Fluidodinamica del crisol de alto horno : Estudio experimental y numérico de una interfaz entre líquidos inmiscibles en un medio poroso / Fluid-dynamics of the blast furnace hearth: numerical and experimental study about interface behavior between immiscible liquids flowing through a porous medium

Mariotti Cardozo, Alejandro David (2010) Fluidodinamica del crisol de alto horno : Estudio experimental y numérico de una interfaz entre líquidos inmiscibles en un medio poroso / Fluid-dynamics of the blast furnace hearth: numerical and experimental study about interface behavior between immiscible liquids flowing through a porous medium. Tesis Doctoral en Ciencias de la Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]PDF (Tesis)
Español
46Mb

Resumen en español

Debido a la complejidad que presenta la observación directa de los fenómenos que ocurren en el interior de un alto horno (AH), el desarrollo de modelos teóricos para explicar e incrementar el conocimiento de los diferentes procesos observados indirectamente, presenta un desafío constante para quienes se dedican al estudio de la reducción de minerales de hierro mediante éste método. Particularmente, en el interior del crisol se ubica un lecho de coque en el cual se encuentran estratificados dos líquidos inmiscibles: escoria y arrabio. Cuando éstos se extraen del crisol a través de una abertura perpendicular a la gravedad (colada), se produce un flujo complejo en donde la interfaz entre ellos se mueve y presenta diferentes perfiles durante una colada. Dicha interfaz tiene un rol importante en la vida útil de un AH, debido a que la escoria es un agente químicamente agresivo para los refractarios del crisol. Por otro lado, la inclinación de la interfaz en la cercanía del orificio de salida ( θ_o ), tiene influencia sobre la evolución del diámetro del orificio de colada durante una colada. Hecho que incide directamente sobre la operación del crisol. Por tales motivos, en este trabajo: • Se desarrollan una serie de experimentos para investigar la relación entre la forma de la interfaz y las variables del problema. Los resultados indican que existe una marcada correlación entre θ_o y la fracción de volumen de los líquidos en el flujo de salida. • Se realiza el estudio numérico de uno de los experimentos realizados permitiendo complementar los resultados experimentales y validar el procedimiento numérico para los estudios posteriores. • Se definen cuatro parámetros adimensionales, y mediante un estudio numérico paramétrico, se desarrolla una expresión general para predecir θ_o . Además, se reporta la influencia cualitativa de cada parámetro sobre la interfaz. • Se obtienen a partir de todos los resultados, algunas consideraciones teóricas relevantes que aportan a la comprensión del comportamiento de una interfaz entre dos líquidos. • Se presenta el impacto causado por esta investigación aplicada sobre la industria, a través de la descripción de un complejo simulador de coladas de AH desarrollado exclusivamente para una de las empresas siderúrgicas más grandes de la Argentina.

Resumen en inglés

The direct observations of different phenomena present inside a blast furnace (BF) during the operation are complex. For this reason, the development of theoretical models to explain and increase the knowledge about what is observed in an indirect way, represents a constant challenge for researchers of the BF world. Particularly, inside a BF hearth, in the coke bed, two immiscible liquids are stratified: slag and pig iron. When these liquids are extracted of the hearth through a perpendicular opening to the gravity (tap), a complex flow takes place in which the interface between the liquids moves, tilts and bends during the tap. This interface has an important role in the BF service life, because the slag is chemically aggressive for the hearth refractory lining. On the other hand, the interface tilt in the vicinity of the outlet orifice ( θ_o ), influences on the evolution of the taphole diameter during a tap. This fact, impacts directly on the hearth operation. For these reasons, in this work: • An extensive set of experiments investigating the relationships between the interface shape and the different variables of the fluid-dynamical problem were carried out. Results indicate θ_o is in relation with the slag volume fraction in the outlet flow. • A numerical study of one of the previous experiments was carried out, allowing to improve the experimental results and to validate the numerical procedure for the subsequent studies. • We define four non-dimensional parameters and, by means of a numerical parametric analysis, an equation to predict θ_o is developed. In addition, the qualitative influence of each non-dimensional parameter on the interface shape is reported. • Relevant theoretical considerations explaining the liquid-liquid interface behavior were obtained from the results. • The impact caused by this applied research on the industry is presented through the description of a complex BF tapping simulator. This apparatus was exclusively developed for one of the biggest steel companies in Argentina.

Tipo de objeto:Tesis (Tesis Doctoral en Ciencias de la Ingeniería)
Palabras Clave:Blast furnaces; Altos hornos; Computerized simulation; Simulación computerizada; Steelmaking furnace; Horno siderúrgico; Interface; Interfaz; Porous Medium; Medio poroso
Referencias:[1] Poveromo J J. Development and application of computer models to optimize blast furnace operations. 27th Symposium on Iron and Steelmaking: use of models to optimize blast furnace operations; 1999 May 24-26, Ontario, Canada. Ontario: McMaster University; 1999. [2] Peacey, J G; Davenport, W G. The iron blast furnace-Theory and practice. Oxford: Pergamont Press. 1979. 251p. ISBN 0080232183. [3] Waganoff, N P. Hornos industriales. Buenos Aires: Librería Mitre. 1963. 428p. [4] Von Bogdandy, L; Engell, H J. The reduction of iron ores: scientific basis and technology. Berlin: Springer. 1971. 576p. ISBN 0387050566. [5] Biswas, A K. Principles of blast furnace ironmaking: theory and practice. Brisbane: Cootha Publishing House. 1981. 527p. ISBN 0949917001. [6] Biswas, A K; Bashforth, G. R. The physical chemistry of metallurgical processes. London: Chapman & Hall. 1962. 336p. [7] Fukutake T, Okabe K. “Investigation of slag flow in the blast furnace hearth based on the fluid dynamics and of relation between residual slag amount and tapping-out conditions”. Tetsu to Hagané, 1974, vol 60, p. 607-621. [8] Tanzil W B U, Zulli P, Burgess J M, et al. “Experimental model study of the physical mechanisms governing blast furnace hearth drainage”. Trans. Iron. Steel Inst. Jpn., 1984, vol 24, p. 197-205. [9] Nishioka K, Maeda T, Shimizu M. “A three-dimensional mathematical modelling of drainage behavior in blast furnace hearth”. ISIJ Int., 2005, vol 45, p. 669-676. 140 [10] Zulli P, Tanzil W B U, He Q, et al. Blast furnace hearth drainage challenges of imlementing fundamental knowledge. The 3rd Int. Cong. On Science and Technolgy of Ironmaking; 2003 Junio 16-20, Düsseldorf, Alemania. Düsseldorf: VDEh; 2003; p. 482- 490. [11] Nouchi T, Yasui M, Takeda K. “Effects of particle free space on hearth drainage efficiency”. ISIJ Int., 2003, vol 43, p. 175-180. [12] Brännbacka J, Torrkulla J, Saxén H. “Simple simulation model of the blast furnace hearth”. Ironmaking and Steelmaking, 2005, vol 32, p. 479-486. [13] Kowalski W, Bachhofen H J, Rüther H P, et al. Investigation on tapping strategies at the blast furnace with special regard to the state of the hearth. Proc. 57th Ironmaking Conf.; 1998 Marzo 22-25, Warrendale, USA. PA: ISS; 1998; p. 595-606. [14] Desai B, Ajmani S K, Ramma R V. Quantification of liquid petal flow in blast furnace hearth. 5th European Coke and Ironmaking Congress Proceedings; 2005 Mayo 13- 15, Stockholm, Sweden. Düsseldorf: VDEh; 2005; 2nd vol We4:5, p. 1-19. [15] Venturini M J. “Modèle de vidange en temps réel du creuset du haut-fourneau”. La revue de Métallurge–CIT, 1994, vol 91, p. 130–133. [16] Bear J. Dynamics of fluids in porous media. N. Y.: Dover Publications Inc. 1988. 764p. ISBN 0486656756. [17] Pal R. “Viscosity models for multiple emulsions”. J. Food Hyd., 2008, vol 22, p. 428-438. [18] Lovick J, Angeli P. “Experimental studies on the dual continuous flow pattern in oilwater”. Int. J. Multiph. Flow, 2004, vol 30, p. 139-157. [19] Xu X X. “Study on oil-water two-phase flow in horizontal pipelines”. J. Pet. Sci. Eng., 2007, vol 59, p. 43-58. [20] White F M. Mecánica de fluidos. Buenos Aires: McGraw-Hill. 1979. 757p. ISBN: 9684515812. [21] Dias P, Fernandes C, Mota M, ET al. “Permeability and effective thermal conductivity of bisized porous media”. Int. J. Heat Mass Tranf., 2007, vol 50, p. 1295- 1301. 141 [22] Cavalier G, Lucas L D. “Viscosite du fer pur et du systeme Fe-C jusqu’a 4,8% C en poids”. C. R. Acad. Sci. Paris, 1964, vol 259, p. 3760-3767. [23] Panjkovic V, Truelove J S, Zulli P. “Numerical modelling of iron flow and heat transfer in blast furnace hearth”. Ironmaking and Steelmaking, 2002, vol 29, p. 390 - 400. [24] Dash S K, Jha D N, Ajmani S K, et al. “Optimisation of taphole angle to minimize flow induced wall shear stress on the hearth”. Ironmaking and Steelmaking, 2004, vol 31, p. 207-215. [25] Dash S K, Ajmani S K, Kumar A, et al. “Optimum taphole length and flow induced stresses”. Ironmaking and Steelmaking, 2001, vol 28, p. 110-116. [26] Yan F, Zhou C Q. Three-dimensional computational modeling of blast furnace hearth. Iron & Steel Technology Conference and Exposition. 2004 Septiembre 15-17, Nashville, Tenn, USA. PA: AIST; 2004; p. 48–58. [27] Venturini M J, Bolsigner J P, Iezzi J, et al. Computations and measurements of liquids flow in the hearth of the blast furnace. ICST/Ironmaking conference proceedings, 1998, Toronto, Canada. PA: ISS; 1998; p. 615-622. [28] Zhou C, Yan F, Patnala K A, et al. Numerical investigation pf parametric effects on blast furnace hearth. Iron & Steel Technology Conference and Exposition. 2004 Septiembre 15-17, Nashville, Tenn, USA. PA: AIST; 2004. p. 77-87. [29] Leprince G, Steiler J M, Sert D. Blast furnace hearth life: models for assessing the wear and understanding the transient thermal states. 52th ironmaking conference proceedings. 1993 Marzo 28-31, Dallas, USA. PA: ISS; 1993; p. 123-132. [30] Shinotake A, Ichida M, Ootsuka H, et al. Liquid flow analysis furnace hearth considering taphole location. 29th Symposium on Iron and Steelmaking - The taphole - The blast furnace lifeline: design/maintenance/operating practices. 2001 Marzo 1-3, Ontario, Canada; Ontario: McMaster University; 2001. [31] Guo B Y, Maldonado D, Zulli P, et al. “CFD modelling of liquid metal flow and heat transfer in blast furnace hearth”. ISIJ International, 2008, vol 48, p. 1676–1685. [32] Cheng W T, Huang C N, Du S W. “Three dimensional iron flow and heat transfer in the hearth of a blast furnace during tapping process”. Chemical Engineering Science, 2005, vol 60, p. 4485 – 4492. 142 [33] Huang C N, Du S W, Cheng W T. “Numerical investigation on hot metal flow in blast furnace hearth through CFD”. ISIJ International, 2008, vol 48 , p. 1182–1187. [34] Westhead A. Upscaling for two-phase flows in porous media [tesis]; California: California Institute of Technology Pasadena; 2005. [35] Ewing R E. The Mathematics of reservoir simulation. PA: SIAM. 1983. 186p. ISBN: 0898711924. [36] Cardoso M A, Durlofsky L J. “Linearized reduced-order models for subsurface flow simulation”. Journal of Computational Physics, 2010, vol 229, p. 681-700. [37] Blunt M J. “Flow in porous media-pore-network models and multiphase flow”. Current Opinion in Colloid & Interface Science, 2001, vol 6, p. 197-207. [38] Chen Z, Huan G, Ma Y, Computational methods for multiphase flows in porous media, PA: SIAM. 2006. 531p. ISBN: 0898716063. [39] Efendiev Y, Houb T. “Multiscale finite element methods for porous media flows and their applications”. Applied Numerical Mathematics, 2007, vol 57, p 577-596. [40] FLUENT 6.3 User's Guide. Fluent Inc.; 20/09/2006.
Materias:Metalurgia > Metalurgia física
Divisiones:Aplicaciones de la energía nuclear > Tecnología de materiales y dispositivos > Mecánica computacional
Código ID:170
Depositado Por:Marisa G. Velazco Aldao
Depositado En:13 Aug 2010 11:53
Última Modificación:08 Feb 2012 14:07

Personal del repositorio solamente: página de control del documento