Estudios de actividad solar mediante modulación de rayos cósmicos galácticos. / Solar activity studies through the modulation of galactic cosmic rays.

Masías Meza, Jimmy J. (2011) Estudios de actividad solar mediante modulación de rayos cósmicos galácticos. / Solar activity studies through the modulation of galactic cosmic rays. Maestría en Ciencias Físicas, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
4Mb

Resumen en español

Los rayos cósmicos galácticos (GCRs) representan muestras que transportan información de regiones remotas del medio interplanetario (a través de la intensidad y dirección de flujo por ejemplo) y una medida indirecta de ello es la lluvia de partículas secundarias producidas en la interacción de los GCRs con la atmósfera. Recientemente, en el observatorio Pierre Auger se ha implementado un mecanismo de detección (modo "Geiger") para partículas que son moduladas por las condiciones de medio interplanetario. Iniciamos la presentación de este trabajo relatando aspectos generales asociados a la modulación solar de GCRs desde su ingreso a la Heliósfera hasta su detección en la órbita terrestre, así como fenómenos típicos durante periodos de alta actividad solar. En el Capítulo 2, caracterizamos el transporte de partículas cargadas (que arrivan a la ubicación del observatorio Pierre Auger) dentro de la magnetósfera para condiciones normales y de tormenta geomagnética. En el Capítulo 3, presentamos un análisis de la respuesta de los scalers (flujo de secundarios detectados en el modo “Geiger") usando métodos de umbral fijo y dinámico con los detectores de superficie del observatorio Pierre Auger. Comparando con datos del Monitor de neutrones de Roma, encontramos que los de umbral dinámico responde mejor ante cambios bruscos del ujo de secundarios. En el Capítulo 4, exploramos el análisis de decrecimientos Forbush mediante espectros Wavelet para determinar los tiempos de recuperación (aún en situaciones donde no es posible determinarlos con métodos ordinarios) estableciendo niveles de confianza que nos permita ver características verdaderas de las series temporales involucradas. Por último, aplicamos éste método para una selección especial de nubes magnéticas (MC) asociadas a decrecimientos Forbush.

Resumen en inglés

The Galactic Cosmic Rays (GCRs) can be used as proxies for the interplanetary conditions (e.g. through the intensity and direction of the ux); an indirect measurement of this, are the Extensive Air Showers developed when a GCR interacts with the Earth atmosphere. Recently, in the Pierre Auger observatory has been implemented a \Geiger" mode, oriented for the detection of particles modulated by the interplanetary conditions. We begin the presentation of this work by introducing general facts associated with GCR solar modulation from their entry to the Heliosphere to their detection in Earth orbit, as well as describing typical phenomena during periods of high solar activity. The results of Chapter 2 characterize the transport of charged particles (arriving to the Pierre Auger observatory location) inside the magnetosphere during calm and geomagnetic storm conditions. In Chapter 3, we present an analysis showing the response of the scalers ( ux of secondary particles detected in the \Geiger" mode) to methods of xed and dynamic thresholds with the surface detectors of the Pierre Auger observatory. By comparing with Rome Neutron Monitor data, we found that those of dynamic threshold have better response to the changes in the ux of secondary particles. In Chapter 4, we explore an analysis of Forbush Decreases (FD) by Wavelet spectra to determine the recovery times (even in situations when ordinary methods are not appliable) by establishing condence levels that allows us to highlight true features of the signals. Finally, we apply this method to a special selection of Magnetic Clouds (MC) associated with Forbush Decreases.

Tipo de objeto:Tesis (Maestría en Ciencias Físicas)
Palabras Clave:Solar activity; Actividad solar; Forbush decrease; Decrecimiento de forbush; Cosmic rays; Rayos cósmicos
Referencias:[1] Hess, V. Proceedings of the Viennese Academy of Sciences, 1913. 1 [2] Giacalone, J. Energetic particle transport, tomo II. Cambridge, 2010. 2 [3] Adriani, O., et al. Pamela measurements of cosmic-ray proton and helium spectra. Science, 332, 69, 2011. 2 [4] Roland Diehl, R. K., Etienne Parizot. Springer, 2001. 2 [5] Jokipii, J. R. The Heliosphere and cosmic rays, tomo III. Cambridge, 2010. 5 [6] Greider, P. K. F. Cosmic rays at Earth. Elsevier, 2001. 7, 8, 32 [7] Howard, T. Springer, 2011. 8 [8] Yashiro, S., Gopalswamy, N., Michalek, G., St. Cyr, O. C., Plunkett, S. P., Rich, N. B., et al. In uence of cme interaction on propagation of interplanetary shocks. Journal of Geophysical Research, 109, 2004. 8 [9] Nakwacki, M., Dasso, S., Mandrini, C., Démoulin, P. Analysis of large scale mhd quantities in expanding magnetic clouds. Journal of Atmospheric and Solar- Terrestrial Physics, 70, 1318-1326, 2008. 9, 10 [10] Giulisano, A., Démoulin, Dasso, S., Ruiz, M. E., E., M. Global and local expansion of magnetic clouds in the inner heliosphere. Astronomy and Astrophysics, 2010. 9, 58, 64 [11] Dasso, S., Démoulin, P. Causes and consequences of magnetic cloud expansion. Astronomy & Astrophysics, 498, 551-566, 20098. 10 [12] Smith, C. W., J. L'Heureux, N. F., Ness, M. H., Acu~na, L. F., Burlaga, Scheifele, J. The ACE magnetic fields experiment. Space Science Review, 86, 613-632, 1998. 10, 58, 64 [13] McComas, D. J., Bame, S. J., Barker, P., Feldman, W. C., Phillips, J. L., Riley, P., et al. Solar Wind Electron Proton Alpha Monitor (swepam) for the advanced composition explorer. Space Science Review, 86, 563-612, 1998. 10 [14] Farrell, W. M., Thompson, R. F., Lepping, R. P., Byrnes, J. B. A method of calibrating magnetometers on a spinning spacecraft. IEEE Transactions on Magnetics, 31, 966-972, 1995. 10 [15] Lepping, R. P., Acuna, M., Burlaga, L., Farrel, W., Slavin, J., Schatten, K., et al. The WIND Magnetic Field Investigation. Space Science Review, 71, 207-229, 1995. 10 [16] Ogilvie, K. W., Chorney, D. J., Fitzenreiter, R. J., Hunsaker, F., Keller, J., Lobell, J., et al. SWE, a comprehensive plasma instrument for the WIND spacecraft. Space Science Review, 71, 55-77, 1995. 10 [17] Mish, W. H., Lepping, R. P. Magnetic field experiment data processing system: Explorers 47 and 50. NASA, Goddard Space Flight Center, 1976. 10 [18] Kokubum, S., Yamamoto, T., Acuna, M. H., Hayashi, K., Shiokawa, K., Kawano, H. The GEOTAIL Magnetic Field Experiment. Journal of Geomagnetism and Geoelectricity, 46, 7-21, 1994. 11 [19] Nishida, A. GEOTAIL instruments and Initial Results. Journal of Geomagnetism and Geoelectricity, 46, 3, 1994. 11 [20] Parks, G. K. Westview Press, 2004. 13, 14, 17, 22, 23 [21] IAGA Working Group V-MOD: Finlay, C. C., Maus, S., Beggan, C. D., et al. International geomagnetic reference field: the eleventh generation. Geophysical Journal International, 183(3), 1216-1230, 2010. 13, 15, 16, 28 [22] Tsyganenko, N. A. A model of the near magnetosphere with a dawn-dusk asymmetry. Journal of Geophysical Research, 107(A8), 2002. 13, 14 [23] Krall, N. A., Trivelpiece, A. W. McGraw-Hill, 1973. 16 [24] Smart, D. F., Shea, M. A., Flückiger, E. O. Magnetospheric models and trajectory computations. Space Science Reviews, 93, 305-333, 2000. 21, 28, 29 [25] Gonzalez, W. D., Vasyliunas, V. M., et al. What is a geomagnetic storm? Journal of Geophysical Research, 99(A4), 5771-5792, 1994. 24, 25 [26] Dasso, S., Gómez, D., Mandrini, C. H. Ring current decay rates of magnetic storm: A statistical study from 1957 to 1998. Journal of Geophysical Research, 107(A5), 1059, 2002. 24 [27] Smart, D. F., Shea, M. A. . World grid of calculated cosmic ray vertical cutoff rigidities for epoch 2000.0. Proceedings of the 30th International Cosmic Ray Conference, 1, 737-740, 2008. 26, 28 [28] Gonzalez, W. D., Tsurutani, B. T., et al. The extreme magnetic storm of 1-2 september 1859. Journal of Geophysical Research, 108(A7), 1268, 2003. 27 [29] Storini, M., Smart, D. F., Shea, M. A. Cosmic ray asymptotic directions for Yangbajing (Tibet) experiments. 28 [30] Parker, E. N. tomo VIII. John Wiley & Sons, 1963. 28 [31] Bertou, X., et al. Calibration of the surface array of the Pierre Auger Observatory. Nuclear Instruments and Methods in Physics Research, A 568, 839-846, 2006. 32 [32] Pierre Auger Collaboration Aglietta, M., et al. Response of the Pierre Auger Observatory water cherenkov detectors to muons. Proceedings of the 29th International Cosmic Ray Conference, 2005. 32 [33] Etchegoyen, A., et al. Muon-track studies in a water cherenkov detector. Nuclear instruments and Methods in Physics Research, A 545, 602-612, 2005. 32 [34] PIERRE AUGER collaboration, P., Abreu, et al. The Pierre Auger observatory Scaler Mode for the study of solar activity modulation of galactic cosmic rays. JINST, 6, P01003, 2011. 32, 33, 65 [35] Asorey, H. Reconstrucción de eventos con los detectores de superficie del Observatorio Pierre Auger de rayos cósmicos. 2005. 36 [36] Addison, P. S. Institute of Physics Publishing, 2002. 47, 49, 51 [37] Ahluwalia, H. S., Fikani, M. M. Cosmic ray detector response to transient solar modulation: Fosbush decreases. Journal of Geophysical Research, 112(A08105), 2007. 47 [38] Kuznetsov, S. N., Myagkova, I. N., Ryumin, S. P., et al. Eects of the april 1994 forbush events on the uxes of the energetic charged particles measured on board coronas-i: their connection with conditions in the interplanetary medium. Journal of Atmospheric and Solar-Terrestrial Physics, 64, 535-539, 2002. 47 [39] Torrence, C., Compo, G. P. A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, pág. 61, 1998. 50, 51, 56 [40] Usoskin, I. G., et al. Forbush decreases of cosmic rays: energy dependence of the recovery phase. Journal of Geophysical Research, 113(A07102), 2005. 51 [41] Penna, R. F., Quillen, A. C. Decay of interplanetary coronal mass ejections and forbush decrease recovery times. Journal of Geophysical Research, 110(A09S05), 2005. 54, 55 [42] Sanderson, T. R., Beeck, J., Marsden, R. G., et al. A study of the relation between magnetic clouds and forbush decreases. Proceedings of the 21st International Cosmic Ray Conference, 6, 251-254, 1990. 58 [43] Richardson, I., Cane, H. Near-earth interplanetary coronal mass ejections during solar cycle 23 (1996-2009): Catalog and summary of properties. Solar Physics, 264, 189-237, 2010. 58, 60 [44] Wibberenz, G. Transient eects and disturbed conditions: observations and simple models, tomo 83. 1998. 60
Materias:Física > Astrofísica
Divisiones:Investigación y aplicaciones no nucleares > Física > Partículas y campos
Código ID:315
Depositado Por:Marisa G. Velazco Aldao
Depositado En:24 Abr 2012 10:26
Última Modificación:24 Abr 2012 10:26

Personal del repositorio solamente: página de control del documento