Aleaciones con memoria de forma, propiedades mecánicas y microestructura. Desarrollo de sistemas de amortiguamiento basados en el efecto superelástico. / Shape memory alloys, mechanical propierties and microstructure. Development of damping systems based on superelastic effect.

Soul, Hugo (2011) Aleaciones con memoria de forma, propiedades mecánicas y microestructura. Desarrollo de sistemas de amortiguamiento basados en el efecto superelástico. / Shape memory alloys, mechanical propierties and microstructure. Development of damping systems based on superelastic effect. Tesis Doctoral en Ciencias de la Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]PDF (Tesis)
Español
18Mb

Resumen en español

El Efecto Superelástico, característico de las Aleaciones con Memoria de Forma (AMF), consiste en la posibilidad de producir deformaciones reversibles cercanas al 10% por la aplicación de cargas mecánicas. Esto es posible debido a la existencia de una transformación martensítica en estos materiales la que se puede inducir cuando la carga aplicada supera un cierto valor crítico. Al quitar la misma se produce la retransformación, aunque a una tensión inferior a la anterior, recuperándose las dimensiones originales. En consecuencia, la curva de tensión-deformación ( s−e) encierra un área de histéresis, que representa energía disipada. En el ámbito de la ingeniería estructural se busca explotar esta capacidad de disipar energía asociada al comportamiento superelástico en el diseño de sistemas pasivos de amortiguamiento en estructuras sometidas a cargas dinámicas. En el presente trabajo se estudiaron distintos aspectos vinculados con este tipo de aplicaciones utilizando materiales comerciales de aleación NiTi, que dentro de las AMF, son las que han alcanzado mayor relevancia tecnológica hasta el presente. Se realizó una extensa caracterización experimental sobre alambres de NiTi que incluyó la evaluación de las propiedades disipativas bajo diferentes condiciones de ciclado y el estudio de los efectos en el comportamiento asociados al carácter localizado de la transformación. Entre las propiedades disipativas están el área de histéresis DW y el amortiguamiento específico (SDC) que relaciona la energía disipada y el trabajo máximo de deformación W. Un aspecto común para las geometrías estudiadas es la evolución de la energía de histéresis y del SDC con el número de ciclos, junto con una acumulación de deformación plástica hasta alcanzar un comportamiento estable. Dependiendo de las condiciones en que se realice este ciclado y del diámetro del alambre los valores de DW varían desde 20-25 MJ/m3 iniciales a 5-10 MJ/m3 acumulando deformaciones residuales de hasta un 2%. Los alambres en condición estable pueden presentar SDC en torno a 0,5 a temperatura ambiente. Por otro lado se observó una importante dependencia de las curvas s−e con la velocidad de ciclado. Tanto el SDC como DW se maximiza para una determinada velocidad, pudiendo alcanzar hasta el doble de su valor en condiciones isotérmicas. Esta dependencia se estudia elaborando un modelo 1-D que permite entender este comportamiento a través de la consideración del acoplamiento entre los efectos térmicos asociados al calor latente de transformación y las tensiones que dependen a su vez de la temperatura. Se evalúa así el aporte de los efectos térmicos al área de histéresis mecánica, existiendo un máximo que explica los resultados experimentales. Este modelo fue luego modificado de manera de incluir la evolución de las tensiones de transformación con el ciclado (fatiga funcional). Se simularon diferentes historias de ciclados, obteniéndose importantes acuerdos con datos experimentales. Se realizaron además ensayos de respuesta dinámica sobre un pórtico flexible y un cable estructural a los que se incorporaron alambres de NiTi como elemento amortiguador, Los resultados demuestran la capacidad de los alambres en producir la mitigación de las oscilaciones respecto de las estructuras libres. A partir de los registros de fuerzas y desplazamientos, y con la ayuda de simulaciones numéricas se puede verificar cuantitativamente el aporte de la histéresis Superelástica. Por otro lado se diseñó y ensayó un dispositivo amortiguador de doble acción en base a alambres de NiTi con el que se intentan además optimizar las propiedades de recentrado.

Resumen en inglés

Superelastic Effect, exhibited by the so-called Shape Memory Alloys (SMA) consists in the capacity of withstand deformations up to 10% under mechanical loading. This is possible due to the underlying martensític transformation which is induced when the applied load overcomes a critical value. When the load is retired the retransformation occurs and the deformation is recovered but at a lower stress level. As a consequence the stress-strain curve ( s−e) encloses a hysteresis loop, which mechanical energy dissipated as heat. Structural Engineers are interested on exploiting both, the energy dissipation capabilities and the possibility to develop devices with recentring characteristics in the design of passive damping systems for structures under dynamical loading. In the present work different aspects related with such applications, using commercial NiTi alloys which has reached the most important technological interest are addressed. An extensive experimental characterization which included the assessment of dissipative properties of NiTi wires under different cycling conditions and a study of the localized characteristics of the transformation were made. The hysteresis area DW and the Specific Damping Capacity SDC are the parameters with which the dissipative capacities are evaluated. The SDC relates DW and the maximum deformation work W. A common aspect among the different wire diameters is the evolution of both DW and the SDC with the number of cycles until up to a stable condition is reached. Depending on the conditions of this initial cycling and on the wire diameter, DW varies from 20-25 MJ/m3 to 5-10 MJ/m3 with the accumulation of residual strains up to 2%. Wires in stable conditions exhibit at ambient temperatures SDC values around 0.5. On the other hand, a strong dependence of s−e with cycling velocity was observed. There is a velocity at which both SDC and DW are maximized reaching the last up to the double of its value at very low velocities. This problem is addressed by developing a thermomechanical 1-D model with which is possible to get into account thermal effects associated to the transformation latent heat and the stresses which in turn depends on the temperature. The contribution of the thermal effects to the mechanical hysteresis is quantified by these. After this, the model was modified in order to introduce the transformation stress changes with the cycle number (functional fatigue). Several cycling histories were simulated, getting important agreement with experimental data. Dynamical response tests were performed additionally over a flexible portico and a structural cable which different NiTi configurations were implemented. Results show the damping capabilities of the NiTi wires with the mitigation of the oscillations in comparison with the free structures. The performances were quantitatively assessed using displacement and force measurements. With the help of some simple numerical simulations the contribution of the hysteresis can be verified. Finally, some characterization tests results of a double-effect device are presented. With this device the recentring capabilities are expected to be optimized.

Tipo de objeto:Tesis (Tesis Doctoral en Ciencias de la Ingeniería)
Palabras Clave:Shape memory alloys; Aleaciones con memoria de forma; Superelasticity; Superelasticidad; Damping; Amortiguación; Thermomechanical coupling; Acoplamiento Termomecánico; Mechanical properties; Propiedades mecánicas; Microstructure; Microestructura
Referencias:[Ashby 2005] M. Ashby; Materials Selection in Mechanicals Design; 2da edición; Oxford; 2000; Butterworth-Hinemann. [Alford 1964] J. Alford, G. Housner, R. Martel; Spectrum Analisys of Strong Motion Earthquakes; First Technical Report; Office of Naval Research; California Institute of Technology; Pasadena; California; 1951 (Revised 1964). [Antonucci 2001] R. Antonucci, F. Balducci, M. Castellano, H. Ahmadi, I.Goodchild, K. Fuller; Viscoelastic Dampers For Seismic Protection of Buildings; An Aplication to an Existing Building; Proceeding of the 5th world Congress of Joints, Bearings and Seismic Systems for Concrete Structures; Roma, Italia; Octubre 2001. [Azadi 2007] B. Azadi, R. Rajapakse, D. Maijer; Multi-dimensional constitutive modeling of SMA during unstable pseudoelastic behavior; International Journal of Solids and Structures; 44, 6473–6490; 2007. [Baratta 2002] A. Baratta, I. Corbi; On the dynamic behavior of elastic–plastic structures equipped with pseudoelastic SMA reinforcements; Computational Materials Science; 25, 1–13; 2002. [Baratta 2004] A. Baratta, I. Corbi; Optimal design of base-isolators in multi-storey buildings; Computers and Structures; 82, 2199–2209; 2004. [Bhattacharya 2004] Bhattacharya K, Conti S, Zanzotto G, Zimmer; Crystal symmetry and the reversibility of martensitic transformation; J. Nature; 428, 55-59; 2004. [Bhaskararao 2006] A. Bhaskararao, R. Jangid; Seismic analysis of structures connected with friction dampers; Engineering Structures; 28, 690–703; 2006. [Brailovsky 2003] V. Brailovsky, S. Prokoshkin, P. Terriault, F. Trochu; Shape Memory Alloys; Ecole de technologie superiere; Québec; 2003. [Buehler 1963] W. Buehler, J. Gilfrich, R. Wiley; Effects of low temperature phase changes on the mechanical properties of alloys near composition TiNi, Journal of Applied Physics; 34, 1473-1475; 1963. [Burden 1998] R. Burden, J. Faires; Análisis Numérico; 6ta edición; México D.F.; 1998; International Thomson Editors. [Casciati 2008] F. Casciati, L. Faravelli, A. Isalgue, F. Martorell, H. Soul, V. Torra; SMA fatigue in civil engineering applications; Advances in Science and Technology; 59, 168-177; 2008. [Castellano 2000] M. Castellano; Proceedings of the Final Workshop of the ISTECH Project; junio 2000; Ispra Italia. [Castellano 2001] M. Castellano; Applications of seismic devices on Italian heritage cultural structures; Proceedings of the 7th International Seminar of Seismic isolations, passive dissipation, and active control of vibrations of structures, Assisi, Italia; Octubre 2-5-2001. [Cahn 1995] R. W. Cahn, P. Haasen; Physical Metallurgy; 4ta edición; Amsterdam; 1996; North Holland. [Calloch 2006] S. Calloch, K. Taillard, S. A. Chirani, C. Lexcellent, E. Patoor; Relation between the martensite volume fraction and the equivalent transformation strain in shape memory alloys; Materials Science and Engineering A; 438, 441–444; 2006. [Caughey 1960] T. Caughey, Sinusoidal excitation of a system with bilinear hysteresis; Journal of Applied Mechanics; 27, 640–643; 1960. [Chambers 2004] J. Chambers, T. Kelly; Nonlinear Dynamic Analysis-The Only Option For Irregular Structures; (En la 13th World Conference on Earthquake Engineering); Proceedings of the 13th World Conference on Earthquake Engineering; paper nro 1389; Agosto 2004; Vancouver; Canadá. [Chopra 2003] A Chopra, C. Chintanapakdee; Inelastic Deformation Ratios for Design and Evaluation of Structures: Single-Degree-of-Freedom Bilinear Systems; College of Engineering, University of California, Berkeley; EERC 2003-09; 2009. [Churchill 2009] C. Churchill, J. Shaw, M. Iadicola; Tips and tricks for characterizing shape memory alloy wire: Part 2, Fundamental Isothermal Responses; Experimental Techniques; 2, 51-62; 2009. [Debdutta 2008] R. Debdutta, V. Buravalla, P. Mangalgiri, S. Allegavi, U. Ramamurtya; Mechanical characterization of NiTi SMA wires using a dynamic mechanical analyzer; Materials Science and Engineering A; 494, 429-425; 2008. [Dell Ville 2010] R. Dell ville, B. Malard, J. Pilch, P. Sittner, D. Schryvers; Microstructure changes during non-conventional heat treatment of thin Ni–Ti wires by pulsed electric current studied by transmission electron microscopy; Acta Materialia; 58, 4503–4515; 2010. [Des Roches 2002] R. Des Roches , M. Delemont; Seismic retrofit of simply supported bridges using shape memory alloys; Engineering Structures; 24, 325–332; 2002. [Dolce, 2000] M. Dolce, D. Cardone, R. Marnetto; Implementation and testing of passive control devices based on shape memory alloys; Earthquake Engineering and Structures. Dynamics; 29, 945-968; 2000. [Dolce 2001] M. Dolce, D. Cardone, R. Marnetto; SMA Re-centering Devices for Seismic Isolation of Civil Structures; Smart systems for bridges, structures, and highways. Conference; Newport Beach, USA; mayo 2001; SPIE proceedings series; 4330, 238-24; 2001. [Dolce 2001b] M. Dolce, D. Cardone; Mechanical Behaviour of Shape Memory Alloys for Seismic Applications; International Journal of Mechanical Sciences; 43, 2657- 2677; 2001. [Dolce 2003] D. Cardone, G. De Canio, M. Dolce, et al; Comparison Of Different Passive Control Techniques Through Shaking Table Tests; Proceedings of the 8th World Seminar on Seismic Isolation, Energy Dissipation and Active Vibration Control of Structure, Yerevan, Armenia, October , 2003. [Dolce 2005] M. Dolce, D. Cardone, F. C. Ponzo, C. Valente; Shaking table tests on reinforced concrete frames without and with passive control systems; Earthquake Engineering and Structural Dynamics; 34, 1687–1717; 2005. [Dolce 2005b] M. Dolce, D. Cardone; Fatigue resistance of SMA-martensite bars subjected to flexural bending; International Journal of Mechanical Sciences; 47, 1693-1717; 2005. [Duerig 1990] T W Duerig, K N Melton, D Stöckel, C M Wayman; Engineerig Aspects of Shape Memory Alloys; 1er edición; Londres; 1990; Butterworth-Hinemann. [Eggeler 2004] G. Eggeler, E. Hornbogen, A. Yawny, A. Heckmann, M. Wagner; Structural and functional fatigue of NiTi shape memory alloys; Materials Science and Engineering A; 378, 24–33; 2004. [Funakubo 1984] H Funakubo; Shape Memory Alloys; 1er edición; New York; 1987; Gordon and Breach Science Publisher. [Gall 2000] K. Gall, T. Lim, D. McDowell, H. Sehitoglu, Y. Chumlyakov; The role of intergranular constraint on the stress-induced martensitic transformation in textured polycrystalline NiTi; International Journal of Plasticity; 16, 1189-1214; 2000. [Gandhi 1999] F. Gandhi, D. Wolons; Characterization of the pseudoelastic damping behavior of shape memory alloy wires using complex modulus; Smart Materials and Structures; 8, 49-56; 1999. [Ghosh 2004] S. Ghosh, A. Fanella; Seismic and Wind Design of Concrete Buildings; 1er edición; International Code Council Inc; United States of America; 2004. [Hanks 1979] T. Hanks, H.Kanamori; A moment magnitude scale; Journal of geophysical research; 84, 2348-2350; 1979. [He 2010] Y. He, Y. Yin, R. Zhou, Q. Sun; Ambient effect on damping peak of NiTi shape memory alloy; Materials Letters; 64, 1483-1486; 2010. [He 2010b] Y. He, Q. Sun; Rate-dependent domain spacing in a stretched NiTi strip; International Journal of Solids and Structures; 47, 2775-2783; 2010 [Heller 2009] L. Heller, P. Sittner, J. Pilch, M. Landa; Factors Controlling Superelastic Damping Capacity of SMAs; Journal of Materials Engineering and Performance; 18, 603 - 611; 2009. [Hill 1950] R. Hill; The Mathematical Theory Of Plasticity; 1er edición; New York; Oxford University Press; 1950 [Honeycombe 1995] Honeycombe R., Badheshia H.K.; Steels, Microstructures and Properties; Segunda Edición; Londres, 1995; Edward Arnold. [Huang 2004] W.M. Huang; Transformation front in shape memory alloys; Materials Science and Engineering A; 392, 121–129; 2005. [Iadicola 2002] M. Iadicola, J. Shaw; The Effect of Uniaxial Cyclic Deformation on the Evolution of Phase Transformation Fronts in Psedoelastic NiTi Wire; Journal of Intelligent Material Systems and Structures; 13, 143-155; 2002. [Iadicola 2004] M. Iadicola, J. Shaw; Rate and thermal sensitivities of unstable transformation behavior in a shape memory alloy; International Journal of Plasticity; 20, 577–605; 2004. [Iadicola 2008] M. A. Iadicola, S. A. Shaw; The Effect of Uniaxial Cyclic Deformation on the Evolution of Phase Transformation Fronts in Pseudoelastic NiTi Wire; Journal of intelligent material systems and structures; 13, 143-155; 2008. [Incropera 1996] Incropera, D. DeWitt; Fundamentals of Heat and Mass Transfer; 4ta edición ; John Wiley & Sons; Toronto, 1996. [Isalgue 2008] A. Isalgue, V. Torra, A. Yawny, F. C. Lovey; Metastable Effects On Martensitic Transformation In Sma, Part VI, The Clausius–Clapeyron relationship; Journal of Thermal Analisys and Calorimetry; 91,991-998; 2008. [Johnson 2008] R. Johnson, J. Padgett, M. Maragakis, R. DesRoches; M. Saiidi; Large scale testing of nitinol shape memory alloy devices for retrofitting of bridges; Smart Materials and Structures; 17, 1-10; 2008. [Kelly 2001] T. Kelly; Basis Isolation in Structures, Design Guidelines; Holmes Consulting Group; 2001; Wellington, New Zealand. [Kelly 2001b] T. Kelly; In Structure Damping And Energy Dissipation; Design Guidelines; Holmes Consulting Group; New Zealand; 2001. [Lewis 1979] Lewis E., K. Morgan; Numerical Methods in Thermal Problems; 1er edición;1979; Swansea, UK; Redwood Burn Limited. [Liu 1999] Y. Liu; On the nucleation and propagation of stress-induced martensitic transformation in NiTi; Materials Science & Engineering A; 271, 506–508; 1999. [Maletta 2009] C. Maletta, A. Falvo, F. Furgiuele, J. Reddy; A phenomenological model for superelasticity in NiTi alloys; Smart Materials and Structures; 18, artículo nro. 025005; 2009. [Manchiraju 2010] S. Manchiraju, P. Anderson; Coupling between martensitic phase transformations and plasticity: A microstructure-based finite element model; International Journal of Plasticity; 26, 1508-1527; 2010. [Martelli 2006] A. Martelli; Modern Seismic Protection Systems for Civil and Industrial Structures; Final Report of the SAMCO 2006; F11 Selected Papers; 2006; [Massalski 1990] T. Massalski, H. Okamoto, P. Subramanian, L Kacprzak; Binary alloy phase diagrams; 2nd edition, 3 ; 2874. 1990; Materials Park; ASM International; [Masuda 2002] A. Masuda, M. Noori; Optimization of hysteretic characteristics of damping devices based on pseudoelastic shape memory alloys ;International Journal of Non-Linear Mechanics; 37, 1375 – 1386, 2002. [Mc Cormick 2006] Mc Cormick, R. DesRosches, D. Fugazza, F. Auricchio, Seismic Vibration Control Using Superelastic Shape Memory Alloys; Journal of Engineering Materials and Technology, 128, 294-301; 2006. [Mc Kelvey 1999] A. Mc Kelvey, R. Ritchie; Fatigue-Crack Propagation in Nitinol, a Shape Memory and Superelastic Endovascular Stent Material; Journal of Biomedical Materials Research; 47, 301-307; 1999. [Messner 2003] C. Messner, E. Werner; Temperature distribution due to localised martensitic transformation in SMA tensile test specimens; Computational Materials Science; 26, 95–101; 2003. [Memry 2011] www.memry.com; Sitio Web de Memry GMBH (fabricante y proveedor de nitinol) [Miller 1997] K. Miller; The three thresholds for fatigue crack propagation; Fatigue and fracture mechanics: 27th volume, ASTM STP, 1296, 267-286; 1997. [Miyazaki 1981] S. Miyazaki, K. Otsuka, Y. Suzuki; Transformation pseudoelasticity and deformation behavior in a Ti–50.6 at.% Ni alloy; Scripta Metallurgica; 15, 287- 291; 1981. [Miyazaki 1986] S. Miyazaki, T. Imai, Y. Igo, K. Otsuka, Effect of Cyclic Deformation on the Pseudoelasticity Characteristics of Ni-Ti Alloys; Metallurgical Transactions A; 17, 115-120; 1986. [Miyazaki 1988] S. Miyazaki, Y. Sugaya, K. Otsuka; Shape Memory Materials, Proceedings of International Meeting on Advanced Materials; 251, 257; 1988. [Miyazaki 1989] S. Miyazaki, K. Otsuka, C. Wayman; The Shape Memory associated with martensitic transformation in NiTi Alloys-I: Self Accommodation; Acta Metallurgica; 37, 1873-1884; 1989. [Nishida 1986] M.Nishida, C.Wayman, T.Honma; Precipitation processes in nearequiatomic TiNi shape memory alloys, Metall Trans. A; 17, 1505-1515; 1986. [Nowick 1972] A. S. Nowick, B. S. Berry; Anelastic Relaxation in Crystalline Solids; 1er edición; New York; 1972; Academic Press. [Olbricht 2008] J. Olbricht. Spannungsinduzierte Phasenumwandlungen und funktionelle Ermüdung in ultrafeinkörnigen NiTi-Formgedächtnislegierungen; Tesis (Doctorado en Ingeniería). Bochum, Universidad de Rhur, 2008. [Otsuka 1977] Otsuka K, Shimizu; On The Crystallographic Reversibility Of Martensitic Transformations; Scripta Metall 1977; 11,757-760. [Otsuka 1998] K. Otsuka, C. Wayman; Shape Memory Materials; Cambridge; 1998; Cambridge University Press. [Otsuka 2005] K. Otsuka, X. Ren; Physical Metallurgy of Ti–Ni-based Shape Memory Alloys; Progress in Materials Science; 2005; 50, 511–678. [Palazzo 2006] G.Palazzo, F. Crisafulli, F. López Almansa; Los disipadores de energía por plastificación de metales en el diseño por capacidad; 1er Encuentro de Investigadores y Docentes de Ingeniería; Mendoza, Argentina; setiembre 2006. [Paradis 2008] A Paradis, P. Terriault, V. Brailovski, V. Torra; On the partial recovery of residual strain accumulated during an interrupted cycling loading of NiTi shape memory alloys; Smart Materials And Structures; 17, 2008. [Parducci 2005] A. Parducci, S. Costantini, A. Marimpietri, M. Mezzi, R. Radicchia, G. Tommesani; Base Isolation and Structural Configuration: The New Emergency Management Centre In Umbria; 9th World Seminar on Seismic Isolation, Energy Dissipation and Active Vibration Control of Structures, Kobe, Japan, June 13-16, 2005. [Patoor, 2006] E. Patoor, D. C. Lagoudas, P. B. Entchev, L. C. Brinson, X. Gao; Shape memory alloys, Part I: General properties and modeling of single crystals; Mechanics of Materials; 38, 391–429; 2006. [Piedboeuf, 1998] M. C. Piedboeuf and R. Gauvin; Damping Behaviour of shape memory alloys, strain amplitude, frequency and temperature dependence effects; Journal of sound and vibrations; 214, 885-901; 1998. [Puertas 2006] G. Puertas; Caracterización de materiales con memoria de forma base NiTi (Níquel - Titanio) para diseño de acoples; Proyecto Integrador (Ingeniería Mecánica); San Carlos de Bariloche; Instituto Balseiro, 2006. [Qidwai 2000] M. Qidwai, D. Lagoudas; On thermomechanics and transformation surfaces of polycrystalline NiTi shape memory alloy material; International Journal of Plasticity; 16, 1309-1343; 2000. [Raju 1979] Raju I.S., Newman J.C. Jr. Stress Intensity Factors for Two Symmetric Corner Cracks; Fracture Mechanics ASTM STP; 677, 411-430; 1979. [Sadaat 2001] S Saadat, M Noori, H Davoodi, Z. Hou, Y Suzuki, A. Masuda; Using NiTi SMA tendons for vibration control of coastal structures; Smart Materials and. Structures; 10, 695–704; 2001. [Saadat, 2002] S Saadat, J Salichs, M Noori, Z Hou, H Davoodi, I Baron,Y Suzuki, A Masuda; An overview of vibration and seismic applications of NiTi shape memory alloy; Smart Materials And Structures; 11, 218-229; 2002. [Savi 2002] M. Savi, P.M. Pacheco, A. Braga; Chaos in a shape memory two-bar truss; International Journal of Nonlinear Mechanics; 37, 1387 – 1395; 2002. [Sawaguchi 2003] T. Sawaguchi, G. Kaustrater, A. Yawny, M. Wagner, G. Eggeler; Crack Initiation and Propagation in 50.9 At. pct Ni-Ti Pseudoelastic Shape Memory Wires in Bending-Rotation Fatigue; Metallurgical and Materials Transactions A; 34, 2848-2860; 2003. [Schaller 2001] R. Schaller, G. Fantozzi, G Gemaud. Mechanical Spectroscopy Q-1 2001 with applications to materials science, Trans Tech Publications; Suiza; 2001. [Schlosser 2009] P. Schlosser, D. Favier, H. Louche, L. Orgéas, Y. Liu; From the thermal and kinematical full-field measurements to the analysis of deformation mechanisms of NiTi SMAs (En ESOMAT 2009, Setiembre 2009 Czes Republic); Proceedings of the 2009 ESOMAT; EDP Science; 2009. [Shaw 1995] J. Shaw, S. Kyriakides; Thermomechanical Aspects of NiTi; J. Mech. Phys. Solids; 43, 1243-1281, 1995. [Shaw 1997] J. Shaw, S. Kyriakides; 1997. On the nucleation and propagation of phase transformation fronts in a NiTi alloy; Acta Materialia; 45, 673-700; 1997 [Shaw 2000] J.Shaw; Simulations of localized thermo-mechanical behavior in a NiTi shape memory alloy; Intertational Journal of Plasticity; 16, 541-562; 2000. [Shaw 2008] J. A. Shaw, C. B. Churchill; M. A. Iadicola; Tips and tricks for characterizing shape memory alloy wire: Part I; Experimental Techniques; 1, 55-62; 2008. [Shimizu 1997] H. Shimizu; A Heating Process Algorithm for Metal Forming by a Heat Moving Source; Tesis (Maestría en Ingeniería Mecánica); Massachusetts; Instituto de tecnología de Massachusetts (MIT), 1997. [Sittner 2005] P. Sittner, Y. Liu, V. Novak; On the origin of Lüders-like deformation of NiTi shape memory alloys; Journal of the Mechanics and Physics of Solids; 53, 1719-1746; 2005. [Soul 2005] H. Soul; Aplicaciones de la Superelasticidad en Aleaciones con Memoria de Forma para el Control de Vibraciones en Estructuras; Proyecto Integrador (Ingeniería Mecánica); San Carlos de Bariloche; Instituto Balseiro, 2005. [Soul 2007] H. Soul, A. Yawny, F.C. Lovey, V. Torra; Thermal Effects in a mechanical model for psuedoelasticity in NiTi wires; Materials Research; Materials; 10, 387-394, 2007. [Soul 2010] H. Soul, A. Isalgue, A Yawny, V. Torra, F.C. Lovey; Pseudoelastic Fatigue Of Niti Wires: Frequency And Size Effects On Damping Capacity. Smart Materials and Structures; 19, 1-7; 2010. [SSM 2008] SAES Smart Materials Brochure 2008 (Catálogo Técnico de la firma SAES SSM, ex Special Metals –USA), disponible on-line en www.saesgetters.com. [Strnade 1995] B. Strnade, S. Ohashi, H. Otsuka , S. Miyazaki, T. Ishihara; Effect of mechanical cycling on the pseudoelasticity characteristics of Ti-Ni and Ti-Ni-Cu alloys; Materials Science and Engineering A; 203, 187-196; 1995. [Sun 2000] Q. Sun, Z. Zhong; An inclusion theory for the propagation of martensite band in NiTi shape memory alloy wires under tension; International Journal of Plasticity; 16, 1169-1187; 2000. [Terriault 2007] P. Terriault, V. Torra, C. Fischer, V. Brailovski, A. Isalgue; Superelastic Shape Memory Alloy Damper Equipped with a Passive Adaptative Prestraining Mechanism; Proceedings of the Ninth Canadian Conference on Earthquake Engineering; Ontario, Canada; 26-29 June 2007. [Thomson 1996] Peter Thomson; Shape memory alloys for structural control; Tesis Doctoral (Ingeniería Estructural), Minesota; USA; 1996. [Timoshenko 1972] S. Timoshenko; Vibrations Problems in Engineering; 4ta edición; New York; 1972; John Wiley & Sons. [Torra, 2009] V. Torra, A. Isalgue, C.Auguet, G. Carreras; F. C. Lovey, H Soul; P. Terriault; Damping in Civil Engineering Using SMA. The Fatigue Behavior and Stability of CuAlBe and NiTi Alloys; Journal of Materials Engineering and Performance; 18 ,738-745; 2009. [Trifunac 2006] M. Trifunac; Biot response spectrum; Soil Dynamics and Earthquake Engineering; 26, 491–500; 2006. [Truskinovsky 2004] L. Truskinovsky, A. Vainchtein; The origin of nucleation peak in transformational plasticity; Journal of the Mechanics and Physics of Solids; 52, 1421-1446; 2004. [Tylor 2010] Sitio Web de Tylor Devices Inc; www.taylordevices.com, Actualizada noviembre 2010. [USGS 2010] United States of Geological Survey; Sitio web: http://earthquake.usgs.gov. [Van Humbeeck 2003] J. Van Humbeeck; Damping capacity of thermoelastic martensite in shape memory alloys; Journal of Alloys and Compounds; 355, 58-64; 2003. [Ward 2004] I. Ward, J. Sweeney; An Introduction to the Mechanical Properties of Solids Polymers; 2da edición; Londres; 2004; John Wiley & Sons Inc. [Wechsler 1953] Wechsler, M.S., Lieberman, D.S., Read, T.A.; On the theory of the formation of martensite. Trans; AIME, 197, 1503–1515; 1953 [Wilson 2005] J. C. Wilson, M.Eeri, M. J. Wesolowskya; Shape Memory Alloys for Seismic Response Modification: A State-of-the-Art Review; Earthquake Spectra, 21,569–601, 2005. [Wollants 1993] P. Wollants, J. R. Roos, L. Delaey; Thermally- And Stress-Induced Thermoelastic Martensitic Transformations In The Reference Frame Of Equilibrium Thermodynamics; Progress in Materials Science; 37, 227-288; 1993. [Wu 2010] M. Wu, L. Schetky; Industrial Applications For Shape Memory Alloys; Proceedings of the International Conference on Shape Memory and Superelastic Technolgies, Pacific Grove, California, 171-182; 2010. [Yawny 2005] A. Yawny, M. Sade, G. Eggeler; Pseudo Elastic Cycling of Ultra Fine Grained Ni-rich NiTi Wires; Zeitschrift für Metallkunde; 06, 608-618; 2005. [Zhong 2000] Z. Zhong, Q. Sun, P. Tong; On the elastic axisymmetric deformation of a rod containing a single cylindrical inclusion; International Journal of Solids and Structures; 37, 5943-5955; 1999.
Materias:Ingeniería > Medida de las propiedades mecánicas de los materiales
Física > Física de materiales
Metalurgia > Aleaciones
Divisiones:Investigación y aplicaciones no nucleares > Física > Física de metales
Código ID:266
Depositado Por:Marisa G. Velazco Aldao
Depositado En:13 May 2011 14:58
Última Modificación:13 May 2011 14:58

Personal del repositorio solamente: página de control del documento