Influencia de la deformación plástica y el microaleado sobre la precipitación en aleaciones de base Al-Cu. / Plastic deformation and microalloying effect on the precipitation of Al-Cu based alloys.

Castro Riglos, María Victoria (2011) Influencia de la deformación plástica y el microaleado sobre la precipitación en aleaciones de base Al-Cu. / Plastic deformation and microalloying effect on the precipitation of Al-Cu based alloys. Tesis Doctoral en Física, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]PDF (Tesis)
Español
4Mb

Resumen en español

Debido a su gran abundancia en la naturaleza, a su bajo costo y su baja densidad el aluminio es un metal ampliamente utilizado tanto con fines tecnológicos y estructurales como también comerciales. Sin embargo, el Al no posee por sí mismo las condiciones necesarias de dureza para la mayoría de dichas aplicaciones. Por ello, en las últimas décadas se han desarrollado diversos métodos a través de los cuales la dureza se puede optimizar. Dos de ellos son el agregado de aleantes y microaleantes; y la aplicación de una deformación plástica previa a los tratamientos térmicos de envejecimiento. En el presente trabajo, el principal objetivo fue estudiar el efecto combinado de estos dos métodos en un sistema que ya ha sido ampliamente estudiado: Al-Cu. Los elementos microaleados fueron Si y Ge, en iguales proporciones (0,5 at. % de cada uno). Se estudió la evolución de la dureza y la micro estructura en Al-Cu microaleado con Si y Ge, con y sin deformación plástica previa al tratamiento térmico de envejecimiento. Se variaron el grado de deformación y la tem- peratura del tratamiento térmico de envejecimiento (160°C y 190°C). Con el objetivo de comprender mejor las observaciones hechas en Al- Cu-Si-Ge, se estudiaron también sistemas más simples (Al-Ge, Al-Si y Al- Si-Ge). La evolución de la dureza ante la deformación plástica previa se vinculó con la microestructura mediante la caracterización llevada a cabo por microscopía electrónica de transmisión. En este sentido, y con el fin de poder realizar mediciones cuantitativas de densidades de defectos, se implementó también un nuevo método para la determinación del espesor local de una lámina delgada. La deformación plástica previa al envejecimiento se aplicó tanto en compresión como en tracción, pero por cuestiones prácticas la mayor parte de los ensayos se llevó a cabo en compresión. La combinación de deformación plástica previa y el agregado de microaleantes resultó en una mejor respuesta de la dureza comparando con aplicar cada método por separado. Se estudió el efecto de aplicar distintos grados de deformación en los sistemas analizados. En este sentido, uno de los resultados más relevantes de este estudio mostró que existe un grado óptimo de deformación previa (cercano a1 8 %) para mejorar la dureza del Al-Cu-Si-Ge. Mediante la caracterización microestructural se determinó que la deformación plástica produce un aumento en la densidad de precipitados de Si-Ce que estimulan la nucleación heterogénea de la fase #theta#´, la cual es responsable por el mejor comportamiento de la dureza. Además esta precipitación de#theta# ´ fue más abundante y desarrollada. Se caracterizó el mecanismo de nucleación heterogénea de la fase l#theta#´•´ sobre precipitados de Si-Ce. Como una extensión de este trabajo, se comenzó a estudiar el agregado de los mismos microaleantes (Si y Ce) en el sistema Al-Cu-Mg, obteniéndose resultados muy promisorios con un importante incremento en los valores de dureza alcanzados respecto del sistema Al-Cu-Si-Ce. Esta mejora estuvo asociada nuevamente a la precipitación de la fase #theta#´ que es estimulada por precipitados muy pequeños de una fase precursora.

Resumen en inglés

Aluminium uses have been widely extended over technologic and commercial applications because of aluminium´s low weight and cost, and its high abundance in nature, though, aluminium by itself is not hard enough for many of these applications. For this reason, some methods have been developed in the last few decades, in order to improve hardness. Two of them are: alloying and microalloying other elements; and the application of plastic deformation prior to ageing heat treatments. The main goal of the present study was to analyze the combined effects of these two methods on a very well known system: Al-Cu. The chosen elements to be microalloyed were Si and Ge (0.5 at.% each). The hardness evolution and microstructure was studied in Al-Cu microalloyed with Si and Ge. Also plastic deformation prior to ageing heat treatments was applied under different degrees of deformation. Two temperatures for the ageing treatments were analyzed (160C y 190C). With the aim of a better understanding of the processes envolved, the related simpler systems have been also studied (Al-Ge, Al-Si, Al-Si-Ge). Hardness evolution response to predeformation was associated to microstructure by means of transmission electron microscopy (TEM). A new method for local thickness measurements was implemented. Plastic deformation essays were carried out in compression as well as in traction. For practical reasons, most of the times compression was the better choice. Plastic deformation combined with microalloys additions resulted in a better hardness response, than applying each method apart. Different deformation degrees prior to ageing have been applied. The results for Al-Cu-Si-Ge system, showed that an optimum deformation degree exists (around 8 %). Microstructural characterization determined that under plastic deformation prior to ageing, the rise produced in Si-Ge precipitates’s density stimulate #theta#´ phase heterogeneous nucleation that is responsable of the improvements on hardness behavior. This particular situation was linked to bigger and more abundant #theta#´ precipitates. The nucleation mechanism for heterogeneous nucleation of #theta#´ phase on Si-Ge precipitates was characterized. Finally, to widen the horizons, the effects of Si-Ge additions on Al-Cu- Mg have been explored. Promising results displayed an improved hardness behavior with respect to the one observed in Al-Cu-Si-Ge. Hardness improvements here were again related to an abundant #theta#´ precipitation. Although, in this case, the stimulating phase appeared to be an unidentified one that presented a big amount of very small precipitates spread all over.

Tipo de objeto:Tesis (Tesis Doctoral en Física)
Palabras Clave:Aluminium; Aluminio; Microstructure; Microestructura; Transmission electron microscopy; Microscopía electrónica por transmisión; Age hardenable alloys; Aleaciones termoenvejecibles; Microalloying; Microaleantes; Plastic deformation; Deformación plástica
Referencias:[1] Polmear, I. Light Alloys. 4ta ed. Oxford: Elsevier, 2006. [2] Mondolfo, L. F. Alluminium Alloys. 1ra ed. London: Butterworths & Co Ltd, 1976. [3] Ashby,M.F. & Jones, D.R.H. Engineering Materials 1. 2nd ed. Butterworth & Heinmann, 1996. [4] Courtney, T. H. Mechanical Behavior of Materials .2nd ed. Boston: McGraw Hill, 2000. [5] Porter, D. A. & Easterling, K. E. Phase transformations in metals and alloys. 2da ed. London: Chapman-Hall,1992. [6] S. P. Ringer and K. Hono. “Microstructural evolution and age hardening in aluminium alloys: atom probe field-ion microscopy and transmission electron microscopy studies”. Mat. Charac., 44, 101-131, 2000. [7] J. M. Silcock, T. J. Heal and H. K. Hardy. “The Structural Ageing Characteristics of ternary aluminum-copper alloys with cadmium, indium, or tin”. J. Inst. Met., 84, 23-31, 1955. [8] Ringer,S. P. , Hono, K. and T. Sakurai, “Nucleation and growth of q0 precipitation in Sn-modified Al-Cu alloys: APFIM/TEM observations”. App. Surf. Sci., 87/88, 223-227, 1995. [9] H. Suzuki, M. Kanno, I. Araki, “Precipitation of the intermediate phase in Al-Cu-Sn alloys”, J. Jpn. Inst. Light Met., 25, 413-421, 1975. [10] S. P. Ringer, K. Hono and T. Sakurai, “The effect of trace additions of Sn on the precipitation in Al-Cu alloys: An atom probe field ion microscopy study”. Metall. Mater. Trans. A, 26, 2207-2217, 1995. [11] J.F. Nie, B.C. Muddle, H.I. Aaronson, S. P. Ringer and J.P Hirth, “On the roles of clusters during intragranular nucleation in the absence of static defects”. Metall. Mater. Trans. A, 33, 1649, 2002. [12] C.Wolverton, “Solute-Vacancy binding in aluminum”. Acta Mater, 55, 5867-5872, 2007. [13] A. Saulnier, Mem. Sci. Rev. Metall., 58, p. 615, 1961. [14] S. Q. Xiao, S. Hinderberger, K. H. Westmacott and U. Dahmen,“The effect of twinning on the shapes of cube-cube-related Ge precipitates in Al”. Philosophical Magazine A, Vol. 73, N5, 1261-1278, 1996. [15] S. Hinderberger, S.Q. Xiao, K. H.Westmacott and U. Dahmen. “Effect of pre-aging on the evolution of Ge precipitates in an Al-1.8 at.% Ge alloy”. Z. Metallkd, Vol. 87, p. 161, 1996. [16] E. Hornbogen, A.K. Mukhopadhyay, E.A. Starke. “Exploratory study of hardening in Al - (Si, Ge) alloys”. Z. Metallkd., 83, p. 577, 1992. [17] D. Mitlin, V. Radmilovic, U. Dahmen, J.W. Morris, “Precipitation and aging in Al-Si-Ge-Cu”. Metall. Mater. Trans. A, 32, p. 197, 2001. [18] Dahmen, U., Hetherington, C.J.D., Radmilovic, V., Johnson, E., Xiao, S.Q., Luo, C.P., “Electron microscopy observations on the role of twinning in the evolution of microstructures”. Microsoc. Microanal. 7 Suppl 2, pp. 247-256, 2002. [19] D. Mitlin, U. Dahmen, V. Radmilovic, J.W.Morris Jr, “Precipitation and hardening in Al-Si-Ge”. Mat. Sci. and Eng. A, Vol. 301, Issue 2, 231-236, 2001. [20] D. Mitlin, V. Radmilovic, J.W.Morris Jr. and U. Dahmen, “On the influence of Si-Ge additions on the aging response of Al-Cu”. Metall. Mater. Trans A, 34, 735-742, 2003. [21] D. Mitlin, V. Radmilovic, U. Dahmen and J.W. Morris, “Precipitation and aging in Al-Si-Ge-Cu”. Metall. Mater. Trans A, Vol.32, 197, 2001. [22] E. Hornbogen, A.K. Mukhopadhyay, E.A. Starke. Z. Metallkd., Vol. 92, p. 577, 1992. [23] V. Radmilovic, M. K. Miller, D. Mitlin, U. Dahmen, “Straincompensated nano-clusters in Al-Si-Ge alloys”. Scripta Materialia, Vol. 54, Issue 11, pag. 1973, 2006. [24] H. Wilsdorf and D. Kuhlman-Wilsdorf. “Defects in Crystalline Solids”. Physical Society, London (1955). [25] J. M. Silcock, “A study of elongation and ageing in Al-4%Cu and Al- 4 %Cu-0.05 %In crystals”, Acta Metallurgica, Vol. 8, 589-597, 1960. [26] A. W. Zhu and E. A. Starke Jr. “Strengthening effect of unshearable particles of finite size: A computer experimental study”. Acta Mater, 47, pág. 3263, 1999. [27] A. W. Zhu, A. Csontos and E. A. Starke Jr, “Computer experiment on superposition of strengthening effects of different particles”. Acta Mater, 47, pág. 1713, 1999. [28] P. Bate, W.T. Roberts, D.V. Wilson, Acta Metallurgica, Vol. 29, Issue 11, pp. 1797-1814, 1981. [29] F. Barlat, A.K. Vasudévan, Acta Metallurgica et Materialia, Vol. 39, Issue 3, pp. 391-400, 1991. [30] A. W. Zhu and E. A. Starke Jr, Acta Mater, “Stress aging of Al-xCu alloys: Experiments”. 49, pp. 2285-2295, 2001. [31] A. W. Zhu, J. Chen and E. A. Starke Jr, Acta Mater, “Precipitation strengthening of stress-aged Al-XCu alloys”. 48, pp. 2239-2246, 2000. [32] G. B. Brook, “Precipitation in Metals”, Spec. Rep. No 3, Fulmer Res. Inst., UK, (1963). [33] S. P. Ringer, K. Hono, I. J. Polmear and T. Sakurai,“Nucleation of precipitates in aged Al-Cu-Mg-(Ag) alloys with high Cu:Mg ratios”, Acta Mater., 44, pp 1893-1898, 1996. [34] I. J. Polmear and R. J. Chester, Scripta Metall., 23, 1213-1217, 1989. [35] J. A. Taylor, B. A. Parker and I. J. Polmear, “Precipitation in Al-Cu- Mg-Ag casting alloy”, Met. Sci., 12, pp 478-482, 1978. [36] R. J. Chester and I. J. Polmear, “Precipitation in Al-Cu-Mg-Ag alloys”. In The Metallurgy of Light Alloys, Inst. of Metals, London, (1983), pp 75-81. [37] M. Muruyama and K. Hono, “Three dimensional atom probe analysis of pre-precipitate clustering in an Al-Cu-Mg-Ag alloy”. Scripta Mater., 38, 1315-1319, 1998. [38] L. Reich, M. Muruyama and K. Hono.“Evolution of W phase in an Al-Cu-Mg-Ag alloy - A three dimensional atom probe study”. Acta Mater., 46, 6053-6062, 1998. [39] I. J. Polmear and R. J. Chester,“Abnormal age hardening in an Al- Cu-Mg alloy containing silver and lithium.”, Scripta Metall., 23, 1213- 1217, 1989. [40] B.-P. Huang and Z.-Q.Wang, “Effects of Li content on precipitation in Al-Cu-(Li)-Mg-Ag-Zr alloys.”, Scripta Mater., 38, pp. 357-362, 1998. [41] J. M. Silcock, “The structural ageing characteristics of Al-Cu-Mg alloys with copper:magnesium weight ratios 7:1 and 2.2:1”. J. Inst. Met., 89, pp 203-210, 1960-61. [42] J. T. Vietz and I. J. Polmear, “The influence of small additions of silver on the ageing of aluminium alloys: Observations on Al-Cu-Mg alloys”. J. Inst. Met., 94, pp 410-419, 1966. [43] S. P. Ringer, K. Hono, T. Sakurai and I. J. Polmear, “Cluster hardening in Al-Cu-Mg alloys”, Scripta Mater., 36, pp 517-521, 1997. [44] S. P. Ringer, T. Sakurai and I. J. Polmear,“On the origins of hardening in Al-Cu-Mg-(Ag) alloys. Acta Mater., 45, pp 3731-3744, 1997. [45] A. K. Gupta, P. Gaunt and M. C. Chaturvedi, Philosophical Magazine A, Vol. 55, No 3, pp. 375-387, 1987. [46] S. P. Ringer, K. Hono, I. J. Polmear and T. Sakurai, “Precipitation processes during the early stages of ageing in Al-Cu-Mg alloys”. Appl. Surface Sci., 94/95, pp. 253-260, 1996. [47] H. D. Chopra, K. J. Liu, B. C. Muddle and I. J. Polmear, “The structure of metastable (111)a precipitates in Al-2.5wt. %Cu-1.5 %Mg-0.5%Ag alloy”, Philos. Mag. Lett., 71, pp 319-325, 1995. [48] J. H. Auld, J. T. Vietz and I. J. Polmear, “T phase precipitation induced by addition of silver to an Al-Cu-Mg alloy”. Nature, 209, pp 703-704, 1966. [49] H. D. Chopra, B. C. Muddle and I. J. Polmear, “The structure of primary strengthening precipitates in an Al-1.5 wt. %Cu-4.0 wt.%Mg- 0.5 wt.%Ag alloy”. Philos. Mag. Lett., 73, 351-357, 1996. [50] D. W. Pashley, M. H. Jacobs, J. T. Vietz. Philos. Mag., Vol. 16, p. 51, 1976. [51] N. Hashimoto, M. Saga, M. Kikuchi, R. Uemori, N. Muruyama. Nippon Steel Company, 1994. [52] G. A. Edwards, K. Stiller, G. L. Dunlop. “APFIM investigation of finescale precipitation in aluminium alloy 6061”. Appl. Surf. Sci., 76/77 , p. 219, 1994. [53] G. A. Edwards, K. Stiller, G. L. Dunlop, M. J. Couper. “The precipitation sequence in Al-Mg-Si alloys”. Acta Mater., Vol. 46, N 11, pp. 3893-3904, 1998. [54] M. Muruyama, K. Hono, M. Saga, M. Kikuchi. “Atom probe studies on the early stages of precipitation in Al-Mg-Si alloys”. Mat. Sci.Eng. A, 250, pp. 127-132, 1998. [55] M. Muruyama, K. Hono. “Pre-precipitate clusters and precipitation processes in Al-Mg-Si alloys”. Acta Mater., Vol. 47, N5, pp. 1537- 1548, 1999. [56] A. Serizawa, S. Hirosawa, T. Sato. “3DAP characterization and thermal stability of nano-scale clusters in Al-Mg-Si alloys”. Mater. Sci. Forum. Vols. 519-521, pp. 245-250, 2006. [57] www.nndc.bnl.gov/chart [58] Table of Isotopes, Richard B. Firestone, 8th edition, V. S. Shirley Ed., John Wiley & Sons, Inc., 1996. ISBN: 0-471-14918-7 [59] Nuclear Wallet Cards, J. K. Tuli, Brokhaven National Laboratory, Associated Universities, Inc., 5th edition, USA, July 1995. [60] A. Cuniberti, A. Tolley, M.V. Castro Riglos, R. Giovachini. “Influence of natural aging on the precipitation hardening of an AlMgSi alloy”. Materials Science and Engineering A, Vol. 527, Issue 20, pp. 5307-5311, 2010. [61] Tabor, D. “The Hardness of Metals”. 1ra ed. Oxford: Clarendon Press, 1951. [62] K. C. Thompson-Russell and J. W. Edington. “Electron Microscope Specimen Preparation Techniques in Materials Science”, 1ra ed. Vol 5, New York: Macmillan Press Ltd, 1977. [63] David B. Williams and C. Barry Carter. “Transmission Electron Microscopy: a textbook for materials science”. 1ra ed. New York: Plenum Press, 1996. [64] C. Kittel. “Introduction to solid state physics”. 4th ed. New York:Wiley, 1971. [65] N.W. Ashcroft, N. D. Mermin. “Solid state physics”. New York: Holt, Rinehart and Winston, 1976. [66] J.P. Morniroli, D. Vankieken, L.Winter. “Electron Diffraction 3.6”, Laboratoire de Métallurgie Physique, Université de Lille. (1996) [67] A. Tolley, D. Mitlin, V. Radmilovic, U. Dahmen. “Transmission electron microscopy analysis of grain boundary precipitate-free-zones (PFZs) in an AlCuSiGe alloy”. Materials Science and Engineering A, 412, 204-213, 2005. [68] P. M. Kelly, A. Jostsons, R. G. Blake, J. G. Napier, “Determination of foil thicknes by scanning transmission electron microscopy”. Phys. Stat. Solidi (a), 31, pp. 771-780, 1975. [69] R. F. Egerton. “Electron Energy Loss Spectroscopy in the Electron Microscope”. 2da ed. New York: Plemun, 1996. [70] J. M. Zuo, Y. F. Shi. Microsc. Microanal., 7, (Suppl. 2), pp. 224-225, 2001. [71] P. A. Stadelmann. “EMS - a software package for electron diffraction analysis and HREM image simulation in materials science”. Ultramicroscopy, 21, pp. 131-146, 1987. [72] A. Doyle, P. S. Turner, Acta Cryst. A, 24, pp. 390-397, 1968. [73] M.V. Castro Riglos and A. Tolley. “A method for thin foil thickness determination by transmission electron microscopy”. Applied Surface Science, Vol. 254, Issue 1, pp. 420-424, 2007. [74] Anales de la Asociación Argentina de Cristalografía (AACr), San Luis, Argentina, pp. 38-41, 2007. [75] M. V. Castro Riglos, A. J. Tolley and V. Radmilovic. “Plastic Deformation Effect On The Precipitation Al-Ge And Al-Cu-Si-Ge Alloys”. Anales SAM/CONAMET 2007, San Nicolás, Argentina. [76] E. Hornbogen, A. K. Mukhopadhyay and E. A. Starke Jr., “Precipitation hardening of Al-(Si, Ge) alloys”. Scripta Metallurgica et Materialia, Vol. 27, pp. 733-738, 1992. [77] E. Hornbogen, A.K. Mukhopadhyay, E.A. Starke, “Predicting slip behavior in alloys containing shearable and strong particles”. J. Mater. Sci., 28, pág. 3670, 1993. [78] E. Hornbogen, A.K. Mukhopadhyay, E.A. Strake, Jr, “Exploratory study of hardening in Al - (Si, Ge) alloys”. Z. Metallkd., 83, 577, 1992. [79] M. V. Castro Riglos, M. Taquire de la Cruz and A. Tolley. “Accelerated age hardening by plastic deformation in Al-Cu with minor additions of Si and Ge”. Scripta Materialia, Vol. 64, Issue 2, pp. 169-172, 2011. [80] V. Castro Riglos, M. Taquire de la Cruz and A. Tolley. “Microstructural Characterization Of Al-Cu-Si-Ge Alloy Plastically Deformed Prior To Annealing At 190oC.”. Anales CIASEM 2009, Rosario, Argentina. [81] V. Castro Riglos, A. Tolley. “Heterogeneous Nucleation of Theta Prime Precipitates in plastically deformed Al-Cu-Si-Ge Alloys”. Anales IMC 17, Río de Janeiro, Brazil. Septiembre 2010. [82] Radmilovic. Phil. Mag., Vol. 87, pag. 3905, 2007. [83] Journal Institute of Metals, Vol. “Aluminium-Copper-Cadmium sheet alloys”. 83, pág. 337, (1954-1955).
Materias:Física > Física de materiales
Metalurgia > Aleaciones
Divisiones:Investigación y aplicaciones no nucleares > Física > Física de metales
Código ID:322
Depositado Por:Marisa G. Velazco Aldao
Depositado En:02 May 2012 13:25
Última Modificación:02 May 2012 13:25

Personal del repositorio solamente: página de control del documento