Troviano, Mauricio (2011) Caracterización optoelectrónica y modelado de celdas solares de Cu(In, Ga)Se_2. / Optoelectrónic characterization and modelling of Cu(In,Ga)Se_2 solar cells. Tesis Doctoral en Ciencias de la Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.
PDF (Tesis) Español 7Mb |
Resumen en español
Aunque las celdas solares de Cu(In,Ga)Se_2 poseen el mayor rendimiento de las celdas solares de lámina delgada, aún se desconocen parámetros fundamentales del material. Modelos que consideren su compleja combinación de heteroestructuras semiconductoras, gradientes de composición y características policristalinas, permitirían hallar estrategias para optimizar su diseño y preparación. En este trabajo se modelan celdas solares de Cu(In,Ga)Se_2 considerando su característica policristalina y los gradientes de composición. Partiendo de simulaciones bidimensionales, se hallan expresiones simplificadas, las cuales logran reproducir curvas de eficiencia cuántica y tensión-corriente obtenidas experimentalmente, permitiendo la extracción de parámetros físicos y estructurales del material. Principalmente, se hallan la longitud de difusión de portadores, el gap de energía mínimo y la energía característica de las bandas de defectos en celdas de alto rendimiento. Mediciones de eficiencia cuántica interna en función de la temperatura permiten, adicionalmente, hallar la energía de trampas profundas de portadores que limitan el rendimiento de las celdas
Resumen en inglés
Although Cu(In,Ga)Se2 solar cells yield the highest efficiency of thin film solar cells, several fundamental parameters of the device are still unknown. Models that consider the complex combination of semiconductor heterostructures, composition gradients and polycrystalline characteristics could lead to strategies to optimize their preparation and design. In this work, Cu(In,Ga)Se2 solar cells are modeled considering their polycrystallinity and composition profiles. Based on two-dimensional simulations, simplified expressions are obtained, which enable the extraction of physical and structural parameters of the material. Mainly, the carrier diffusion length, the minimum bandgap and the band tail energy are found. Additionally, measurements of temperature-dependent internal quantum efficiency allow to find the energy of deep-defect states that limit the efficiency of solar cells.
Tipo de objeto: | Tesis (Tesis Doctoral en Ciencias de la Ingeniería) |
---|---|
Palabras Clave: | Solar cells; Celulas solares; Numeric model; Modelado numérico; Internal quantum efficiency; Eficiencia cuántica interna; Optoelectronic characterization; Caracterización optoelectrónica |
Referencias: | [1]REN21:2010. Renewable 2010 Global status report. (Paris: REN21 secretariat), p.16 2010. [2]Ver p. 9 ref. [1]. [3]Ver p. 19 ref. [1]. [4]Ver p. 31 ref. [1]. [5]P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, et al., New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%, Prog. Photovolt: Res. Appl., DOI:10.1002/pip1078 (2011). [6]K. Otte, L. Makhova, A. Braun, I. Konovalov, Flexible Cu(In,Ga)Se2 thin-film solar cells for space application, Thin Solid Films 511-512 (2006) 613-622. [7]J. Poortmans, V. Arkhipov, Thin film solar cells: fabrication, characterization and applications, John Wiley and Sons, p. 245, 2006. [8]A.A. Rockett, Current status and opportunities in chalcopyrite solar cells, Current Opinion in Solid State and Materials Science 14 (2010) 143-148. [9]A. Jasenek, U. Rau, Defect generation in Cu(In,Ga)Se2 heterojunction solar cells by high-energy electron and proton irradiation, J. Appl. Phys. 90 (2001) 650. [10]S. Siebentritt, U. Rau, Cu-Chalcopyrites–Unique Materials for Thin-Film Solar Cells, in: Wide-Gap Chalcopyrites, 2006: pp. 1-8. [11]A.M. Gabor, J.R. Tuttle, M.H. Bode, A. Franz, A.L. Tennant, M.A. Contreras, et al., Band-gap engineering in Cu(In,Ga) Se2 thin films grown from (In,Ga)2Se3 precursors, Solar Energy Materials and Solar Cells 41-42 (1996) 247-260. [12]P. Würfel, Physics of Solar Cells: From Principles to New Concepts, 1st ed., Wiley-VCH, p. 43, 2005. [13]A.S. Grove, Physics and technology of semiconductor devices, Wiley, p. 153, 1967. [14]S. Selberherr, Analysis and simulation of semiconductor devices, Springer, p.20, 1984. [15]Ver p. 16 ref. [14]. [16]J. Nelson, The Physics of Solar Cells, Imperial College Press, p.88, 2003. [17]ASTM Standard G173-03, 2008, "Standard Tables for Reference Solar Spectral Irrad, 2008. [18]J.I. Pankove, Optical Processes in Semiconductors, 2nd ed., Dover Publications, p. 36, 1975. [19]Ver p. 182 ref. [7]. [20]A. Luque, S. Hegedus, Handbook of Photovoltaic Science and Engineering, Wiley, p. 76, 2003. [21]C.R.M. Grovenor, Grain boundaries in semiconductors, Journal of Physics C: Solid State Physics 18 (1985) 4079-4119. [22]R. Brendel, U. Rau, Injection and Collection Diffusion Lengths of Polycrystaline Thin-Film Solar Cells, Solid State Phenomena 67-68 (1999) 81-86. [23]G.P. Smestad, Optoelectronics of Solar Cells, SPIE Publications, p.42, 2002. [24]Ver p. 7 ref. [16]. [25]P. Basore, Numerical modeling of textured silicon solar cells using PC-1D, Electron Devices, IEEE Transactions On 37 (1990) 337-343. [26]U.P. Singh, S.P. Patra, Progress in Polycrystalline Thin-Film Cu(In,Ga)Se2 Solar Cells, International Journal of Photoenergy 2010 (2010) 1-20. [27]K. Orgassa, H.W. Schock, J.H. Werner, Alternative back contact materials for thin film Cu(In,Ga)Se2 solar cells, Thin Solid Films 431-432 (2003) 387-391. [28]A.M. Gabor, J.R. Tuttle, D.S. Albin, M.A. Contreras, R. Noufi, A.M. Hermann, High-efficiency CuInxGa1−xSe2 solar cells made from (Inx,Ga1−x)2Se3 precursor films, Appl. Phys. Lett. 65 (1994) 198. [29]D. Abou-Ras, R. Caballero, C.A. Kaufmann, M. Nichterwitz, K. Sakurai, S. Schorr, et al., Impact of the Ga concentration on the microstructure of CuIn1–xGaxSe2, Phys. Stat. Sol. (RRL) 2 (2008) 135-137. [30]D. Abou-Ras, S. Schorr, H.W. Schock, Grain-size distributions and grain boundaries of chalcopyrite-type thin films, Journal of Applied Crystallography 40 (2007) 841-848. [31]Ver p. 574 ref. [20]. [32]Institut für Physikalische Elektronik, Stuttgart University, Pfaffenwaldring 47. [33]Ver p. 568 ref. [20]. [34]D. Abou-Ras, C. Koch, V. Küstner, P. van Aken, U. Jahn, M. Contreras, et al., Grain-boundary types in chalcopyrite-type thin films and their correlations with film texture and electrical properties, Thin Solid Films 517 (2009) 2545-2549. [35]P. Jackson, R. Würz, U. Rau, J. Mattheis, M. Kurth, T. Schlötzer, et al., High quality baseline for high efficiency CuIn1-xGaxSe2 Solar Cells, Progress in Photovoltaics: Research and Applications 15 (2007) 507-519. [36]K. Orgassa, Coherent optical analysis of the ZnO/CdS/Cu(In,Ga)Se2 thin film solar cell, Universität Stuttgart, 2004. [37]M. Contreras, J. Tuttle, A. Gabor, A. Tennant, K. Ramanathan, S. Asher, et al., High efficiency graded bandgap thin-film polycrystalline Cu(In,Ga)Se2-based solar cells, Solar Energy Materials and Solar Cells 41-42 (1996) 231-246. [38]T. Dullweber, G. Hanna, U. Rau, H.W. Schock, A new approach to high-efficiency solar cells by band gap grading in Cu(In,Ga)Se2 chalcopyrite semiconductors, Solar Energy Materials and Solar Cells 67 (2001) 145-150. [39]T. Dullweber, G. Hanna, W. Shams-Kolahi, A. Schwartzlander, M.A. Contreras, R. Noufi, et al., Study of the effect of gallium grading in Cu(In,Ga)Se2, Thin Solid Films 361-362 (2000) 478-481. [40]I. Repins, M. Contreras, M. Romero, Y. Yan, W. Metzger, J. Li, et al., Characterization of 19.9%-efficient CIGS absorbers, in: Photovoltaic Specialists Conference, 2008. PVSC '08. 33rd IEEE, 2008: pp. 1-6. [41]D.K. Schroder, Semiconductor Material and Device Characterization, Wiley, p. 668, 2006. [42]Ver p.669 ref. [41]. [43]J.H. Scofield, Frequency-domain description of a lock-in amplifier, Am. J. Phys. 62 (1994) 129. [44]K. Orgassa, U. Rau, H. Schock, J. Werner, Optical constants of Cu(ln,Ga)Se2 thin films from normal incidence transmittance and reflectance, in: Photovoltaic Energy Conversion, 2003. Proceedings of 3rd World Conference On, 2003: pp. 372-375 Vol.1. [45]S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing, Science 220 (1983) 671-680. [46]Ver p. 123 ref. [35]. [47]J. Mattheis, Comunicación personal. [48]A. Helbig, T. Kirchartz, R. Schaeffler, J.H. Werner, U. Rau, Quantitative electroluminescence analysis of resistive losses in Cu(In, Ga)Se2 thin-film modules, Solar Energy Materials and Solar Cells 94 (2010) 979-984. [49]S. Seyrling, A. Chirila, D. Güttler, F. Pianezzi, P. Rossbach, A. Tiwari, Modification of the three-stage evaporation process for CuIn1-xGaxSe2 absorber deposition, Thin Solid Films In Press, Corrected Proof. [50]K. Taretto, U. Rau, Numerical simulation of carrier collection and recombination at grain boundaries in Cu(In,Ga)Se2 solar cells, J. Appl. Phys. 103 (2008) 094523. [51]M. Gloeckler, J.R. Sites, W.K. Metzger, Grain-boundary recombination in Cu(In,Ga)Se2 solar cells, J. Appl. Phys. 98 (2005) 113704. [52]M. Hafemeister, S. Siebentritt, J. Albert, M.C. Lux-Steiner, S. Sadewasser, Large Neutral Barrier at Grain Boundaries in Chalcopyrite Thin Films, Phys. Rev. Lett. 104 (2010). [53]G. Hanna, T. Glatzel, S. Sadewasser, N. Ott, H. Strunk, U. Rau, et al., Texture and electronic activity of grain boundaries in Cu(In,Ga)Se2 thin films, Appl. Phys. A 82 (2005) 1-7. [54]W.K. Metzger, M. Gloeckler, The impact of charged grain boundaries on thin-film solar cells and characterization, J. Appl. Phys. 98 (2005) 063701. [55]C. Persson, A. Zunger, Anomalous Grain Boundary Physics in Polycrystalline CuInSe2: The Existence of a Hole Barrier, Phys. Rev. Lett. 91 (2003) 266401. [56]U. Rau, K. Taretto, S. Siebentritt, Grain boundaries in Cu(In, Ga)(Se, S)2 thin-film solar cells, Applied Physics A: Materials Science & Processing 96 (2009) 221-234. [57]S. Siebentritt, S. Sadewasser, M. Wimmer, C. Leendertz, T. Eisenbarth, M.C. Lux-Steiner, Evidence for a Neutral Grain-Boundary Barrier in Chalcopyrites, Phys. Rev. Lett. 97 (2006) 146601. [58]K. Taretto, U. Rau, J. Werner, Numerical simulation of grain boundary effects in Cu(In,Ga)Se2 thin-film solar cells, Thin Solid Films 480-481 (2005) 8-12. [59]Y. Yan, R. Noufi, M. Al-Jassim, Grain-Boundary Physics in Polycrystalline CuInSe2 Revisited: Experiment and Theory, Phys. Rev. Lett. 96 (2006). [60]C. Jiang, R. Noufi, J.A. AbuShama, K. Ramanathan, H.R. Moutinho, J. Pankow, et al., Local built-in potential on grain boundary of Cu(In,Ga)Se2 thin films, Appl. Phys. Lett. 84 (2004) 3477. [61]S. Selberherr, Analysis and simulation of semiconductor devices, Springer Science & Business, 1984. [62]www.comsol.com. [63]Ver p. 576 ref. [20]. [64]Siebentritt, Susanne, Shallow Defects in the Wide Gap Chalcopyrite CuGaSe2, in: Wide-Gap Chalcopyrites, 2006: pp. 113-156. [65]J.T. Heath, J.D. Cohen, W.N. Shafarman, Bulk and metastable defects in CuIn1-xGaxSe2 thin films using drive-level capacitance profiling, J. Appl. Phys. 95 (2004) 1000-1010. [66]P. Johnson, The effect of trapping defects on CIGS Solar Cell performance, Colorado State University, p.19, 2003. [67]M. Gloeckler, Device physics of Cu(In,Ga)Se2 thin-film solar cells, Ph.D, Colorado State University, Fort Collins, p. 87, 2005. [68]P. Basore, Extended spectral analysis of internal quantum efficiency, presented at the Photovoltaic Specialists Conference, 1993, Conference Record of the Twenty Third IEEE, pp. 147-152, 1993. [69]Ver p. 416 ref. [41]. [70]G. Brown, V. Faifer, A. Pudov, S. Anikeev, E. Bykov, M. Contreras, et al., Determination of the minority carrier diffusion length in compositionally graded Cu(In,Ga)Se2 solar cells using electron beam induced current, Appl. Phys. Lett. 96 (2010) 022104. [71]A. Virtuani, E. Lotter, M. Powalla, U. Rau, J.H. Werner, M. Acciarri, Influence of Cu content on electronic transport and shunting behavior of Cu(In,Ga)Se2 solar cells, J. Appl. Phys. 99 (2006) 014906. [72]K. Ramanathan, G. Teeter, J. Keane, R. Noufi, Properties of high-efficiency CuInGaSe2 thin film solar cells, Thin Solid Films 480-481 (2005) 499-502. [73]U. Rau, Tunnelling-enhanced recombination in Cu(In,Ga)Se2 heterojunction solar cells, Applied Physics Letters 74, (1999). [74]H. Bayhan, Study of CdS/Cu(In,Ga)Se2 interface by using n values extracted analytically from experimental data, Solar Energy 83 (2009) 372-376. [75]T. Kirchartz, U. Rau, Electroluminescence analysis of high efficiency Cu(In,Ga)Se2 solar cells, J. Appl. Phys. 102 (2007) 104510-1-104510-8. [76]Ver p. 65 ref. [36]. [77]A. Morales-Acevedo, Effective absorption coefficient for graded band-gap semiconductors and the expected photocurrent density in solar cells, Solar Energy Materials and Solar Cells 93 (2009) 41-44. [78]M.A. Green, Do built-in fields improve solar cell performance?, Progress in Photovoltaics: Research and Applications 17 (2009) 57-66. [79]Ver p. 19 ref. [16]. [80]Ver p. 594 [20]. [81]J. Cohen, J. Heath, W. Shafarman, Photocapacitance Spectroscopy in Copper Indium Diselenide Alloys, in: Wide-Gap Chalcopyrites, 2006: pp. 69-90. [82]P. Guha, S.N. Kundu, S. Chaudhuri, A.K. Pal, Electron transport processes in CuIn1-xGa2Se2 films prepared by four source co-evaporation technique, Materials Chemistry and Physics 74 (2002) 192-200. [83]J. Mattheis, P. Rostan, U. Rau, J. Werner, Carrier collection in Cu(In,Ga)Se2 solar cells with graded band gaps and transparent ZnO:Al back contacts, Solar Energy Materials and Solar Cells 91 (2007) 689-695. [84]W.K. Metzger, I.L. Repins, M.A. Contreras, Long lifetimes in high-efficiency Cu(In,Ga)Se2 solar cells, Appl. Phys. Lett. 93 (2008) 022110. [85]S.A. Dinca, E.A. Schiff, B. Egaas, R. Noufi, D.L. Young, W.N. Shafarman, Hole drift mobility measurements in polycrystalline CuIn1-xGa2Se2, Phys. Rev. B 80 (2009) 235201. [86]H. Neumann, N. Van Nam, H. Höbler, G. Kühn, Electrical properties of n-type CuInSe2 single crystals, Solid State Communications 25 (1978) 899-902. [87]J.H. Werner, J. Mattheis, U. Rau, Efficiency limitations of polycrystalline thin film solar cells: case of Cu(In,Ga)Se2, Thin Solid Films 480-481 (2005) 399-409. [88]J.T. Heath, J.D. Cohen, W.N. Shafarman, D.X. Liao, A.A. Rockett, Effect of Ga content on defect states in CuIn1-xGaxSe2 photovoltaic devices, Appl. Phys. Lett. 80 (2002) 4540-4542. [89]S.M. Wasim, C. Rincón, G. Marin, P. Bocaranda, E. Hernandez, I. Bonalde, et al., Effect of structural disorder on the Urbach energy in Cu ternaries, Phys. Rev. B 64 (2001) 195101. [90]K. Yoshino, T. Shimizu, A. Fukuyama, K. Maeda, P.J. Fons, A. Yamada, et al., Temperature dependence of photoacoustic spectra in CuInSe2 thin films grown by molecular beam epitaxy, Solar Energy Materials and Solar Cells 50 (1998) 127-132. [91]Y.P. Varshni, Temperature dependence of the energy gap in semiconductors, Physica 34 (1967) 149-154. [92]G. Hurkx, D. Klaassen, M. Knuvers, A new recombination model for device simulation including tunneling, IEEE Trans. El. Dev. 39 (1992) 331-338. [93]G. Hurkx, H. de Graaff, W. Kloosterman, M. Knuvers, A new analytical diode model including tunneling and avalanche breackdown, IEEE Trans. El. Dev. 39 (1992) 2090-2098. [94]U. Rau, Electronic loss mechanisms in chalcopyrites based heterojunction solar cells, Thin Solid Films 361-362 (2000) 298-302. [95]I. Repins, W. Metzger, C. Perkins, J. Li, M. Contreras, Measured minority-carrier lifetime and CIGS device performance, in: Photovoltaic Specialists Conference (PVSC), 2009 34th IEEE, 2009: pp. 000978-000983. [96]J. Mattheis, J.H. Werner, U. Rau, Finite mobility effects on the radiative efficiency limit of pn-junction solar cells, Physical Review B 77 (2008) 085203-1-085203-8. [97]T.A. Wagner, U. Rau, Analysis of recombination centers in epitaxial silicon thin-film solar cells by temperature-dependent quantum efficiency measurements, Appl. Phys. Lett. 82 (2003) 2637-2639. [98]M. Turcu, I. Kötschau, U. Rau, Band aligments in the Cu(In,Ga)(S,Se)2 alloy system determined from deep-level energies, Applied Physics A: Materials Science & Processing 73 (2001) 769-772. [99]M. Turcu, J. Cohen, U. Rau, Interdependence of the absorber composition and recombination mechanism in Cu(In,Ga)(Se,S)2 heterojunction solar cells, Applied Physics Letters 80 (2001) 2598-2600. [100]M. Igalson, A. Urbaniak, M. Edoff, Reinterpretation of defect levels derived from capacitance spectroscopy of CIGSe solar cells, Thin Solid Films 517 (2008) 2153-2157. [101]L.L. Kerr, S.S. Li, S.W. Johnston, T.J. Anderson, O.D. Crisalle, W.K. Kim, et al., Investigation of defect properties in Cu(In,Ga)Se2 solar cells by deep-level transient spectroscopy, Solid-State Electronics 48 (2004) 1579-1586. [102]J.T. Heath, J.D. Cohen, W.N. Shafarman, Distinguishing metastable changes in bulk CIGS defect densities from interface effects, Thin Solid Films 431-432 (2003) 426-430. |
Materias: | Energía Física > Física de materiales |
Divisiones: | Aplicaciones de la energía nuclear > Tecnología de materiales y dispositivos > Fisicoquímica de materiales |
Código ID: | 326 |
Depositado Por: | Marisa G. Velazco Aldao |
Depositado En: | 07 May 2012 15:41 |
Última Modificación: | 13 Dic 2012 09:01 |
Personal del repositorio solamente: página de control del documento