García Martínez, Pablo L. (2010) Procesos de relajación y auto-organización en plasmas de fusión. / Relaxation and self-organization processes in fusión plasmas. Tesis Doctoral en Física, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Español 7Mb |
Resumen en español
Bajo determinadas condiciones, se observa que un plasma ligeramente turbulento evoluciona hacia un estado preferencial, de equilibrio, con una estructura magnética coherente, de tamaño característico comparable al de todo el sistema. En tales situaciones se dice que el plasma experimenta un proceso de relajación y auto-organización. Este proceso ha sido explicado mediante un principio variacional, conocido como teoría de relajación: el plasma minimiza su energía, manteniendo su helicidad magnética. Este vínculo, la helicidad, cuantifica ciertas propiedades topológicas del campo magnético, que se ven poco afectadas por procesos de reconexión magnética. Se ha observado la posibilidad de formar y sostener configuraciones magnéticas de interés en fusión nuclear, mediante la inyección de helicidad. Estos métodos se basan en la tendencia del plasma a relajarse, y en la dinámica de ese proceso. La teoría de relajación predice el estado final hacia el cual el plasma evoluciona, pero no brinda información sobre cómo se alcanza dicho estado. En esta Tesis estudiamos la dinámica de la relajación en configuraciones magnéticas de interés en fusión nuclear. En particular, estudiamos la evolución no lineal de inestabilidades magnetohidrodinámicas (MHD) en configuraciones representativas de spheromaks en etapa de sostenimiento. Este estudio se lleva a cabo resolviendo, numéricamente, las ecuaciones del modelo MHD, en tres dimensiones espaciales, como problema de valores iniciales y de contorno. Consideramos tres aproximaciones al problema. En primer lugar, estudiamos la evolución de configuraciones magnéticamente aisladas. En segundo lugar, extendemos el análisis incorporando una cierta cantidad de fujo magnético que atraviesa la frontera del dominio. Por último, estudiamos la inyección de helicidad al sistema y observamos la formación espontánea de un spheromak, y su posterior sostenimiento. Analizamos las fluctuaciones, la redistribución de corrientes y flujos magnéticos, el dínamo producido por las fluctuaciones y las estructuras magnéticas que resultan de la evolución de las configuraciones inestables consideradas. Recuperamos las predicciones de la teoría de relajación y muchos aspectos de la dinámica del proceso, observados previamente en experimentos. Mostramos, por primera vez, la posibilidad de formar y sostener un spheromak mediante velocidades tangenciales al contorno del plasma. Este es un mecanismo de inyección de helicidad muy poco explorado en el ámbito de fusión nuclear.
Resumen en inglés
Under the appropriate conditions, a turbulent plasma evolves toward a preferred, equilibrium state, with a coherent magnetic structure of size comparable with the size of the whole system. In such situations, it is said that the plasma undergoes a relaxation and self-organization process. This process has been explained using a variational principle, known as relaxation theory: the plasma minimizes its energy, maintaining its magnetic helicity. This constraint, the helicity, quantifies certain topological properties of the magnetic field, which remain almost unchanged during magnetic reconnection. The possibility of forming and sustaining configurations relevant to fusion research, injecting helicity, has been demonstrated. These methods are based on the tendency of the plasma to relax, and on the dynamics of this process. The relaxation theory predicts the final state toward which the plasma evolves, but it says nothing about how this state is achieved. In this Thesis we study the dynamics of the relaxation in magnetic configurations relevant to fusion research. In particular, we study the no-linear evolution of magnetohydrodynamic (MHD) instabilities in configurations representative of sustained spheromaks. Using numerical methods, we solve the equations of the MHD model, in three spatial dimensions, as an initial and boundary value problem. We consider three different approaches. Firstly, we study the evolution of magnetically isolated configurations. Secondly, we extend the analysis incorporating magnetic ux that intercepts the boundary of the domain. Finally, we study the helicity injection to the system and we observe the spontaneous formation of a spheromak, and its subsequent sustainment. We analyze the fluctuations, the redistribution of currents and magnetic fluxes, the dynamo produced by the fluctuations and the magnetic structures that arise during the evolution of the unstable configurations considered. We reproduce the predictions of the relaxation theory and several aspects of the dynamics of the process, previously observed in experiments. We show, for the first time, the possibility of forming and sustaining a spheromak using tangential ows at the plasma boundary. This helicity injection mechanism has been almost unexplored in fusion research.
Tipo de objeto: | Tesis (Tesis Doctoral en Física) |
---|---|
Palabras Clave: | Magnetohydrodynamics; Magnetohidrodinámica; Plasma; Magnetic relaxation; Relajación magnética; Self-organization; Auto-organización |
Referencias: | [al-Karkhy 93] A. al-Karkhy, P. K. Browning, G. Cunningham, S. J. Gee & M. G. Rusbridge. Observations of the magnetohydrodynamic dynamo effect in a spheromak plasma. Physical Review Letters, vol. 70, pages 1814-1817, 1993. [Amari 00] T. Amari & J. F. Luciani. Helicity Redistribution during Relaxation of Astrophysical Plasmas. Physical Review Letters, vol. 84, pages 1196-1199, 2000. [Balsara 98] D. S. Balsara. Linearized Formulation of the Riemann Problem for Adiabatic and Isothermal Magnetohydrodynamics. Astrophysical Journal Supplement, vol. 116, pages 119-+, 1998. [Barnes 86] C. W. Barnes, J. C. Fernández, I. Henins, H. W. Hoida, T. R. Jarboe, S. O. Knox, G. J. Marklin & K. F. McKenna. Experimental determination of the conservation of magnetic helicity from the balance between source and spheromak. Physics of Fluids, vol. 29, pages 3415-3432, 1986. [Barnes 90] C. W. Barnes, T. R. Jarboe, G. J. Marklin, S. O. Knox & I. Henins. The impedance and energy effciency of a coaxial magnetized plasma source used for spheromak formation and sustainment. Physics of Fluids B, vol. 2, pages 1871-1888, 1990. [Bateman 78] G. Bateman. MHD instabilities. Cambridge, Mass., MIT Press, Cambridge, 1978. [Bellan 98] P. M. Bellan & J. F. Hansen. Laboratory simulations of solar prominence eruptions. Physics of Plasmas, vol. 5, pages 1991- 2000, 1998. [Bellan 00] P. M. Bellan. Spheromaks. Imperial College Press, London, 2000. [Berger 84] M. A. Berger & G. B. Field. The topological properties of magnetic helicity. Journal of Fluid Mechanics, vol. 147, pages 133-148, 1984. [Berger 99] M. A. Berger. Magnetic Helicity in Space Physics. In M. R. Brown, R. C. Canfield, & A. A. Pevtsov, editeur, Measurement Techniques in Space Plasmas Fields, pages 1-+, 1999. [Biskamp 00] D. Biskamp. Magnetic Reconnection in Plasmas. Cambridge University Press, Cambridge/New York, 2000. [Brackbill 80] J. U. Brackbill & D. C. Barnes. The effect of nonzero product of magnetic gradient and B on the numerical solution of the magnetohydrodynamic equations. Journal of Computational Physics, vol. 35, pages 426-430, 1980. [Braginskii 65] S. I. Braginskii. Transport Processes in a Plasma. Reviews of Plasma Physics, vol. 1, pages 205-311, 1965. [Brennan 99] D. Brennan, P. K. Browning, R. A. M. van der Linden, A. W. Hood & S. Woodruff. Stability studies and the origin of the n=1 mode in the SPHEX spheromak experiment. Physics of Plasmas, vol. 6, pages 4248-4259, 1999. [Brennan 02] D. P. Brennan, P. K. Browning & R. A. M. van der Linden. A two-dimensional magnetohydrodynamic stability model for helicityinjected devices with open fux. Physics of Plasmas, vol. 9, pages 3526-3535, 2002. [Brio 88] M. Brio & C. C. Wu. An upwind dierencing scheme for the equations of ideal magnetohydrodynamics. Journal of Computational Physics, vol. 75, pages 400-422, 1988. [Brown 90] M. R. Brown & P. M. Bellan. Current drive by spheromak injection into a tokamak. Phys. Rev. Lett., vol. 64, no. 18, pages 2144-2147, 1990. [Browning 92] P. K. Browning, G. Cunningham, S. J. Gee, K. J. Gibson, A. Al- Karkhy, D. A. Kitson, R. Martin & M. G. Rusbridge. Power ow in a gun-injected spheromak plasma. Physical Review Letters, vol. 68, pages 1718-1721, 1992. [Cohen 05] B. I. Cohen, E. B. Hooper, R. H. Cohen, D. Hill, H. S. McLean, R. D. Wood, S. Woodruff, C. R. Sovinec & G. A. Cone. Simulation of spheromak evolution and energy confnement. Physics of Plasmas, vol. 12, no. 5, pages 056106-+, 2005. [Cohen 09] B. I. Cohen, C. A. Romero-Talamás, D. D. Ryutov, E. B. Hooper, L. L. Lodestro, H. S. McLean, T. L. Stewart & R. D. Wood. The role of the n = 1 column mode in spheromak formation. Physics of Plasmas, vol. 16, no. 4, pages 042501-+, 2009. [Courant 28] R. Courant, K. Friedrichs & H. Lewy. Uber die partiellen Differenzengleichungen der mathematischen Physik. Mathematische Annalen, vol. 100, no. 1, pages 32-74, 1928. [Cowling 34] T. G. Cowling. The stability of gaseous stars. Monthly Notices of the Royal Astronomical Society, vol. 94, pages 768-782, 1934. [Duck 97] R. C. Duck, P. K. Browning, G. Cunningham, S. J. Gee, A. al- Karkhy, R. Martin & M. G. Rusbridge. Structure of the n=1 mode responsible for relaxation and current drive during sustainment of the SPHEX spheromak. Plasma Physics and Controlled Fusion, vol. 39, pages 715-736, 1997. [Finn 85] J. M. Finn & T. M. Antonsen. Magnetic helicity: what it is, and what it is good for? Comments Plasma Physics and Controlled Fusion, vol. 33, pages 1139-+, 1985. [Forrer 98] H. Forrer & R. Jeltsch. A higher-order boundary treatment for cartesian-grid methods. Journal of Computational Physics, vol. 140, pages 259-277, 1998. [Frisch 75] U. Frisch, A. Pouquet, J. Leorat & A. Mazure. Possibility of an inverse cascade of magnetic helicity in magnetohydrodynamic turbulence. Journal of Fluid Mechanics, vol. 68, pages 769-778, 1975. [Furth 85] H. P. Furth. Nonideal magnetohydrodynamic instabilities and toroidal magnetic confinement. Physics of Fluids, vol. 28, pages 1595-1611, 1985. [Galsgaard 96] K. Galsgaard & A. Nordlund. Heating and activity of the solar corona 1. Boundary shearing of an initially homogeneous magnetic field. Journal of Geophysical Research, vol. 101, pages 13445- 13460, 1996. [García Martínez 09a] P. L. García Martínez & R. Farengo. Selective decay in a helicityinjected spheromak. Journal of Physics Conference Series, vol. 166, no. 1, pages 012010-+, 2009. [García Martínez 09b] P. L. García Martínez & R. Farengo. Non-linear dynamics of kinkunstable spheromak equilibria. Physics of Plasmas, vol. 16, pages 082507-+, 2009. [Garcíaa Martínez 09c] P. L. García Martínez & R. Farengo. Relaxation of spheromak congurations with open flux. Physics of Plasmas, vol. 16, pages 112508-+, 2009. [Glasser 99] A. H. Glasser, C. R. Sovinec, R. A. Nebel, T. A. Gianakon, S. J. Plimpton, M. S. Chu, D. D. Schnack & the NIMROD Team. The NIMROD code: a new approach to numerical plasma physics . Plasma Physics and Controlled Fusion, vol. 41, pages A747-A755, 1999. [Godunov 59] S. K. Godunov. A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics. Math. Sbornik, vol. 47, pages 271-306, 1959. [Goldenbaum 80] G. C. Goldenbaum, J. H. Irby, Y. P. Chong & G. W. Hart. Formation of a spheromak plasma conguration. Physical Review Letters, vol. 44, pages 393-396, 1980. [Goldston 84] R. J. Goldston. Energy confinement scaling in Tokamaks: some implications of recent experiments with Ohmic and strong auxiliary heating. Plasma Physics and Controlled Fusion, vol. 26, pages 87- 103, 1984. [Harten 84] A. Harten. On a class of high resolution total variation stable finite dierence schemes. SIAM J. Numer. Anal, vol. 21, pages 1-23, 1984. [Hasegawa 85] A. Hasegawa. Self-organization processes in continuous media. Advances in Physics, vol. 34, pages 1-42, 1985. [Hooper 99] E. B. Hooper, L. D. Pearlstein & R. H. Bulmer. MHD equilibria in a spheromak sustained by coaxial helicity injection. Nuclear Fusion, vol. 39, pages 863-871, 1999. [Hooper 05] E. B. Hooper, T. A. Kopriva, B. I. Cohen, D. Hill, H. S. McLean, R. D. Wood, S. Woodru & C. R. Sovinec. Magnetic reconnection during ux conversion in a driven spheromak. Physics of Plasmas, vol. 12, no. 9, pages 092503-+, 2005. [Hooper 09] E. B. Hooper, C. A. Romero-Talamas, L. L. Lodestro, R. D. Wood & H. S. McLean. Aspect-ratio eects in the driven, ux-core spheromak. Physics of Plasmas, vol. 16, no. 5, pages 052506-+, 2009. [Hsu 03] S. C. Hsu & P. M. Bellan. Experimental Identication of the Kink Instability as a Poloidal Flux Amplification Mechanism for Coaxial Gun Spheromak Formation. Physical Review Letters, vol. 90, no. 21, pages 215002-+, 2003. [Izzo 03] V. A. Izzo & T. R. Jarboe. A numerical assessment of the Lundquist number requirement for relaxation current drive. Physics of Plasmas, vol. 10, pages 2903-2911, 2003. [Jarboe 80] T. R. Jarboe, I. Henins, H. W. Hoida, R. K. Linford, J. Marshall, D. A. Platts & A. R. Sherwood. Motion of a compact toroid inside a cylindrical flux conserver. Physical Review Letters, vol. 45, pages 1264-1267, 1980. [Jarboe 83] T. R. Jarboe, I. Henins, A. R. Sherwood, C. W. Barnes & H. W. Hoida. Slow Formation and Sustainment of Spheromaks by a Coaxial Magnetized Plasma Source. Physical Review Letters, vol. 51, pages 39-42, 1983. [Jarboe 94] T. R. Jarboe. Review of spheromak research. Plasma Physics and Controlled Fusion, vol. 36, pages 945{990, 1994. [Jarboe 06] T. R. Jarboe, W. T. Hamp, G. J. Marklin, B. A. Nelson, R. G. O'Neill, A. J. Redd, P. E. Sieck, R. J. Smith & J. S. Wrobel. Spheromak Formation by Steady Inductive Helicity Injection. Physical Review Letters, vol. 97, no. 11, pages 115003-+, 2006. [Katayama 86] K. Katayama & M. Katsurai. Three-dimensional numerical simulations of the relaxation process in spheromak plasmas. Physics of Fluids, vol. 29, pages 1939-1947, 1986. [Kitson 90] D. A. Kitson & P. K. Browning. Partially relaxed magnetic field equilibria in a gun-injected spheromak. Plasma Physics and Controlled Fusion, vol. 32, no. 14, pages 1265-1287, 1990. [Knox 86] S. O. Knox, C. W. Barnes, G. J. Marklin, T. R. Jarboe, I. Henins, H. W. Hoida & B. L. Wright. Observations of spheromak equilibria which dier from the minimum-energy state and have internal kink distortions. Physical Review Letters, vol. 56, pages 842-845, 1986. [Kumar 09] Deepak Kumar & Paul M. Bellan. Nonequilibrium Alfvénic Plasma Jets Associated with Spheromak Formation. Phys. Rev. Lett., vol. 103, no. 10, page 105003, 2009. [Leveque 92] R. J. Leveque. Numerical methods for conservation laws. Birkhauser Verlag, 1992. [Leveque 02] R. J. Leveque. Finite volume methods for hyperbolic problems. Cambridge University Press, Cambridge, 2002. [Moffat 78] H. K. Moffat. Magnetic field generation in electrically conducting fluids. Cambridge University Press, London/New York, 1978. [Nelson 94] B. A. Nelson, T. R. Jarboe, D. J. Orvis, L. A. McCullough, J. Xie, C. Zhang & L. Zhou. Formation and sustainment of a 150 kA tokamak by coaxial helicity injection. Phys. Rev. Lett., vol. 72, no. 23, pages 3666-3669, 1994. [Nogi 80] Y. Nogi, H. Ogura, Y. Osanai, K. Saito, S. Shiina & H. Yoshimura. Spheromak formation by theta pinch. Journal of the Physical Society of Japan, vol. 49, pages 710-716, 1980. [Ortolani 93] S. Ortolani & D. D. Schnack. Magnetohydrodynamics of plasma relaxation. World Scientific, Singapore, 1993. [Pouquet 76] A. Pouquet, U. Frisch & J. Leorat. Strong MHD helical turbulence and the nonlinear dynamo eect. Journal of Fluid Mechanics, vol. 77, pages 321-354, 1976. [Powell 99] K. G. Powell, P. L. Roe, T. J. Linde, T. I. Gombosi & D. L. de Zeeuw. A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics. Journal of Computational Physics, vol. 154, pages 284-309, 1999. [Priest 00] E. Priest & T. Forbes. Magnetic reconnection: MHD theory and applications. Cambridge University Press, London/New York, 2000. [Raman 94] R. Raman, F. Martin, B. Quirion, M. St-Onge, J. L. Lachambre, D. Michaud, B. Sawatzky, J. Thomas, A. Hirose, D. Hwang, N. Richard, C. Coté, G. Abel, D. Pinsonneault, J. L. Gauvreau, B. Stansfield, R. Décoste, A. Coté, W. Zuzak & C. Boucher. Experimental Demonstration of Nondisruptive, Central Fueling of a Tokamak by Compact Toroid Injection. Phys. Rev. Lett., vol. 73, no. 23, pages 3101-3104, 1994. [Roe 81] P. L. Roe. Approximate Riemann Solvers, Parameter Vectors, and Dierence Schemes. Journal of Computational Physics, vol. 43, pages 357-+, 1981. [Roe 96] P. L. Roe & D. S. Balsara. Notes on the Eigensystem of Magnetohydrodynamics. SIAM Journal on Applied Mathematics, vol. 56, pages 57-67, 1996. [Rosenbluth 79] M. Rosenbluth & M. Bussac. MHD stability of Spheromak. Nuclear Fusion, vol. 19, pages 489-498, 1979. [Rusbridge 97] M. G. Rusbridge, S. J. Gee, P. K. Browning, G. Cunningham, R. C. Duck, A. al-Karkhy, R. Martin & J. W. Bradley. The design and operation of the SPHEX spheromak. Plasma Physics and Controlled Fusion, vol. 39, pages 683-714, 1997. [Sarff 97] J. S. Sarff, N. E. Lanier, S. C. Prager & M. R. Stoneking. Increased Confinement and #beta# by Inductive Poloidal Current Drive in the Reversed Field Pinch. Physical Review Letters, vol. 78, pages 62- 65, 1997. [Shumlak 00] U. Shumlak & T. R. Jarboe. Stable high beta spheromak equilibria using concave flux conservers. Physics of Plasmas, vol. 7, pages 2959-2963, 2000. [Sovinec 01] C. R. Sovinec, J. M. Finn & D. Del-Castillo-Negrete. Formation and sustainment of electrostatically driven spheromaks in the resistive magnetohydrodynamic model. Physics of Plasmas, vol. 8, pages 475-490, 2001. [Sovinec 05] C. R. Sovinec, B. I. Cohen, G. A. Cone, E. B. Hooper & H. S. McLean. Numerical Investigation of Transients in the SSPX Spheromak. Physical Review Letters, vol. 94, no. 3, pages 035003-+, 2005. [Sweby 84] P. K. Sweby. High resolution schemes using ux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal, vol. 21, pages 995-1011, 1984. [Taylor 74] J. B. Taylor. Relaxation of Toroidal Plasma and Generation of Reverse Magnetic Fields. Physical Review Letters, vol. 33, pages 1139-1141, 1974. [Taylor 86] J. B. Taylor. Relaxation and magnetic reconnection in plasmas. Reviews of Modern Physics, vol. 58, pages 741-763, 1986. [Ting 86] A. C. Ting, D. Montgomery & W. H. Matthaeus. Turbulent relaxation processes in magnetohydrodynamics. Physics of Fluids, vol. 29, pages 3261-3274, 1986. [Toth 00] G. Toth. The #nabla# B = 0 Constraint in Shock-Capturing Magnetohydrodynamics Codes. Journal of Computational Physics, vol. 161, pages 605-652, 2000. [Turner 81] W. C. Turner, C. W. Hartman, D. S. Prono, J. Taska, A. C. Smith Jr. & E. H. A. Granneman. Production of field-reversed plasma with a magnetized coaxial plasma gun. Journal of Applied Physics, vol. 52, pages 175-182, 1981. [Tuszewski 88] M. Tuszewski. Field reversed configurations. Nuclear Fusion, vol. 28, pages 2033-2092, 1988. [van der Vorst 92] H. van der Vorst. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems. SIAM J. Sci. Statist. Comput., vol. 13, pages 631-644, 1992. [Watanabe 81] K.Watanabe, K. Ikegami, A. Ozaki, N. Satomi & T. Uyama. Compact Toroidal Plasma with Toroidal and Poloidal Magnetic Fields. Journal of the Physical Society of Japan, vol. 50, pages 1823-+, 1981. [Watt 83] R. G. Watt & R. A. Nebel. Sawteeth, magnetic disturbances, and magnetic flux regeneration in the reversed-field pinch. Physics of Fluids, vol. 26, pages 1168-1170, 1983. [White 91] F. M. White. Viscous fluid ow. McGraw-Hill, New York, 1991. [Willett 99] D. M. Willett, P. K. Browning, S. Woodruff & K. J. Gibson. The internal magnetic structure and current drive in the SPHEX spheromak. Plasma Physics and Controlled Fusion, vol. 41, pages 595-612, 1999. [Woltjer 58] L.Woltjer. A Theorem on Force-Free Magnetic Fields. Proceedings of the National Academy of Science, vol. 44, pages 489{491, 1958. [Woodruff 03] S.Woodruff, D.Ñ. Hill, B. W. Stallard, R. Bulmer, B. Cohen, C. T. Holcomb, E. B. Hooper, H. S. McLean, J. Moller & R. D. Wood. New Mode of Operating a Magnetized Coaxial Plasma Gun for Injecting Magnetic Helicity into a Spheromak. Phys. Rev. Lett., vol. 90, no. 9, page 095001, 2003. [Yamada 81] M. Yamada, H. P. Furth, W. Hsu, A. Janos, S. Jardin, M. Okabayashi, J. Sinnis, T. H. Stix & K. Yamazaki. Quasistatic formation of the spheromak plasma conguration. Physical Review Letters, vol. 46, pages 188-191, 1981. [Yamada 90] M. Yamada, Y. Ono, A. Hayakawa, M. Katsurai & F. W. Perkins. Magnetic reconnection of plasma toroids with cohelicity and counterhelicity. Phys. Rev. Lett., vol. 65, no. 6, pages 721-724, 1990. [Yamada 97] M. Yamada, H. Ji, S. Hsu, T. Carter, R. Kulsrud, N. Bretz, F. Jobes, Y. Ono & F. Perkins. Study of driven magnetic reconnection in a laboratory plasma. Physics of Plasmas, vol. 4, pages 1936- 1944, 1997. |
Divisiones: | Investigación y aplicaciones no nucleares > Física > Fusión nuclear y física de plasmas |
Código ID: | 303 |
Depositado Por: | Marisa G. Velazco Aldao |
Depositado En: | 31 Ene 2012 11:15 |
Última Modificación: | 31 Ene 2012 11:15 |
Personal del repositorio solamente: página de control del documento