Ferreyra, Jéssica M. (2011) Evaluación de los factores metodológicos que afectan la cuantificación de imágenes de PET/CT / Assessment of metodological factors affecting the quantification of images of PET/CT. Maestría en Física Médica, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Español 3351Kb |
Resumen en español
La utilización del PET/CT con [18”F] fluoro-2-deoxy-D-glucosa (FDG) ha sido reconocida como una importante herramienta clínica, particularmente en oncología, para el diagnóstico y estadificación tumoral, evaluación de la respuesta al tratamiento y además determinar la dosimetría en los diferentes órganos. Existen diferentes enfoques para evaluar la captación de FDG del tejido tumoral, pero desde este trabajo, se hizo énfasis en el standardized uptake value (SUV), que es el parámetro semicuantitativo más ampliamente utilizado por su importancia en la práctica clínica. En el desarrollo de esta tesis, se realizó una revisión bibliográfica de los factores biológicos, técnicos y físicos que influyen en las mediciones del SUV, para poder identificarlos en la metodología diaria utilizada para la adquisición de los estudios; desde la preparación del paciente hasta el análisis de las imágenes, de manera de poder minimizar los factores que afectan a su precisión. Se llevaron a cabo controles de calidad tanto en el CT como en el PET del sistema PET/CT de manera de asegurar una alta calidad de la imagen, evaluando cómo afectan los parámetros de performance del equipo a la medición del SUV. Se monitorearon 65 pacientes de los cuales se registró: patología, peso y talla, actividad requerida según el peso, actividad medida y su hora de medición, hora de la inyección, actividad residual y su hora de medición, nivel de glucemia, hora de barrido del estudio, tiempo de uptake y duración del scan, método de adquisición y reconstrucción, elementos muy importantes al momento de analizar las imágenes para la determinación del valor de SUV. Se analizaron los resultados obtenidos de las calibraciones del equipo, de los estudios en fantomas y en casos clínicos en relación a su influencia en el valor de SUV; proponiendo recomendaciones alternativas al respecto. Finalmente se concluyó que debido a la variabilidad del SUV, es muy difícil comparar valores provenientes de distintos centros, incluso cuando existan pequeñas diferencias entre los procedimientos de obtención de los estudios. Sin embargo, mientras se entiendan las limitaciones de estas mediciones y puedan ser minimizadas variables que lo afectan, demuestra ser una herramienta de evaluación efectiva para la cuantificación de imágenes en PET/CT.
Resumen en inglés
The use of PET/CT with [18"F] fluoro-2-deoxy-D-glucose (FDG) has been recognized as an important clinical tool, particularly in oncology for diagnosis and tumor staging, evaluation of treatment response and also for determining dosimetry in different organs. There are different approaches for assessing tumor tissue FDG uptake , but from this work, emphasis was placed on the Standardized uptake value (SUV), which is the most widely used semiquantitative parameter due to its importance in clinical practice. In its development, a literature review of biological, technical and physical factors that influence SUV measurements, was made to identify them in the daily methodology used for the acquisition of studies, from patient preparation to images analysing, so as to minimize the factors that affect its accuracy. Quality checks were carried out on both, CT and PET in PET / CT, in order to ensure high image quality, evaluating how performance parameters of equipment affect for measuring the SUV. Sixty five patients were monitored and several variables werw recorded: pathology, weight, height, required activity according to the weight, measured activity time, time of injection, and residual activity, blood glucose level, scanning time, tracer uptake time, acquisition and reconstruction method. This elements are very important when analyzing images to determine SUV value. The results obtained from equipment calibration, phantom studies and clinical cases werw analized in relation to their influence on the SUV value, making recommendations about alternatives. Finally, it was concluded that it is very difficult to compare SUV values from different centers due to its variability, even when there are small differences between the procedures for obtaining the studies. However, while understanding the measurements limitations and minimizing variables that affect, it proves to be an effective evaluation tool for the PET / CT images quantification.
Tipo de objeto: | Tesis (Maestría en Física Médica) |
---|---|
Palabras Clave: | Image processing; Tratamiento de imágenes; Positron computed tomography; Tomografia computerizada con positron; Quantization; Cuantificación |
Referencias: | 1. Powsner, R.A. and E.R. Powsner, Essential Nuclear Medicine Physics. Segunda ed. 2006, Haryana: Blackwell Publishing. 2. Bailey, D.L., et al., Positron Emission Tomography: Basic Sciences. 2005, Singapore: Springer. 3. Saha, G.B., Basics of PET Imaging Physics, Chemistry and Regulations. Segunda ed. 2010, New York: Springer. 4. Phelps, M.E., PET: Physics, Instrumentation and Scanners. 2006, New York: Springer. 5. Núñez, M., Tomografía por emisión de positrones (PET): Fundamentos. 2008, Escuela Universitaria de Tecnología Médica UdelaR, Montevideo, Uruguay. Comité de Tecnólogos de ALASBIMN: Montevideo. 6. Towsend, D.W., Positron Emission Tomography/Computed Tomography. . Seminars in Nuclear Medicine, 2008. 38: p. 152-166. 7. Alessio, A., et al., PET/CT scanner instrumentation, challenges, and solutions. Radiologic Clinics of North America, 2004. 42: p. 1017-1032. 8. International Atomic Energy Agency, IAEA Human Health Series: Quality Assurance for PET and PET/CT Systems. Vol. 1. 2009, Vienna: IAEA. 9. GE Healthcare, Discovery™ Dimension Series: Guía de aprendizaje y referencia, in 5181559-1ES.Revisión 3. 2008, General Electric Company. 10. GE Healthcare, LightSpeed™ Series: Manual de referencia técnica, in 5392187-1ES.Revisión: 1. 2010, General Electric Company. 11. GE Healthcare, DST PET-CT NEMA Test Procedures, in Direction 5159176-100.Revision 7. 2007, General Electric Company. 12. National Electrical Manufacturers Association, NEMA Standards Publication NU 2-2001: Performance Measurements of Positron Emission Tomographs. 2001, National Electrical Manufacturers Association,: Washington D.C. p. 1-40. 13. Tomasi, G., T. Federico, and A. Eric, Importance of Quantification for the Analysis of PET Data in Oncology: Review of Current Methods and Trends for the Future. Molecular Imaging and Biology, 2011. 14. Gispert, J.D., et al., Cuantificación en estudios PET: Métodos y aplicaciones. Rev.R.Acad.Cienc.Exact.Fis.Nat., 2002. 96(1-2): p. 13-27. 15. Mathew, P.K., SUV: Advancing Comparability and Accuracy, SIEMENS, Editor. 2009, Siemens Medical Solutions USA, Inc.: USA. 16. Adams, M.C., et al., A Systematic Review of the Factors Affecting Accuracy of SUV Measurements. American Journal of Roenthenology, 2010. 195(2): p. 310-320. 17. Lucignani, G., SUV and segmentation: pressing challenges in tumour assessment and treatment. Eur J Nucl Med Mol Imaging 2009. 36(4): p. 715–720. 18. Benz, M.R., Evilevitch V, and Allen-Auerbach MS Treatment monitoring by 18F-FDG PET/CT in patients with sarcomas: interobserver variability of quantitative parameters in treatment-induced changes in histopathologically responding and nonresponding tumors. J Nucl Med 2008. 49(7): p. 1038–1046. 19. Basu, S., et al., Quantitative Techniques in PET-CT Imaging. Current Medical Imaging reviews, 2011. 7(3): p. 1-17. 20. Graham, M.M., Peterson L M, and Hayward R M, Comparison of simplified quantitative analyses of FDG uptake. Nucl Med Biol 2000. 27(7): p. 647-655. 21. Erselcan, T., et al., Lean body mass-based standardized uptake value, derived from a predictive equation, might be misleading in PET studies. Eur J Nucl Med 2002. 29(12): p. 1630–1638. 22. Zasadny, K.R. and Wahl R L, Standardized uptake values of normal tissues at PET with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose: variations with body weight and a method for correction. Radiology 1993. 189(3): p. 847–850. 23. Kim, C.K., et al., Standardized uptake values of FDG: body surface area correction is preferable to body weight correction. J Nucl Med 1994. 35(1): p. 164-167. 24. Avril, N., et al., Breast imaging with fluorine-18-FDG PET: quantitative image analysis. J Nucl Med 1997. 38(8): p. 1186-1191. 25. Workman, R.B. and C.R. Edward, PET/CT Essential of Clinical Practice. . 2006, New York: Springer. 26. Castell, C. and Cook G J R, Quantitative techniques in 18FDG PET scanning in oncology. Br J Cancer 2008. 98(10): p. 1597–1601. 27. Acton, P., Zhuang H, and Alavi A, Quantification in PET. Radiol Clin N Am 2004. 42(6): p. 1055–1062. 28. Lindholm, P., et al., Influence of the blood glucose concentration on FDG uptake in cancer: a PET study. J Nucl Med 1993. 34(1): p. 1-6. 29. Nahmias, C. and Wahl L M, Reproducibility of standardized uptake value measurements determined by 18F-FDG PET in malignant tumors. J Nucl Med 2008. 49(11): p. 1804–1808. 30. Shankar, L.K., Hoffman JM, and Bacharach S, Consensus recommendations for the use of 18FFDG PET as an indicator of therapeutic response in patients in National Cancer Institute Trials. J Nucl Med 2006. 47 (6): p. 1059–1066. 31. Erdi, Y.E., Nehmeh SA, and Pan T, The CT motion quantitation of lung lesions and its impact on PETmeasured SUVs. J Nucl Med, 2004. 45(8): p. 1287–1292. 32. Conti, P.S. and Cham Daniel K, PET-CT A Case-Based Approach 2005, Los Angeles: Springer Science+Business Media, Inc. 33. Boellaard, R., Standards for PET Image Acquisition and Quantitative Data Analysis. J Nucl Med, 2009. 50: p. 11S–20S. 34. Yamada, S., Kubota K, and Kubota R High accumulation of fluorine-18-fluorodeoxyglucose in turpentine-induced inflammatory tissue. . J Nucl Med 1995. 36: p. 1301–1306. 35. Greuter, H.N., et al., Measurement of 18F-FDG concentrations in blood samples: comparison of direct calibration and standard solution methods. J Nucl Med Technol, 2003. 31(4): p. 206–9. 36. Scheuermann, J.S., et al., Qualification of PET scanners for use in multicenter cancer clinical trials: The American College of Radiology Imaging Network experience. J Nucl Med 2009. 50(7): p. 1187–1193. 37. Kamibayashi, T., Tsuchida T, and Demura Y, Reproducibility of semi-quantitative parameters in FDG-PET using two different PET scanners: influence of attenuation correction method and examination interval. Mol Imaging Biol 2008. 10(3): p. 162–166. 38. Boellaard, R., et al., FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging., 2010. 37(1): p. 181-200. 39. Soret, M., Bacharach Stephen L, and Buvat Irene, Partial-Volume Effect in PET Tumor Imaging. J Nucl Med, 2007. 48: p. 932–945. 40. Srinivas, S.M., et al., A recovery coefficient method for partial volume correction of PET images. Ann Nucl Med 2009. 23: p. 341–348. 41. Jadvar, H. and J.A. Parker, Clinical PET and PET/CT. 2005, New York: Springer. 42. Wang, Y., et al., Standardized Uptake Value Atlas:Characterization of Physiological 2-Deoxy-2-[18F]fluoro-D-glucose Uptake in Normal Tissues. . Mol Imaging Biol 2007. 9: p. 83-90. 43. GE Healthcare, Operating Documentation: Discovery ST, STE, RX HP60 Service Methods, in 5141120-800, Revisión 12. 2009, General Electric Company. 44. Documento de Tareas Técnicas: Protocolo de preparación de paciente oncológico para PET. FUESMEN. 45. Westerterp, M., et al., Quantification of FDG PET studies using sandardised uptake values in multi-centre trials: effects of image reconstruction, resolution and ROI definition parameters. Eur J Nucl Med, 2007. 34(3). 46. Jaskowiak, C.J., et al., Influence of Reconstruction Iterations on [18F]FDG PET/CT Standardized Uptake Values. J Nucl Med, 2005. 46(3): p. 424-428. |
Materias: | Medicina > Oncología Medicina > Diagnóstico por imagen y medicina nuclear |
Divisiones: | FUESMEN |
Código ID: | 310 |
Depositado Por: | Marisa G. Velazco Aldao |
Depositado En: | 11 Abr 2012 16:27 |
Última Modificación: | 11 Abr 2012 16:27 |
Personal del repositorio solamente: página de control del documento