Orientación de un objeto 3D : implementación de redes neuronales artificiales utilizando lógica programable / Orientation of a 3D object: implementation with an artificial neural network using a programmable logic device

Carnevale, Federico J. (2010) Orientación de un objeto 3D : implementación de redes neuronales artificiales utilizando lógica programable / Orientation of a 3D object: implementation with an artificial neural network using a programmable logic device. Maestría en Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
3942Kb

Resumen en español

La extracción de información compleja a partir de imágenes es una habilidad clave en las máquinas inteligentes con vasta aplicación en los sistemas automatizados, la manipulación robótica y la interacción humano-computadora. Sin embargo, resulta una tarea extremadamente difícil de resolver con estrategias clásicas, geométricas o analíticas. Por lo tanto, un enfoque basado en aprendizaje a partir de ejemplos parece más adecuado. Esta tesis trata acerca del problema de orientación 3D, cuyo objetivo consiste en estimar las coordenadas angulares de un objeto conocido, a partir de una imagen tomada desde cualquier dirección. Se describe un sistema, basado en redes neuronales artificiales, para resolver este problema en tiempo real. La implementación, capaz de funcionar a frecuencia de video, se realiza utilizando un dispositivo de lógica programable. El sistema digital final demestró la capacidad de estimar dos coordenadas de rotación de un objeto 3D conocido en rangos de -80º a 80º. Su velocidad de funcionamiento permite la operación a frecuencia de video. La precisión del sistema puede incrementarse sucesivamente aumentando el tamaño de la red neuronal artificial y utilizando una mayor cantidad de ejemplos de entrenamiento.

Resumen en inglés

Complex information extraction from images is a key skill of intelligent machines, with wide application in automated systems, robotic manipulation and human-computer interaction. However, solving this problem with traditional, geometric or analytical, strategies is extremely difficult. Therefore, an approach based on learning from examples seems to be more appropriate. This thesis addresses the problem of 3D orientation, aiming to estimate the angular coordinates of a known object from an image shot from any direction. We describe a system based on artificial neural networks to solve this problem in real time. The implementation is performed using a programmable logic device. The digital system described in this paper has the ability to estimate two rotational coordinates of a 3D known object, in ranges from -80 º to 80º. The operation speed allows a real time performance at video rate. The system accuracy can be successively increased by increasing the size of the artificial neural network and using a larger number of training examples.

Tipo de objeto:Tesis (Maestría en Ingeniería)
Palabras Clave:Neural networks; Redes neuronales; Mathematical logic; Lógica matemática; 3D orientation; Orientación 3D; Artificial Neural Networks; Redes neuronales artificiales; Programmable logic devices; Lógica digital programable; Artificial vision; Visión artificial
Referencias:N. Abdallah. Introduction to FPGAs and Design Flow. Advance Training Course on FPGA Design and VHDL, 2010a. N. Abdallah. Introduction to Synthesis. Advance Training Course on FPGA Design and VHDL, 2010b. I. Aleksander and H. Morton. Introduction to Neural Computing. Chapman and Hall, 1991. H. Barlow. Unsupervised Learning. Neural Computation, 1, 1989. A. G. Barto. Neuronlike Adaptive Elements that Can Solve Difficult Learning Control Problems. IEEE Transactions on Systems, Man and Cybernetics, SMC- 13, 1983. S. Becker. Unsupervised Learning Procedures for Neural Networks. The International Journal of Neural Systems, 1, 1991. S. Brown and Z. Vranesic. Fundamentos de Lógica Digital con diseño VHDL. Mc Graw Hill, 2006. P. Chu. FPGA Prototyping by VHDL Examples. Wiley, 2008. R. C. Coffer and B. Harding. Rapid System Prototyping with FPGAs. Newnes, 2006. M. Fischler and R. Boller. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. 1980. I. Grout. Digital Systems Design with FPGA. Newnes, 2008. G. Guichal. Diseño Digital Utilizando Lógicas Programables. Universidad Tecnológica Nacional. Facultad Regional de Bahía Blanca, 2005. G. Hawkes. Line Field Decoder. Xilinx Application Note, XAPP286, 2001. S. Haykin. Neural Networks: A Comprehensive Foundation. Macmillan College Publishing Company, 1994. D. O. Hebb. The Organization of Behaviour: A Neurophysiological Theory. Wiley, 1949. J. Hertz, A. Krogh, and R. Palmer. Introduction to the Theory of Neural Computation. Perseus Publishing, 1991. D. H. Hubel and T.Ñ.Wiesel. Receptive Fields, Binocular Interaction and Functional Architecture in the Cat’s Visual Cortex. Journal of Physiology, 160, 1962. International Telecommunication Union. Interfaces for digital component video signals in 525-line and 625-line television systems operating at the 4:2:2 level of recommendation itu-r bt.601. 1998. J. Iriarte. Velocimetría PIV en tiempo real basada en lógica programable FPGA. Proyecto Integrador de la Carrera de Ingeniería Nuclear, Instituto Balseiro, 2008. J. H. Kaas. The Reorganization of Somatosensory Cortex Following Peripheral Nerve Damage in Adult and Developing Mammals. Annual Review of Neuroscience, 6, 1983. S. Kilts. Advance FPGA Design. Wiley, 2007. T. Kohonen. Self-Organization and Associative Memory. Springer, 1984. T. Kohonen. The Neural Phonetic Typewriter. Computer, 1988. T. Kohonen. The Self-Orginizing Map. Proceedings of the IEEE, 78, 1990. K. J. Lang and G. E. Hinton. The Development of the Time-Delay Neural Network Architecture for Speech Recognition. Technical Report CMU-CS-88-152, 1, 1988. LeCun. Handwritten Digit Recognition with a Back-propagation Network. Advances in Neural Information Processing Systems, 2, 1990. C. Maxfield. The Design Warrior’s Guide to FPGAs. Mc Graw Hill, 2006. A. Meyering and H. Ritter. Learning 3D Shape Perception with Local Linear Maps. 1992. J. Moody and C. Darken. Fast Learning in Networks of Locally-Tunned Processing Units. Neural Computation, 1, 1989. Nixon and A. Aguado. Feature Extraction and Image Processing. Academic Press, 2001. T. Poggio and S. Edelman. A Network that Learns to Recognize 3D Objects. Nature, 343, 1990. H. Ritter. Neural Computation and Self-Organizing Maps. Addison-Wesley, 1992. H. Ritter and T. Kohonen. Self-Organizing Semantic Maps. Biological Cybernetics, 61, 1989. F. Rosenblatt. The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain. Psychological Review, 65, 1958. D. Rumelhart and D. Zipser. Feature Discovery by Competitive Learning. Cognitive Science, 1, 1985. T. J. Senjowski and Rosenberg. Parallel Networks that Learns to Pronounce English Text. Complex Systems, 1, 1987. J. F. Snow. Digital Video Test Pattern Generators. Xilinx Application Note, XAPP248, 2002. N. Suga. The Extent to which Bisonar Information is Represented in the Bat Auditory Cortex. Dynamic Aspects of Neocortical Function, 1, 1985. P. Tamayo. Interpreting Patterns of Gene Expression with Self-Organizing Maps: Methods and Application to Hematopoietic. Proceedings of the National Academy of Science of USA, 96, 1999. J. Tenenbaum. A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science, 290, 2000. E. L. Thorndike. Animal Intelligence. 1898. M. Turk and A. Pentland. Eigenfaces for Recognition. Journal of Cognitive Neuroscience, 3, 1991. P. Werbos. Neurocontrol and Supervised Learning: an Overview and Valuation. Handbook of Intelligent Control, 1, 1992. S.Winkler. Model-Based Pose Estimation of 3-D Objects from Camera Images Using Neural Networks. Diplomarbeit, 1996. S. Winkler. A Feature Map Approach to Pose Estimation Based on Quaternions. Lecture Notes on Computer Science, 1327, 1997. S. Winkler, P. Wunsch, and G. Hirzinger. Real-Time Pose Estimation of 3-D Objects from Camera Images Using Neural Networks. 1997.
Materias:Matemática > Lógica matemática
Física
Divisiones:Investigación y aplicaciones no nucleares > Física > Física estadística
Código ID:215
Depositado Por:Marisa G. Velazco Aldao
Depositado En:12 Oct 2010 14:36
Última Modificación:12 Oct 2010 14:36

Personal del repositorio solamente: página de control del documento