Medición no invasiva de la concentración de hierro en hígado mediante resonancia magnética nuclear de 1.5T / Non invasive measurement of liver iron concentration with 1.5T nuclear magnetic resonance

Castrillón Fernández, Manuel J. (2010) Medición no invasiva de la concentración de hierro en hígado mediante resonancia magnética nuclear de 1.5T / Non invasive measurement of liver iron concentration with 1.5T nuclear magnetic resonance. Maestría en Física Médica, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
2114Kb

Resumen en español

Esta tesis describe la implementación de un método para la medición no invasiva de la concentración de hierro en el hígado (CHH) usando imágenes de resonancia magnética (IRM) nuclear de 1.5T. La biopsia punzante es la técnica gold standard que permite una medición directa de la CHH por espectroscopia de absorción atómica y una evaluación histológica de la patología hepática. Sin embargo, la biopsia hepática no es utilizada como un método rutinario debido a que es invasivo, incómodo y de alto riesgo para el paciente. Además, el tamaño de la muestra es inadecuado y la no uniformidad de la distribución de hierro en el hígado puede dar resultados erróneos. Otro método ampliamente utilizado para evaluar la cantidad total de sobrecarga de hierro corporal es medir la concentración de ferritina en el suero sanguíneo, cuyo análisis representa una baja correlación para usarse como un valor de diagnóstico y pronóstico de enfermedades relacionadas con la sobrecarga de hierro. La medición de la CHH usando IRM, reduce el tiempo de análisis del valor de concentración de hierro, debido a que la biopsia debe ser realizada por un médico especialista y su estudio tarda en ser evaluado. Igualmente, esta técnica permite un apoyo visual a los especialistas y fortalece las pruebas realizadas con las otras técnicas utilizadas, para darle al paciente un diagnóstico rápido, económico y no invasivo. Además de ser apropiada para monitorear los tratamientos quelantes, evaluando la respuesta al tratamiento a lo largo del tiempo, para evitar riesgos y dar pronósticos acertados durante su uso. Este trabajo presenta los resultados de un estudio en el campo de las imágenes médicas, que se basó en la elaboración de una rutina software que permite cuantificar la concentración de hierro en el hígado, mediante la técnica de relaxometría R2 o medición de la tasa de relajación de la magnetización transversal, obtenida a partir de IRM.

Resumen en inglés

This thesis describes the implementation of a method for noninvasive measurement of the liver iron concentration (LIC) using magnetic resonance imaging (MRI) of 1.5T. Puncture biopsy is the gold standard technique that allows direct measurement of LIC by atomic absorption spectroscopy and histological assessment of liver pathology. However, liver biopsy is not used as a routine method because it is invasive, uncomfortable and risky for the patient. In addition, the sample size is inadequate and the non-uniformity of the distribution of iron in the liver may give erroneous results. One widely used to assess total body iron overload is to measure the concentration of ferritin in blood serum, which represents a low correlation analysis for use as a diagnostic and prognostic value of disease related to iron overload. Measurement of LIC using MRI scanning, reduces the analysis time of iron concentration value, because the biopsy should be performed by a medical specialist and the study delay to be evaluated. Also, this technique provides a visual support to specialists and strengthens the tests carried out on other techniques, to give the patient a rapid, inexpensive and not invasive diagnosis. In addition, to being appropriate to monitor chelation therapy, evaluating treatment response over time, to avoid risks and provide accurate prognosis during use. This paper presents the results of a study in the field of medical imaging, which was based on the development of a software routine to quantify the concentration of iron in the liver using R2 relaxometry technique or measurement of transverse magnetization relaxation rate, obtained from MRI.

Tipo de objeto:Tesis (Maestría en Física Médica)
Palabras Clave:Nuclear magnetic resonance; Resonancia magnética nuclear; Liver; Hígado; Ferritin; Ferritina; Magnetic resonance imaging; Imágenes de resonancia magnética; Relaxometry; Relaxometría
Referencias:[1] Pérez G, Vittori D, Pregi N, Garbossa G, Nesse A. Homeostasis del hierro. Mecanismos de absorción, captación celular y regulación. Acta Bioquim Clin Latinoam, 39 (3): 301-314, 2005. [2] Ponka P. Tissue-specific regulation of iron metabolism and heme synthesis: distinct control me chanisms in erythroid cells. Blood, 89: 1-25, 1997. [3] Crichton RR, Wilmet S, Legssyer R, ward RJ. Molecular and cellular mechanisms of iron homeostasis and toxicity in mammalian cells. J Inorg Biochem, 89: 1-25, 2002. [4] Qian SY, Buettner GR. Iron and dioxygen chemistry is an important route to initiation of biological free radical oxidations: an electron paramagnetic resonance spin trapping study. Radic Biol Med, 26: 1447-1456, 1999. [5] Wick M, Pinggera W, Lehmann P. Iron metabolism, diagnosis and therapy of anemias. 3th ed. New York : Springer, 1996. [6] Fairbanks V, Klee G. Biochemical aspects of hematology. Philadelphia : WB Saunders, 1986. [7] Forrelat M, Gautier H, Fernández N. Metabolismo del hierro. Rev Cubana Hematol Inmunol Hemoter. 16: 149-160, 2000. [8] Siah CW, Trindera D, Olynyk JK. Iron overload. Clinica Chemical Acta. 358: 24-36, 2005. [9] Alonso JJ, Cánovas A, De la Prieta R, Pereira T, Ruíz C, Aguirre C. Conceptos generales sobre el metabolismo del hierro. Gac med Bilbao. 99: 33-37, 2002. [10] Andrews NC. Disorders of iron metabolism. NEJM. 341: 1986-1995, 1999. [11] Gujja P, Rosing DR, Tripodi DJ, Shizukuda Y. Iron overload cardiomyopathy: better understanding of an incresing disorder. Journal of the American College of Cardiology. 13 (56): 1001-1012, 2010. [12] Andrews SC, Arosio P, Bottke W. Structure function and evolution of funtions of ferritins. J Inorg Biochem. 47: 161-174, 1992. [13] Brittenham GM. Disorders of iron metabolism: iron deficiency and overload. En: Shattil SJ, Furie B, Hoffman RBE. Hemotology: Basic Principles and Practice. New York: Churchill Livingstone, 2000. [14] Pérez Candela V. Resonancia magnética nuclear en pediatría. BSCP Can Ped. 2 (29): 43-49, 1992. [15] Aisen P, Enns C, Wessling-Resnick M. Chemestry and biology of eukaryotic iron metabolism. J Biochem Cell Biol. 33: 940-959, 2001. [16] Angelucci E, Brittenham GM, McLaren C, et al. Hepatic iron concentration and total body iron stores in thalassemia major. N Engl J Med. 343: 327-331, 2000. [17] Brittenham GM, Allen CJ, Farell DE. Noninvasive methods for quantitative assessment of transfusional iron overload in sickle cell disease. Semin Hematol. 38: 37-56, 2001. [18] Deugnier Y, Turlin B. Pathology of hepatic iron overload. World J Gastroenterol. 13 (35): 4755- 4760, 2007. [19] Brittenham GM, Badman DG. Noninvasive measurement of iron: report of an NIDDK workshop. Blood. 101: 15-19, 2003. [20] Gomori JM, Grossman RI, Drott HR. MR relaxation times and iron content of thalassemic spleens: an in vitro study. Am J. Roentgenol. 150: 567-569, 1988. [21] Hankins JS, McCarville MB, Loeffler RB, Smeltzer MP, Onciu M, Hoffer FA, Li CS, Wang WC, Ware RE, Hillenbrand CM. R2* magnetic resonance imaging of the liver in patients with iron overload. BLOOD. 113: 4853-4855, 2009. [22] López Santiago N. Indicaciones de terapia quelante de hierro. Rev Mex Med Tran. 2: 75-78, 2009. [23] Jiménez R, Martos E, Díaz M. desde el laboratorio a la clínica: Metabolismo del hierro. An Pediatr Contin. 3: 352-356, 2005. [24] Castiella A, Zapata E, Alústiza JM. Non-invasive methods for liver fibrosis prediction in hemochromatosis: one step beyond. World J Hepatol. 2 (7): 251-255, 2010. [25] Adams PC, deugnier Y, Moirand R, et al. The relationship between iron overload, clinic symptoms and age in 410 patients with genetic hemochromatosis. Hepatology. 25: 162-166, 1997. [26] Bacon BR, Powell LW, Adams PC, et al. Molecular medicine and hemochromatosis: Atthe crossroads. Gastroenterology. 116: 193-207, 1999. [27] Shaheen NJ, Bacon BR, Grimm IS. Clinical characteristics of hereditary hemochromatosis in patients who lack the C282Y mutation. Hapatology. 28: 526-529, 1998. [28] Anie KA, Massaglia P. Terapias psicológicas para talasemia. Oxford : 2, 2008. Disponible en: http://www.update-software.com. [29] Brown MA, Semelka RC. MRI: basic principles and applications. Third edition. Hoboken: John Wiley & Sons, 2003. [30] Westbrook C. MRI at a glance. First edition. Malden: Blackwell Science Ltd, 2002. [31] Gili J. Introducción biofísica a la resonancia magnética. Barcelona. Primera edición. Centre Diagnóstic Pedralbes, 1993. [32] Runge VM, Clanton JA, Lukehart CM, Partain CL, James AE. Paramagnetic agents contrastenhanced NMR imaging: a review. Am J Roentgenol. 141: 1209-1215, 1983. [33] Gálvez M, Farías M, Asahi T, Bravo E. Cálculo de tiempos T1 y T2 in vitro. Revista Chilena de Radiología. 3 (11): 109-115, 2005. [34] Bloembergen N, Purcell EM, Pound RV. Relaxation effects in nuclear magnetic resonance absorption. Phys. Rev. 73: 679-715, 1948. [35] Fernández López MB. Ferritinas naturales y sintéticas. Implicaciones nanobiomédicas. Tesis Doctoral: Universidad de Granada, 2009. [36] Brash RC, Wesbey GE, Gooding CA, Koerper MA. Magnetic resonance imaging of transfusional hemosiderosis complicating thalassemia major. Radiology. 150: 767-771, 1984. [37] Stark DD, Moseley ME, Bacon BR, Moss AA, Goldberg HI, Bass NM, James TL. Magnetic resonance imaging and spectroscopy of hepatic iron overload. Radiology. 154: 137-142, 1985. [38] Fisher R, Harmatz PR. Non.invasive assessment of tissue iron overload. Hematology. 215-221, 2009. [39] Clark PR, Chua-anusorn W, St. Pierre TG. Proton transverse relaxation rate (R2) images of ironloaded liver tissue mapping local tissue iron concentrations with MRI. Magnetic resonance in medicine. 49: 572-575, 2003. [40] Engelhardt R, Langkowski JH, Fisher R, Nielsen P, Kooijman H, Heinrich HC, Bucheler E. Liver iron quantification: studies in aqueous iron solutions, iron overloaded rats, and patients with hereditary hemochromatosis. Magn Reson Imag. 12: 999-1007, 1994. [41] Papakonstantinou OG, Maris TG, Kostaridou V, Gouliamos AD, Koutoulas GK, Kalovidouris AE, Papavassiliou GB, Kordas G, Kattamis C, Vlahos LJ, Papavassiliou CG. Assessment of liver iron overload by T2-quantitative magnetic resonance imaging: correlation of T2-QMRI measurements with serum ferritin concentration and histologic grading of siderosis. Magn Reson Imag. 13: 967- 977, 1995. [42] Clark PR, Chua-anusom W, St.Pierre TG. Proton transverse relaxation rate (R2) images of liver tissue: mapping local tissue iron concentrations with MRI. Magn Reson Med. 49: 572-575, 2003. [43] Jensen JH, Chandra R. Theory of nonexponential NMR signal decay in liver with iron overload or superparamagnetic iron oxide particles. Magn Reson Med. 47: 1131-1138, 2002. [44] Gossuin Y, Roch A, Muller RN, Gillis P, Lo Bue F. Anomalous nuclear magnetic relaxation of aqueous solutions of ferritin: an unprecedented first-order mechanism. Magn Reson Med. 48: 959- 964, 2002. [45] Wood JC, Fassler JD, Meade T. Mimicking liver iron overload using liposomal ferritin preparations. Magn Reson Med. 51: 607-611, 2004. [46] Clark PR, Chua-anusorn W, St. Pierre TG. Reduction of respiratory motion artifacts in transverse relaxation rate (R2) images of the liver. Computarized medical imaging and graphics. 28: 69-76, 2004. [47] Gandon Y, Olivié D, Guyader D, Aubé C, Oberti F, Sebille V, Deugnier Y. Non-invasive assessment of hepatic iron stores by MRI. The Lancet. 363: 357-362, 2004. [48] Alústiza JM, Artetxe J, Castiella A, Agirre C, Emparanza JI, Otazua P, García-Bengoechea M, Barrio J, Mújica F, Recondo JA. MR Quantification of hepatic iron concentration. Radiology. 230: 479-484, 2004. [49] Tziomalos K, Perifanis V. Liver iron content determination by magnetic resonance imaging. World Journal of Gastroenterology. 16 (13): 1587-1597, 2010. [50] Wood JC, Enríquez C, Ghugre N, Tyzka JM, Carson S, Nelson MD, Coates TD. MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients. BLOOD. 4:(106) 1460-1465, 2005. [51] St. Pierre TG, Clark PR, Chua-anusorn W, Fleming AJ, Jeffrey GP, Olynyk JK, Pootrakul P, Robins E, Lindeman R. Noninvasive measurement and imaging of liver iron concentrations using proton magnetic resonance. BLOOD. 2 (105): 855-861, 2005. [52] St Pierre TG, Clark PR, Chua-anusorn W, Fleming A, Pardoe H, Jeffrey GP, Olynyk JK, Pootrakul P, Jones S, Moroz P. Non-invasive measurement and imaging of tissue iron oxide nanoparticle concentrations in vivo using proton relaxometry. Journal of Physics: Conference Series : Institute of Physics Publishing. 17: 122-126, 2005. [53] St Pierre TG, Clark PR, Chua-anusorn W. Single spin-echo proton transverse relaxometry of ironloaded liver. NMR in Biomed. 17: 446-458, 2004. [54] Carneiro AA, Fernandes JP, De Araujo DB, Elias J, Martinelli AL, Covas DT, Zago MA, Angulo IL, St. Pierre TG, Baffa O. Liver iron concentration evaluated by two magnetic methods: magnetic resonance imaging and magnetic susceptometry. Magnetic resonance in medicine. 54: 122-128, 2005. [55] Stark DD, Moseley ME, Bacon BR, et al. Magnetic resonance imaging and spectroscopy of hepatic iron overload. Radiology. 154: 137-142, 1985. [56] Gossuin Y, Burtea C, Monseux A, Toubeau G, Roch A, Muller RN, Gillis P. Ferritin-induced relaxation in tissues: an in vitro study. Journal of magnetic resonance imaging. 20: 690-696, 2004. [57] Vymazal J, Urgosik D, Bulte JW. Differentiation between hemosiderin- and ferritin-bound brain iron using nuclear magnetic resonance and magnetic resonance imaging. Cell Mol Biol. 46: 835- 842, 2000. [58] Muñoz de Hernández A, Pedrosa I. Resonancia Magnética. En: García Mónaco R. Stoopen ME. Avances en diagnóstico por Imágenes. Buenos Aires: Ediciones Journal, 2009. [59] Prasertkulchai W. Measurement of transverse relaxation time (T2) of iron by using 1.5T and 3T magnetic resonance imaging; a study in phantom model. Thesis of master of science: Mahidol University, 2008. [60] PHILIPS. Manual de Aplicación. Conceptos Básicos. Volumen 1. Achieva Versión 2.6.1. Países Bajos : Philips Medical Systems, 2008. [61] PHILIPS. Manual de Aplicación. Métodos de adquisición. Volumen 2. Achieva Versión 2.6.1. Países Bajos : Philips Medical Systems, 2008. [62] Gudbjartsson H, Patz S. The Rician distribution of noisy MRI data. Magn. Reson. Med. 34: 910- 914, 1995. [63] Sijbers J. Signal and noise estimation from magnetic resonance images. Thesis: University of Antwerp, 1998. [64] Clark PR, Chua-anusorn W, St Pierre TG. Bi-exponential proton transverse relaxation rate (R2) image analysis using RF field intensy-weighted spin density projection: potential for R2 measurement of iron-loaded liver. Magn. Reson. Imag. 21: 519-530, 2003. [65] Consul PC. Generalized Poisson distributions: properties and applications. New York: Marcel Dekker, 1989. [66] Ambagaspitiya RS, Balakrishnan N. On the compound generalized Poisson distributions. Astin Bulletin. 24 (2), 1994. [67] Lerner B, Lone A, Rao M. On generalized Poisson distributions. Probability and mathematical statistics. 2 (17): 377-385, 1997. [68] Andersen AH. On the Rician distribution of noisy MRI data. Magn. Reson. Med. 36: 331-333, 1996. [69] Positano V, Salani B, Pepe A, Santarelli MF, De Marchi D, Ramazzotti A, Favilli B, Cracolici E, Midiri M, Cianciulli P, Lombardi M, Landini L. Improved T2* assessment in liver iron overload by magnetic resonance imaging. Magnetic Resonance Imaging. 27: 188-197, 2009. [70] Asociación Médica Argentina. Código de ética para el equipo de salud. Buenos Aires: Dirección nacional del derecho del autor, 2001. [71] Andersen C, Jensen FT. Presicion, accuracy, and image plane uniformity in NMR relaxation time imaging on a 1.5T whole-body MR imaging system. Magn. Reson. Imag. 12: 775-784, 1994. [72] Fisher R, Tiemann CD, Engelhardt R, et al. Assessment of iron stores in children with transfusión siderosis by biomagnetic liver susceptometry. Am J Hematol. 60: 289-299, 1999. [73] Bauman JH, Harris JW. Estimation of hepatic iron stores by in vivo measurement of magnetic susceptibility. J Lab & Clin Med. 70 (2): 246-257, 1967.
Materias:Medicina > Diagnóstico por imagen y medicina nuclear
Divisiones:FUESMEN
Código ID:244
Depositado Por:Marisa G. Velazco Aldao
Depositado En:17 Feb 2011 09:49
Última Modificación:17 Feb 2011 09:49

Personal del repositorio solamente: página de control del documento