method. Applied Numerical Mathematics, 56:1179–1195, 2006. [65] E. Marchandise, J-F. Remacle, and N. Chevaugeon. A quadrature-free discontinuous Galerkin method for the level set equation. J. Comput. Phys., 212:338–357, 2006. [66] M. Sussman, E. Fatemi, P. Smereka, and S. Osher. An improved level set method for incompressible two-fluid flows. Computers and Fluids, 20:1165–1191, 1999. [67] D. Enright, F. Losasso, and R. Fedkiw. A fast and accurate semi-Lagrangian particle level set method. Computers and Structures, 83:479–490, 2005. [68] D. Enright, R. Fedkiw, J. Ferziger, and I. Mitchell. A hybrid particle level set method for improved interface capturing. Computers and Structures, 83:479–490, 2002. [69] J. Strain. Semi-Lagrangian methods for level set equations. J. Comput. Phys., 151:498– 533, 1999. [70] J. Strain. Tree methods for moving interfaces. J. Comput. Phys., 151:616–648, 1999. [71] L. Zhaorui, A. Farhad, and T. Shih. A hybrid Lagrangian-Eulerian particle-level set method for numerical simulations of two-fluid turbulent flows. Int. J. Num. Meth. Fluids, 56(12):2271–2300, 2007. [72] M. Sussman. A second order coupled level set and volume of fluid method for computing growth and collapse of vapor bubbles. J. Comput. Phys., 187:110–136, 2003. [73] M. Sussman and E.G. Puckett. A coupled level set and volume of fluid method for computing 3D and axisymmetric incompressible two phase flows. J. Comput. Phys., 162:301–337, 2000. [74] E.Marchandise and J-F. Remacle. A stabilized finite element method using a discontinuous level set approach for solving two phase incompressible flows. J. Comput. Phys., 219:780– 800, 2006. [75] E.Marchandise, P. Geuzaine, N. Chevaugeon, and J-F. Remacle. A stabilized finite element method using a discontinuous level set approach for the computation of bubble dynamics. J. Comput. Phys., 225:949–974, 2007. [76] B. Cockburn and C.-W. Shu. Runge-kutta discontinuous galerkin methods for convectiondominated problems. J. Scientific Computing, 16:173–261, 2001. [77] D. Chopp. Computing minimal surfaces via level set curvature flow. J. Comput. Phys., 106:77–91, 1993. [78] J. Tsitsiklis. Efficient algorithms for globally optimal trajectories. IEEE Trans Automat Control, 40:1528–1538, 1995. [79] J.A. Sethian. A fast marching method for monotonically advancing fronts. Proc Natl Acad Sci, 93:1591–1595, 1996. 196 Roberto F. Ausas [80] J.A. Sethian. Fast marching methods. SIAM Rev, 41:199–235, 1999. [81] D.L. Chopp. Some improvements of the fast marching method. SIAM Journal Sci. Comput., 23:230–244, 2001. [82] D. Adalsteinsson and J. Sethian. A fast level set method for propagating interfaces. J. Comput. Phys., 118:269–277, 1995. [83] D. Adalsteinsson and J. Sethian. The fast construction of extension velocities in level set methods. J. Comput. Phys., 148:2–22, 1999. [84] M. Sussman and E. Fatemi. An efficient, interface-preserving level set redistancing algorithm and its application to interfacial incompressible fluid flow. SIAM J. Sci. Comput., 20:1165–1191, 1999. [85] M. Sussman, P. Smereka, and S. Osher. A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys., 114:146–159, 1994. [86] A. Lew and G.C. Buscaglia. A Discontinuous–Galerkin–based immersed boundary method. International Journal for Numerical Methods in Engineering, 76:427–454, 2008. [87] G. Russo and P. Smereka. A remark on computing distance functions. J. Comput. Phys., 163:51–67, 2000. [88] C. Min and F. Gibou. A second order accurate level set method on non-graded adaptive cartesian grids. J. Comput. Phys., 225:300–321, 2007. [89] F. Mut, G. Buscaglia, and E. Dari. New mass-conserving algorithm for level set redistancing on unstructured meshes. Journal of Applied Mechanics, 73:1011–1016, 2006. [90] S. Aliabadi and T.E. Tezduyar. Stabilized-finite-element/interface-capturing technique for parallel computation of unsteady flows with interfaces. Comput. Methods Appl. Mech. Engrg., 190:243–261, 2000. [91] P. Carrica, R. Wilson, and F. Stern. An unsteady single–phase level set method for viscous free surface flows. Int. J. Numer. Meth. Fluids, 53:229–256, 2007. [92] S.T. Zalesak. Fully multidimensional flux-corrected transport algorithms for fluids. J. Comput. Phys., 335–362:31, 1979. [93] R. Leveque. High-resolution conservative algorithms for advection in incompressible flow. SIAM Journal of Numerical Analysis, 33:627–665, 1996. [94] J. Gois, A. Nakano, L. Nonato, and G. Buscaglia. Front tracking with moving-least-squares surfaces. J. Comput. Phys., 227:9643–9669, 2008. [95] R. Leveque. Wave propagation algorithms for multidimensional hyperbolic systems. J. Comput. Phys., 131:327–353, 1997. [96] O. Soto and R. Codina. A numerical model to track two-fluid interfaces based on a stabilized finite element method and the level set technique. Int. J. Numer. Meth. Fluids, 40:293–301, 2002. Bibliograf´ıa 197 [97] A. H. Coppola-Owen and R. Codina. Improving eulerian two–phase flow finite element approximation with discontinuous gradient pressure shape functions. Int. J. Numer. Meth. Fluids, 49:1287–1304, 2005. [98] R. Codina. A stabilized finite element method for generalized stationary incompressible flows. Comput. Methods Appl. Mech. Engrg., 190:2681–2706, 2001. [99] R. Codina. Stabilized finite element approximation of transient incompressible flows using orthogonal subscales. Comput. Methods Appl. Mech. Engrg., 191:4295–4321, 2002. [100] G.C. Buscaglia, E.A. Dari, E. Mart´ın, D.L. Arnica, and F.J. Bonetto. Finite element modeling of liquid deuterium flow and heat transfer in a cold–neutron source. Int. J. Comput. Fluid Dynamics, 18(5):355–365, 2004. [101] S. Balay, W.D. Gropp, L.C McInnes, and B.F. Smith. PETSc Users Manual. Argonne National Laboratory, 2003. [102] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI – The Complete Reference, Vol. 1, The MPI Core, 2nd ed. Scientific and Engineering Computation Series, 2005. [103] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable implementation of the MPI message passing interface standard. Parallel Computing, 22(6):789–828, sep 1996. [104] P.R. Amestoy, I.S. Duff, and J.-Y. L’Excellent. Multifrontal parallel distributed symmetric and unsymmetric solvers. Comput. Methods in Appl. Mech. Eng., 184:501–520, 2000. [105] T.E. Tezduyar, M. Behr, and S. Mittal. A new strategy for finite element computations involving moving boundaries and interfaces - the deforming-spatial-domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput. Methods Appl. Mech. Engrg., 17:563–579, 1992. [106] P.H. Saksono and D. Peri´c. On finite element modelling of surface tension: Variational formulation and applications - part I: Quasistatic problems. Comput. Mech., 38:265–281, 2006. [107] P.H. Saksono and D. Peri´c. On finite element modelling of surface tension: Variational formulation and applications - part II: Dynamic problems. Comput. Mech., 38:265–281, 2006. [108] M. Bellet. Implementation of surface tension with wall adhesion effects in a threedimensional finite element model for fluid flow. Commun. Numer. Meth. Engng., 17:563– 579, 2001. [109] W. Dettmer, P.H. Saksono, and D. Peri´c. On a finite element formulation for incompressible Newtonian fluid flows on moving domains in the presence of surface tension. Commun. Numer. Meth. Engng., 19:659–668, 2003. [110] W. Dettmer and D. Peri´c. A computational framework for free surface fluid flows accounting for surface tension. Comput. Methods Appl. Mech. Engrg., 195:3038–3071, 2006. 198 Roberto F. Ausas [111] S. Gross and A. Reusken. Finite element discretization error analysis of a surface tension force in two-phase incompressible flows. SIAM J. Numer. Anal., 45:1679–1700, 2007. [112] S. Gross and A. Reusken. An extended pressure finite element space for two-phase incompressible flows with surface tension. J. Comput. Phys., 224:40–58, 2007. [113] A. Reusken. Analysis of an extended pressure finite element space for two–phase incompressible flows. Comput. Visual. Sci., 11:293–305, 2008. [114] T. Belytschko, N. Mo¨es, S. Usui, and C. Parimi. Arbitrary discontinuities in finite elements. Int. J. Numer. Meth. Engng, 50:993–1013, 2001. [115] P.D. Minev, T. Chen, and K. Nandakumar. A finite element technique for multifluid incompressible flow using Eulerian grids. J. Comput. Phys., 187:225–273, 2003. [116] S. Ganesan, G. Matthies, and L. Tobiska. On spurious velocities in incompressible flow problems with interfaces. Comput. Methods Appl. Mech. Engrg., 196:1193–1202, 2007. [117] R. Mikkelsen. Actuator disc methods applied to wind turbines. PhD thesis, Ph. D. Thesis MEK-FM-PHD 2003-02. Technical Univ. Denmark., June 2003. [118] C. Meyer and D. Kr¨oger. Numerical simulation of the flow field in the vicinity of an axial flow fan. Int. J. Numer. Meth. Fluids, 36:947–969, 2001. [119] Y. Tahara, R. Wilson, P. Carrica, and F. Stern. RANS simulation of a container ship using a single–phase level–set method with overset grids and the prognosis for extension to a self–propulsion simulator. J. Marine Sci. Technol., 11:209–228, 2006. [120] P. Carrica, K.-J. Paik, H. Hosseini, and F. Stern. URANS analysis of a broaching event in irregular quartering seas. J. Marine Sci. Technol., 13:395–407, 2008. [121] C. Leclerc and Masson C. Wind turbine performance predictions using a differential actuator–lifting disk model. J. Solar Energy Engng., 127:200–208, 2005. [122] I. Babuˇska. The finite element method with Lagrangian multipliers. Numer. Math., 20:179– 192, 1973. [123] F. Brezzi. On the existence, uniqueness and approximation of saddle–point problems arising from Lagrange multipliers. RAIRO Anal. Num´er., 8:129–151, 1974. [124] D. Arnold, F. Brezzi, and M. Fortin. A stable finite element for the Stokes equations. Calcolo, 21:337–344, 1984. [125] R.F. Ausas, F.S. Sousa, and G.C. Buscaglia. An improved finite element space for discontinuous pressures. Comput. Methods Appl. Mech. Engrg., 199:1019–1031, 2010. [126] F.S. Sousa, R.F. Ausas, and G.C. Buscaglia. Improved interpolants for discontinuous pressures. Serie Mec´anica Computacional, XXVIII:1131–1148, 2009. [127] T.J.R. Hughes, L. Franca, and M. Balestra. A new finite element formulation for computational fluid dynamics: V. circumventing the babuˇska-brezzi condition. a stable petrovgalerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput. Methods Appl. Mech. Engrg., 59:85–99, 1986. Bibliograf´ıa 199 [128] L. Franca and T.J.R. Hughes. Two classes of mixed finite element methods. Comput. Methods Appl. Mech. Engrg., 69:89–129, 1988. [129] A. Lew and G. Buscaglia. A discontinuous-galerkin-based immersed boundary method. Int. J. Numer. Meth. Engng., 76:427–454, 2008. [130] E. Puckett, A. Almgren, J. Bell, D. Marcus, andW. Rider. A high-order projection method for tracking fluid interfaces in variable density incompressible flows. J. Comput. Phys., 130:269–282, 1997. [131] S. Popinet and S. Zaleski. A front-tracking algorithm for accurate representation of surface tension. Int. J. Numer. Meth. Fluids, 30:775–793, 1999. [132] R. Panahi E. Jahanbakhsh and M. Serif. Numerical simulation of three–dimensional interfacial flows. Int. J. Numer. Meth. Heat & Fluid Flow, 17:384–404, 2007. [133] T.-P. Fries and T. Belytschko. The intrinsic XFEM: a method for arbitrary discontinuities without additional unknowns. Int. J. Numer. Meth. Engng., 68:1358–1385, 2006. [134] G. Buscaglia and A. Agouzal. Interpolation estimate for a finite element space with embedded discontinuities. Proc. 30th Iberian-Latin-American Congress on Computational Methods in Engineering, B´uzios, Brazil, November 8–11, 2009. [135] J.U. Brackbill, C. Kothe, and D.B. Zemach. A continuum method for modeling surface tension. J. Comput. Phys., 100(2):335–354, 1992. [136] Y.C. Chang, T.Y. Hou, B. Merriman, and S. Osher. A level set formulation of eulerian capturing methods for incompressible fluid flows. J. Comput. Phys., 124:449–464, 1996. [137] S.J. Cummins, M.M. Francois, and D.B. Kothe. Estimating curvature from volume fraction. Computers and Structures, 83:425–434, 2005. [138] S. Shepel and B. Smith. New finite-element/finite-volume level set formulation for modelling two-phase incompressible flows. J. Comput. Phys., 218:479–494, 2006. [139] E. Olsson, G. Kreiss, and S. Zahedi. A conservative level set method for two phase flow II. J. Comput. Phys., 225:785–807, 2007. [140] A-K. Tornberg and T. Engquist. A finite element based level-set method for multiphase flow applications. Computing and Visualization in Science, 3:93–101, 2000. [141] B. Lafaurie, C. Nardone, R. Scardovelli, S. Zaleski, and G. Zanetti. Modelling merging and fragmentation in multiphase flows with SURFER. J. Comput. Phys., 113:134–147, 1994. [142] D.B. Kothe, W.J. Rider, S.J. Mosso, J.S. Brock, and J.I. Hochstein. Volume tracking of interfaces having surface tension in two and three dimensions. AIAA, 96-0859. [143] M.W. Williams, D.B. Kothe, and E.G. Puckett. Fluid dynamics at interfaces. Chapter 23. Accuracy and convergence of continuum Surface-Tension models. Cambridge University Press, 1999. [144] D. Gilbarg and N.S. Trudinger. Elliptic partial differential equations of second order. Springer-Verlag, Berlin, Second edition, 1983. 200 Roberto F. Ausas [145] S. Shin and D. Juric. Modelling three-dimensional multiphase flow using a level contour reconstruction method for front tracking without connectivity. J. Comput. Phys., 180:427– 470, 2002. [146] M. Renardy, Y. , Renardy, and J. Li. Numerical simulation of moving contact line problems using a Volume–of–Fluid method. J. Comput. Phys., 171:243–263, 2001. [147] X.P.Wang, T.Z. Qian, and P. Sheng. Moving contact line on chemically patterned surfaces. J. Fluid Mech., 605:59–78, 2008. [148] Y. Chen, R. Mertz, and R. Kulenovic. Numerical simulation of bubble formation on orifice plates with moving contact line. Int. J. Multiphase Flow, 35:66–77, 2009. [149] F.S. de Sousa, N. Mangiavacchi, L.G. Nonato, A. Castelo, M.F. Tome, V.G. Ferreira, J.A. Cuminato, and S. Mckee. A front–tracking/front–capturing method for the simulation of 3d multi–fluid flows with free surfaces. J. Comput. Phys., 198:469–499, 2004. [150] D. Morton, M. Rudman, and L. Jong-Leng. An investigation of the flow regimes resulting from splashing drops. Physics of Fluids, 12:747–763, 2000. [151] F.H. Harlow and J. P. Shannon. Distortion of a splashing liquid drop. Science, 1967:547– 550, 57. [152] A.G. Ferreira, B. E. Larcock, and A.G. Singer. Computer simulation of a water drop impact in a 9.6 mm deep pool. Soil Sci. Soc. Am. J., 1502:1985, 31. [153] H.N. O˜guz and A. Prosperetti. Bubble entrainment by the impact of a liquid drop in liquid surfaces. J. Fluid Mech., 219:143–179, 1990. [154] J. Eggers. Nonlinear dynamics and breakup of free–surface flows. Reviews of Modern Physics, 69(3):865–929, 1997. [155] M. Storti, L. Crivelli, and S. Idelsohn. Aplicaci´on de los m´etodos alfa de integraci´on temporal al problema de transmisi´on del calor con cambio de fase. Serie M´ecanica Computacional, V(3):266–278, 2009. [156] D. Gueyffier, J. Lie, A. Nadim, R. Scardovelli, and S. Zaleski. Volume–of–fluid interface tracking with smoothed surface stress methods for three–dimensional flows. J. Comput. Phys., 152:423–456, 1999. [157] R. L¨ohner, C. Yang, and E. O˜nate. On the simulation of flows with violent free surface motion. Comput. Methods Appl. Mech. Engrg., 195:5597–5620, 2006. |
Materias: | Matemática > Lógica matemática |
Divisiones: | Aplicaciones de la energía nuclear > Tecnología de materiales y dispositivos > Mecánica computacional |
Código ID: | 168 |
Depositado Por: | Marisa G. Velazco Aldao |
Depositado En: | 12 Aug 2010 15:06 |
Última Modificación: | 07 Feb 2012 11:43 |
Personal del repositorio solamente: página de control del documento