Puszkiel, Julián A. (2012) Preparación, estudio y optimización de hidruros complejos para almacenamiento de hidrógeno. / Preparation, study and optimization of complex hidrides for hydrogen storage. Tesis Doctoral en Ciencias de la Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.
PDF (Tesis) Español 16Mb |
Resumen en español
El hidrógeno es considerado un potencial vector energético porque es abundante, su oxidación produce agua y libera grandes cantidades de energía. Sin embargo, su utilización masiva como portador de energía no fue posible aún dado que existen inconvenientes tecnológicos que deben ser resueltos. La falta de disponibilidad de un medio seguro y eficiente para almacenar hidrógeno es uno de los principales problemas a resolver. En la presente tesis se investigaron materiales formadores de hidruros para el almacenamiento de hidrógeno. Los materiales fueron preparados por distintos procedimientos basados en la molienda mecánica (MM y MMR) y se utilizaron diversas técnicas para evaluar sus características microestructurales (XRD ex–situ e in–situ, SEM, EDS, PSD, XAFS y ASAXS), térmicas (DSC, HP-DSC y TG), termodinámicas y cinéticas (técnica volumétrica tipo Sieverts). En un comienzo, se estudiaron compuestos con distintas proporciones estequiométricas de Mg–Fe. Las propiedades termodinámicas como así también los mecanismos que limitan la velocidad de absorción y desorción de hidrógeno del sistema Mg–Fe–H fueron analizadas. La entalpía de absorción del sistema hidruro Mg–Fe–H corresponde la mezcla de hidruros MgH_2–Mg_2FeH_6 (~ 70 kJ/mol H_2), mientras que la entalpía de desorción presenta un valor para el MgH_2 (~ 70 kJ/mol H_2) y otro para el Mg_2FeH_6 (~ 90 kJ/mol H_2). Se encontró que un material en base magnesio compuesto por una relación estequiométrica 15Mg–Fe (Mg + 6,3 % mol Fe) y preparado por molienda en atmósfera de hidrógeno presenta capacidades de almacenamiento de hidrógeno de 5,0 % p/p a 350 ºC y estabilidad al ciclado. Mediante la aplicación de los modelos integrales gas–sólido, se obtuvo que la etapa limitante de la velocidad de absorción es la difusión de los átomos de hidrógeno a través de la capa hidruro. Además, se encontró también que la etapa limitante de la velocidad de desorción es el movimiento de la interfase metal/hidruro. Dadas las características del material 15Mg–Fe y con el fin de evitar la atmósfera reactiva de hidrógeno durante la molienda, se lo preparó por medio de la molienda mecánica en atmósfera inerte (Ar). El material obtenido sólo alcanzó capacidades de almacenamiento cercanas al 1,5 % p/p a 350 ºC y 2,0 MPa, debido a sus pobres características microestructurales luego del proceso de molienda. Sin embargo, al adicionar una pequeña cantidad de LiBH_4 al material 15Mg–Fe se observó una notable mejora en su microestructura luego del proceso de molienda en atmósfera inerte. Posteriormente, y por medio del agregado de haluros de hierro se obtuvieron capacidades de almacenamiento de hidrógeno superiores al 6,5 % p/p a 350 ºC (2,0 MPa) y 5,0 % p/p a 275 ºC (2,5 MPa). En base a resultados experimentales y mediante cálculos de las composiciones de las fases en el equilibrio, se obtuvo que las interacciones entre el LiBH_4 y los haluros de Fe (FeF_3 y FeCl_3) resultaron en la formación de boruro de hierro. Si bien se lograron materiales en base Mg con interesantes características para el almacenamiento de hidrógeno, las propiedades termodinámicas de los mismos corresponden a las del MgH_2. La estabilidad termodinámica dada por el fuerte enlace Mg–H no permite la liberación del hidrógeno a temperaturas por debajo de 300 ºC. Por esta razón y dadas las propicias propiedades termodinámicas (ΔH = 40,5 kJ.mol”-1 H_2, Td = 225 ºC a la presión atmosférica de 101,3 kPa) y la alta capacidad de almacenamiento de hidrógeno teórica (11,45 %p/p) de la reacción 2LiBH_4+MgH_2 ↔ 2LiH + MgB_2 + 4H_2, se la estudió con el agregado de aditivos en base hierro (Fe, Fe-isopropóxido, FeF_3 y FeCl_3). Se encontró el Fe es reducido a Fe metálico, ya sea durante el proceso de molienda o la interacción con el hidrógeno por la acción del LiH o LiBH_4. Esto resulta en menores capacidades de almacenamiento por la formación de compuestos como LiF y LiCl. El agregado de Fe como catalizador disminuye los tiempos requeridos principalmente para la desorción del material 2LiH + MgB_2 de 12 a 6 horas. Sin embargo, no se pudo reducir la temperatura de desorción de hidrógeno por debajo de 400 ºC. Resultados obtenidos por XAFS evidenciaron la formación de FeB, lo cual confirma los cálculos de las composiciones en el equilibrio. Mediante la técnica ASAXS se ha observado que la microestructura de las fases ricas en hierro se deteriora notablemente durante el ciclado en hidrógeno debido a su aglomeración. Dada la naturaleza química y estructural del FeB y las pobres características microestructurales del material, se obtuvieron lentas velocidades de absorción/desorción de hidrógeno. Se han logrado capacidades del 7,0 %p/p H (absorción de H_2 a 350 ºC y 5,0 MPa; desorción de H_2 a 400 ºC y 0,55 MPa) con un material compuesto por 2LiH + MgB_2 + 5mol%Fe. El estudio de los distintos sistemas formadores de hidruros (materiales en base Mg–Fe, Mg y 2LiBH_4+MgH_2) ha aportado al conocimiento de sus características microestructurales propiedades termodinámicas y cinéticas con vistas y al empleo tecnológico de los mismos en aplicaciones móviles.
Resumen en inglés
Hydrogen is regarded as a promising energy vector because it is abundant, its oxidation produces water and releases huge amounts of energy. Despite the fact that its practical application is not far away, there are many technological constraints yet to solve. One of the main constraints is the lack of a safe and efficient method to store hydrogen. In the present thesis, hydride forming materials for hydrogen storage were investigated. The materials were prepared by mechanical milling procedures (MM and MMR). Several techniques were applied to evaluate their microstructural characteristics (XRD ex–situ and in– situ, SEM, EDS, PSD, XAFS and ASAXS), thermal behavior (DSC, HP-DSC and TG) and thermodynamic and kinetic properties (Sieverts technique). At the beginning, different stoichiometric compositions of Mg–Fe materials were studied. The thermodynamic behavior and hydrogen absorption mechanisms of the Mg–Fe–H system were characterized. The absorption enthalpy of the Mg–Fe–H hydride system belongs to the MgH_2–Mg_2FeH_6 mixture (~ 70 kJ/mol H_2). On the other hand, the Mg–Fe–H hydride system exhibits two desorption enthalpies. One corresponds to the MgH_2 (~ 70 kJ/mol H_2) and the other to the Mg_2FeH_6 (~ 90 kJ/mol H_2). It was found that a material composed of 15Mg–Fe (Mg + 6.3 mol % Fe) prepared by reactive mechanical milling (H_2) exhibits capacities of about 5.0 wt% H at 350 ºC and 2.0 MPa and cycling stability. In order to avoid the H2 atmosphere during milling, the 15Mg–Fe material was prepared by mechanical milling under inert atmosphere (Ar). The obtained material just reached 1.5 wt% H at 350 ºC and 2.0 MPa owing to its poor microstructural characteristics. However, adding tiny amounts of LiBH4 to the 15Mg–Fe material led to a noticeable improvement in the degree of microstructural refinement. Hence, through the addition of iron halides capacities of about 6.5 wt% H at 350 ºC (2.0 MPa) and 5.0 wt% H at 275 ºC (2.5 MPa) were reached. Based on experimental results and equilibrium calculations, the LiBH_4 and Fe halides (FeF_3 and FeCl_3) resulted in the formation of a Fe boride compound. Despite the fact that Mg based materials with interesting hydrogen storage characteristics were obtained, their thermodynamic behavior still belongs to MgH_2. The MgH_2 thermodynamic stability is conferred by the strong Mg–H bond and it does not allow reaching reversible hydrogen capacities of 7.6 wt% H (theoretical capacity of MgH_2) at temperatures below 300 ºC. For this reason and due to the proper theoretical thermodynamic stability (ΔH = 40.5 kJ.mol"-1 H_2, Td= 225 ºC at atmospheric pressure, 101.3 kPa) and the high theoretical gravimetric capacity (11.45 wt % H) of the reaction 2LiBH_4+MgH_2 ↔ 2LiH + MgB_2 + 4H_2, materials composed of 2LiBH_4 + MgH_2 (2LiH + MgB_2) plus Fe–based additives were studied (Fe, Fe-isopropoxide, FeF_3 and FeCl_3). It was found that the Fe-based additives are reduced to metallic Fe by either LiH or LiBH_4 during the milling process and hydrogen cycling. This led to lower hydrogen capacities and the loss of catalytic effect because of the formation of compounds such as LiF and LiCl. The addition of Fe noticeable reduces the desorption times from 12 to 6 hours. However, such effect does not remain upon further cycling. XAFS results confirm that FeB is formed during hydrogen cycling. ASAXS results suggest that upon cycling the iron rich nanoscale particles exhibit poor microstructural characteristics because of agglomeration. Thus, the presence of FeB, which is regarded as chemically inert, and the poor microstructural characteristics of the material result in slower hydrogen absorption–desorption rates. Hydrogen storage capacities of about 7.0 wt% H (absorption at 350 ºC and 5.0 MPa; desorption at 400 ºC and 0.55 MPa) were reached with a material composed of 2LiH + MgB_2 + 5 mol % Fe. The study of different hydride forming materials (Mg–Fe, Mg and 2LiBH_4+MgH_2 based materials) provides knowledge about their microstructural characteristics, thermodynamic and kinetic behavior and their potential properties for mobile hydrogen storage applications.
Tipo de objeto: | Tesis (Tesis Doctoral en Ciencias de la Ingeniería) |
---|---|
Palabras Clave: | Hydrides; Hidruros; Hydrogen; Hidrógeno; Storage; Almacenamiento; Milling; Fresado; Magnesium; Magnesio; Borohydrides; Borohidruros |
Referencias: | [1] International Energy Agency. Oil Market Reports http://omrpublic.iea.org/tablearchivesearchres.asp?select5=%25&Submit222=Submit [2] Züttel, A., Borgschule, A., Schlapbach, L. Hydrogen as a Future Energy Carrier. 1ra ed. Weinheim: WILEY-VCH, 2008. [3] Bockris, J.O’M. Will lack of energy lead to the demise of high-technology countries in this century? Int. J. Hydrogen Energy, 32, 153–158, 2007. [4] Scott D.S. Fossil Sources: “Running Out” is Not the Problem. Int. J. of Hydrogen Energy, 30, 1–7, 2005. [5] Rand, D.A.J. y Dell R.M., Hydrogen Energy – Challenges and Prospects. 1ra ed. Cambridge: The Royal Society of Chemistry, 2008. [6] Schlapbach, L. y Züttel, A. Hydrogen-storage materials for mobile applications. Nature, 414, 353–358, 2001. [7] Turner, J.A. Sustainable hydrogen production. Science, 305, 972–974, 2004. [8] Scott, D.S. Until Something Better Comes Along! Int. J. Hydrogen Energy, 29, 1439– 1442, 2004. [9] Léon, A. Hydrogen Technology: Mobile and Portable Applications (Green Energy and Technology). 1ra ed. Berlin: Springer, 2008. [10] Department of Energy, U.S. Hydrogen Posture Plan, http://www.hydrogen.energy.gov/pdfs/hydrogen_posture_plan_dec06.pdf, 2006. [11] Solomon, B.D., Banerjee, A. A global survey of hydrogen energy research, development and policy. Energy Policy, 34, 781–792, 2006. [12].Sovacool, B.K. Brossmann, B. Symbolic convergence and the hydrogen economy. Energy Policy, 38, 1999–2012, 2010. [13] Bartels, J.R., Pate, M.B., Olson N. K. An economic survey of hydrogen production from conventional and alternative energy sources. Int. J. Hydrogen Energy, 35, 8371–8384, 2010. [14] Schmittinger, W., Vahidi, A. A review of the main parameters influencing long-term performance and durability of PEM fuel cells. J. Power Sources, 180, 1–14, 2008. [15] Jorgensen, S.W. Hydrogen storage tanks for vehicles: Recent progress and current status. Current Opinion in Solid State and Materials Science, 15, 39–43, 2011. [16] Chang, R. Química. Ed. No 7. Mexico. McGRAW HILL, 2002. [17] Perry, R.H. Perry’s Chemical Engineers’ Handbook. Ed. No 7. EEUU, 1999. [18] Hobein, B., Krüger, R. Physical Hydrogen Storage Technologies – a Current Overview. En: Stolten, D. (ed.) Hydrogen and Fuel Cells. Ed. No 1. Alemania: WILEY–VCH, 2010. pp. 377–393. [19] Varin, R. A. Czujko, T. Wronski, Z. S. Nanomaterials for Solid State Hydrogen Storage. 1º ed. Canada: Srpinger, 2009. [20] Walker, G. Multicomponent Hydrogen Storage Systems. En: Walker G. (ed.) Solid –state hydrogen storage – Materials and Chemistry. Primera edición. Inglaterra: Woodhead Publishing Limieted, 2008. pp. 480–482. [21] Rudman, P.S. Sandrock, G.D. Metallurgy of Rechargeable Hydrides. Annual Review of Materials Science, 12, 271-294, 1982. [22] Puszkiel, J.A. Reporte interno: Mediciones llevadas a cabo en la División Nanotecnología del Helmholtz Research Center Geesthacht, Alemania, 2011. [23] Khawam, A. Flanagan, D.R. Solid-State Kinetic Models: Basics and Mathematical Fundamentals. J. Phys. Chem. B, 110, 17315-17328, 2006. [24] Christian, J.W. The theory of transformations in metals and alloys. 3rd ed., Amsterdam: Pergamon; 2002. [25] Martin, M. Gommel, C. Borkhart, C. Fromm, E. Absorption and desorption kinetics of hydrogen storage alloys. J. Alloys Compd., 238, 193–201, 1996. [26] Ron, M. The normalized pressure dependence method for the evaluation of kinetic rates of metal hydride formation /decomposition. J. Alloys Compd., 283, 178–191, 1999. [27] Kissinger, H. E., Reaction Kinetics in Differential Thermal Analysis. Analytical Chemistry. 29, 1702 – 1706, 1957 [28] Züttel, A. Materials for hydrogen Storage. Materials Today, 1369, 24–33, 2003. [29] Grochala, W., Edwards, P.P. Thermal Decomposition of the Non-Interstitial Hydrides for the Storage and Production of Hydrogen. Chem. Rev., 104, 1283–1315, 2004. [30] Sakintuna, B, Lamari-Darkrim, F., Hirscher, M., Metal hydride materials for solid hydrogen storage: A review. Int. J. Hydrogen Energy, 32, 1121–1140, 2007. [31] Yvon, K., Bertheville, B. Magnesium based ternary metal hydrides containing alkali and alkaline-earth elements. J. Alloys Compd., 425, 101–108, 2006. [32] Dornheim, M., Eigen, N., Barkhordarian, G., Klassen, T., Bormann, R. Tailoring Hydrogen Storage Materials Towards Application. Advanced Engineering Materials, 8, No 5, 377–385, 2006. [33] Orimo, S–I., Nakamori, Y., Eliseo, J. R., Züttel, A., Jensen, C.M. Complex Hydrides for Hydrogen Storage. Chem. Rev., 107, 4111–4132, 2007. [34] StorHy. Hydrogen Storage Systems for Mobile Applications: Final publishable activity report 2008. Proyecto No: 502667, http://www.storhy.net/pdf/StorHy_FinalPublActivityReport_FV.pdf [35] Züttel, A. Hydrogen storage methods. Naturwissenschaften, 91, 157–172, 2004. [36] Eberle, U., Arnold, G., von Helmolt, R. Hydrogen storage in metal-hydrogen systems and their derivatives. J. Power Sources, 154, 456–460, 2006. [37] Maddalena, A., Petrisa, M., Palade,P., Sartori, S., Principi, G., Settimo, E., Molinas, B., Lo Russo, S. Study of Mg-based materials to be used in a functional solid state hydrogen reservoir for vehicular applications. Int. J. Hydrogen Energy, 31, 2097–2103, 2006. [38] Verga, M., Armanasco, F., Guardamagna, C., Valli, C., Bianchin, A., Agresti, F., Lo Russo, S., Maddalena, A., Principi, G. Scaling up effects of Mg hydride in a temperature and pressure-controlled hydrogen storage device. Int. J. Hydrogen Energy, 34, 4597–4601, 2008 [39] Chaise, A., de Rango, P., Marty, Ph., Fruchart, D. Experimental and numerical study of a magnesium hydride tank. Int. J. Hydrogen Energy, 35, 6311 – 6322, 2010. [40] von Helmolt, R., Eberle, U. Fuel cell Vehicles: Status. J. of Power Sources, 165, 833 – 843, 2007. [41] Department of Energy, U.S. Hydrogen Storage Targets. http://www1.eere.energy.gov/hydrogenandfuelcells/storage/pdfs/targets_onboard_hydro_stora ge.pdf, 2011. [42] Bösenberg, U., LiBH4–MgH2 Composites for Hydrogen Storage. Tesis (Doctorado). Alemania, Helmholtz Research Center Geesthacht GmbH–Technischen Universität Hamburg- Harburg, 2009. [43] Bellosta v. Colbe, J. M., Hydrogen Storage in Light Metal Hydrides. Tesis (Doctorado) Alemania, Universidad de Bochum, 2005. [44] Lozano Martinez, G.A. Development of Hydrogen Storage Systems Using Sodium Alanate, Tesis (Doctorado). Alemania, Helmholtz Research Center Geesthacht GmbH Technischen Universität Hamburg-Harburg, 2010. [45] Puszkiel, J.A. Preparación y estudio del hidruro complejo Mg2FeH6 para almacenamiento de hidrógeno. Tesis (Postgrado de Especialización en Aplicaciones Tecnológicas de la Energía Nuclear). Bariloche, Universidad Nacional de Cuyo, Instituto Balseiro, Universidad de Buenos Aires, Facultad de Ingeniería, 2006. [46] United Nation Department of International Economic and Social Affairs. Statistical Office (UNSD). Concepts and methods in energy statistics, with special reference to energy accounts and balances: a technical report, Series F.29, 1982. <http://og.ssb.no/ogwebpage/oldmanuals/SeriesF_29E.pdf> [47] Sigma Aldrich, Magnesium hydride hydrogen-storage grade, product number 683043. [48] Sigma Aldrich, Lithium aluminum hydride powder, product number 199877. [49] Sigma Aldrich, Lithium borohydride, product number 222356. [50] Sigma Aldrich, Iron, product number 266884. [51] Sigma Aldrich, Iron (III) fluoride, product number 288659. [52] Merk, Iron (III) chloride, product number 803945. [53] Alfa Aesar, Magnesium hydride, product number A19610. [54] Alfa Aesar, Lithium hydride, product number 41596. [55] Sigma Aldrich, Lithium borohydride, product number 62460. [56] Alfa Aesar, Magnesium boride, product number 88149. [57] Alfa Aesar, Iron, product number 00170. [58] Alfa Aesar, Iron (III) chloride, product number 12357. [59] Alfa Aesar, Iron boride, product number 88146. [60] Alfa Aesar, Iron diboride, product number 22952. [61] Alfa Aesar, Iron (III) isopropoxide, product number 44873. [62] Suryanarayana, C. Mechanical alloying and milling. Progress in Materials Science, 46, 1–184, 2001. [63] Hout, J. Hayakawa, H. Akiba, E. Preparation of the hydrides Mg2FeH6 and Mg2CoH5 by mechanical allying followed by sintering. J. Alloys Compd., 248, 164–167, 1997. [64] Chen, Y., Le Hazif, R., Martin, G. Influence of milling conditions on the formation of metastable phases: the crystal to amorphous transition. Solid State Pehnomena, 23 – 24, 271– 284, 1992. [65] Abdellaoui, M., Gaffet, E., Mechanical alloying in a planetary ball mill : kinematic description. Journal de Physique IV, 4, 291–296, 1994. [66] Abdellaoui, M., Gaffet, E., A mechanical and experimental dynamic phase diagram for ball – milled Ni10Zr7. J. Alloys Compd., 209, 351–361, 1994. [67] Schwarz, R.B. Koch, C.C. Formation of amorphous alloys by the mechanical alloying of crystalline powders of pure metals and powders of intermetallics. Appl. Phys. Lett., 49, 146– 148, 1986. [68] Coutsiers, J.P., Efecto de los distintos parámetros de molienda en un molino a bolas rotatorio. Reporte: Beca de verano. Instituto Balseiro (UNCuyo – CNEA), Centro Atómico Bariloche, 2002. [69] Puszkiel, J.A., Gennari, F.C., Arneodo Larochette, P. Synthesis of Mg15Fe materials for hydrogen storage applying ball milling procederes. J. Alloys Compd.,495, 655–658, 2010. [70] Calka, A. Radlinski, A.P. Universal high performance ball-milling device and its application for mechanical alloying. Mater. Sci. Eng. A, 134, 1350–1353, 1991. [71] Fritsch GmbH Manufacturers of Laboratory Instruments. Operating Instructions Planetary Mono Mill. 3ra ed. Alemania, 2005. [72] Cullity, D.B., Stock S.R. Element of X – Ray Diffraction. 1ra ed. Massachusetts: Addison-Wesley, 1956. [73] Goldstein, J. I. y colaboradores. Scanning Electron Microscopy and X-Ray Microanalysis. 3ra ed. New York : Kluwer Academic/Plenum Publishers, 2003. [74] Hastings, J.B., Thomlinson, W. y Cox, D.E. Synchrotron X-ray Powder Diffraction. J. Appl. Cryst., 17, 85–95, 1984. [75] Cerenius, Y.; Staal, K.; Svensson, L. A.; Usby, T.; Oskasson, A.; Albertson, J.; Liljas, A. The crystallography beamline I711 at MAX II. Journal Synchrotron Radiat, 7, 1–399, 2000. [76] Attenkofer, K., Tröger, L., Herrmann, M. and Brüggmann, U. Hasylab annual report 1998. Technical report, HASYLAB, Germany, 1998. [77] Attenkofer, K., Die magnetische Kopplung in ausgewählten Verbindungen – Neue Möglichkeiten und Entwicklungen der Rumpfanregungspektroskopie mit zirkularpolarisierten Photonen. PhD thesis, Hamburg, 2000. [78] Haubold, H-G., Gruenhagen, K., Wagener, M., Jungbluth, H., Heer, H., Pfeil, A., Rongen, A., Brandenberg, G., Moeller, R., Matzerath, J., Hiller, P. and Halling, H. JUSIFA-A new user-dedicated ASAXS beamline for materials science. Review of Scientific Instruments, 60, 1943–1946, 1989. [79] Goerigk, G., Electronics and Computer Upgrades at ASAXS Beamline JUSIFA. HASYLAB annual report, Germany, 2006. [80] JCPDS, International Center for Diffraction Data. Copzright JCPDS-ICDD 2002. [81] Alexander, L., Klug, P.H. Determination of Cristallite Siye with the X-ray Spectrometer. Journal of Applied Physics., 21, 137–142, 1950. [82] Andrade – Gamboa, J., Curso: Introducción a la cristrlografía y a los métodos de difracción. Intituto Balseiro, dictado desde 10/2007 al 11/2007. [83] E.M. Fedneva, V.L. Alpatova, V.I. Mikheeva, Transl. of Zh. Neorg. Khim. Russ. J. Inorg. Chem., 9 (6), 826–827, 1964. [84] Nakagawa, T., Ichikawa, T., Hanada, H., Kojima, Y., Fujii, H., Thermal analysis on the Li–Mg–B–H Systems. J. Alloys Compd., 446–447, 306–309, 2007. 446–447 (2007) 306–309 [85] Hammersley, A. P. FIT2D: A Multi-Purpose Data Analysis and Display Program. J. Appl. Cryst., In press, 2000. [86] Ravel, B.; Newville, M. J., Athena, Artemis, Hepahestus: data analysis for X-ray absorption spectroscopy using IFEFFIT. Synchrotron Radiat., 12, 537–541, 2005. [87] Newville, M. J. FEFFIT : interactive XAFS analysis and FEFF fitting. Synchrotron Radiat., 8, 322–324, 2001. [88] Debye, P., Anderson Jr., H.R., Brumberger, H., Scattering by an Inhomogeneous Solid. II. The Correlation Function and Its Application. J. Appl. Phys., 28, 679–683, 1957. [89] Malvern Instruments Ltd. Manual de operación, 1997. [90] Skoog, A. D., West, M.D., Holler, F. J., Química Analítica. 6ta ed. México: Mc Graw Hill, 1995. [91] Höne, G., Hemminger, W., Flammersheim H.J., Differential Scanning Calorimetry, 1ra ed. Berlin : Springer, 1996. [92] Puszkiel, J.A. y Castro, F., Calibración DSC TA Instruments 2910 Calorimeter, reporte interno, Noviembre 2008. [93] Puszkiel, J.A. y Castro, F., Calibración DSC TA Instruments 2910 Calorimeter, reporte interno, Julio 2009. [94] Castro, F., Calibración DSC TA Instruments 2910 Calorimeter, reporte interno, Agosto 2011. [95] Outokumpu HSC Chemistry for Windows, version 6.0, Outokumpu Research, Oy, Pori, Findland, 2009. [96] Blach, T., Gray, E., Sieverts apparatus and methodology for accurate determination of hydrogen uptake by light – atom hosts. J. alloys Compd., 446–447,692– 697, 2007. [97] Meyer, G., Rodríguez, D. S., Castro F., Fernández, G. Automatic device for precise characterization of hydride forming materials. Hydrogen Energy Progress, Proceedings of the 11th World Energy Conference, Stuttgart, Germany, 1293, 23 – 29 Junio, 1996. [98] Schulz R., Huot J., Boily S. Can. Patent, Ser. – Nr. 2207149, 1999. [99] Maiztegui, A. P., Gleiser, R. J., Introducción a las mediciones de laboratorio. 1ra ed. Córdoba: Guayqui, 1976. [100] Fuster, Valeria de los Ángeles, Preparación, caracterización y optimización de aleaciones base magnesio para almacenamiento de hidrógeno, Tesis (Doctorado). Argentina, Instituto Balseiro, Universidad Nacional de Cuyo, 2010. [101] T. Massalski. Binary Alloy Phase Diagram. Metals Park, OH , ASM , 1722 – 1723, 1990. [102] Didisheim, J. -J., Zolliker, P., Yvon, K., Fisher, P., Schefer, J., Gubelmann, M., Williams, A.F., Dimagnesium Iron (II) Hydride, Mg2FeH6, Containing Octahedral FeH6 4- Anions. Inorg. Chem., 23, 1953–1957, 1984. [103] Selvam, P. and Yvon, K., Synthesis of Mg2FeH6, Mg2CoH5 and Mg2NiH4. Int. J. Hydrogen Energy, 16 (9), 615–617, 1991. [104] Bodanović, B., Reiser, A., Schlichte, K., Seastre, T.O., ed. Hydrogen power: theoretical and engineering solutions. Kluwer Academic Publisher, 291 – 296, 1998. [105] Reiser, A., Bodanović, B., Schlichte, K., The application of Mg – based metal – hydrides as heat energy storage system. Int. J. Hydrogen Energy, 25, 425 – 430, 2000. [106] Bogdanović, B., Reiser, A., Schlichte, K., Spliethoff, B., and Tesche, B., Thermodynamics and dynamics of the Mg–Fe–H system and its potential for thermochemical thermal energy storage. J. alloys Compd., 345, 77–89, 2002. [107] Huot, J., Boily, S., Akiba, E. and Schulz, R., Direct synthesis of Mg FeH by mechanical alloying. J. alloys Compd. 280, 306–309, 1998. [108] Gennari, F., Castro, F., Andrade Gamboa, J.J., Synthesis of Mg2FeH6 by reactive mechanical alloying: formation and decomposition properties. J. alloys Compd. 339, 261–267, 2002. [109] Song lin, L., Varin, R.A., Morozova, O., Khomenko, T., Controlled mechano-chemical synthesis of nanostructured ternary complex hydride Mg2FeH6 under low-energy impact mode with and without pre-milling. J. alloys Compd., 384, 231 – 248, 2004. [110] Varin, R.A., Li, S., Calka, A., Wexler, D., Formation and environmental stability of nanocrystalline and amorphous hydrides in the 2Mg–Fe mixture processed by controlled reactive mechanical alloying (CRMA). J. alloys Compd. 373, 270–286, 2004. [111] Castro, F., Gennari, F.C. Effect of the nature of the starting materials on the formation of Mg2FeH6. J. alloys Compd. 375, 292–296, 2004. [112] Varin, R.A., Li, S., Wronski, Z., Morozova, O., Khomenko, T. The effect of sequential and continuous high-energy impact mode on the mechano-chemical synthesis of nanostructured complex hydride Mg2FeH6. J. alloys Compd. 390, 282–296, 2005. [113] Varin, R.A., Li, S., Chiu, Ch., Guo, L., Morozova, O., Khomenko, T., Wronski, Z., Nanocrystalline and non-crystalline hydrides synthesized by controlled reactive mechanical alloying/milling of Mg and Mg–X (X = Fe, Co, Mn, B) systems. J. alloys Compd. 404–406, 494–498, 2005. [114] Zhou, D.W., Li, S.L., Varin, R.A., Peng, P., Liu, J.S., Yang, F., Mechanical alloying and electronic simulations of 2Mg–Fe mixture powders for hydrogen storage. Materials Science Engineering A 427, 306–315, 2006. [115] Wronski, Z., Varin, R.A., Chiu, C., Czujko, T., Calka, A., Mechanochemical synthesis of nanostructured chemical hydrides in hydrogen alloying mills. J. alloys Compd. 434–435, 743–746, 2007. [116] Konstanchuk, Y. G., Ivanov, E., Pezat, M., Darriet, B., Boldyrev, V. and Hagenmuller, P., The hydriding properties of a mechanical alloy with composition Mg–25%Fe. J. Less- Common Met., 131, 181–189, 1987. [117] Ivanov, E., Konstanchuk, I., Stepanov, A., Boldyrev, V., Magnesium mechanical alloys for hydrogen storage. J. Less-Common Met., 131, 25–29, 1987. [118] Zaluska, A., Zaluski, L., Ström-Olsen, J.O., Nanocristalline magnesium for hydrogen storage. J. alloys Compd. 288, 217–225, 1999. [119] Bläsius, A., Gonser, U., Mössbauer surface studies on TiFe hydrogen storage material. Appl. Phys. 22, 331–332, 1980. [120] Welter, J.-M., Rudman, P.S., Iron catalyzed hydriding of magnesium. Scripta Metallurgia 16, 285–286, 1982. [121] Liang, G., Huot, J., Boily, S., Van Neste, A., Schulz, R., Caralytic effec of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2 – Tm (Tm=Ti, V, Mn, Fe and Ni) systems. J. alloys Compd. 292, 247–252, 1999. [122] Hanada, N., Ichikawa, T., Fujii, H., Catalytic Effect of Nanoparticle 3d-Transition Metals on Hydrogen Storage Properties in Magnesium Hydride MgH2 Prepared by Mechanical Milling. J. Phys. Chem. B, 109, 7188, 2005. [123] Froes, F.H., Suryanarayana, C., Russell, K., Li, C.G., Synthesis of intermetallics by mechanical alloying, Mater. Sci. Eng. A, 192-195, 612-623, 1995. [124] Lü, L., Lai, M.O., Mechanical Alloying. Kluwer Academic Publishers, Boston (1998). [125] Gennari, F.C., Castro, F.J., Urretavizcaya, G., Hydrogen desorption behavior from magensium hydrides synthesized by reactive mechanical alloying J. Alloys Comp., 321, 46– 53, 2001. [126] Fernández, J.F., Sánchez, C.R., Rate determining step in the absorption and desorption of hydrogen by magnesium. J. alloys Compd. 340, 189–198, 1996. [127] Topler, J., Buchner, H., Saufferer, H., Knorr, K., Prandl, W., Measurements of the diffusion of hydrogen atoms in magnesium and Mg2Ni by neutron scattering. J. Less-Comm. Met. 88, 397–404, 1982. [128] Barkhordarian, G., Klassen, T., Bormann, R., Kinetic investigation of the effect of milling time on the hydrogen sorption reaction of magnesium catalyzed with different Nb2O5 contents. J. Alloys Comp., 407, 249–255, 2006. [129] A. Baruj, J.A. Puszkiel, P. Arneodo Larochette y F.C. Gennari, Caracterización del sistema 2Mg–Fe mediante la realización de ciclos de absorción y desorción de hidrógeno, Congreso: SAM2007. [130] J.F. Stampfer, C.E. Holley, J.F. Suttle, The Magnesium-Hydrogen System. J. Am. Chem. Soc. 82–7, 3504– 3508, 1960. [131] Luo, W., (LiNH2–MgH2): a viable hydrogen storage system. J. Alloys Comp., 381, 284– 287, 2004. [132] Orimo, S., Nakamori, Y., Kitahara, G., Miwa, K., Ohba, N., Towata, S., Züttel, A., Dehydriding and rehydriding reactions of LiBH4. J. Alloys Comp., 404–406, 417–430, 2005. [133] Johnson, S.R., Anderson, P.A., Edwards, P.P., et al., Chemical activation of MgH2; a new route to superior hydrogen storage materials. Chem. Commun., 22, 2823–2825, 2005. [134] Mao, J.F., Wu, Z., Chen, T.J., et al., Improved Hydrogen Storage of LiBH4 Catalyzed Magensium. J. Phys Chem. C, 111, 12495 – 12498, 2007. [135] Yu, X.B., Grant, D.M., Walker, G.S., A new dehydrogenation mechanism for reversible multicomponent borohydride systems-The role of Li-Mg alloys. Chem. Commun., 37, 3906– 3908, 2006. [136] Züttel, A., Wenger, P., Rentsch, S., et al., LiBH4 a new hydrogen storage material. Journal of Power Sources, 118, 1 – 7, 2003. [137] Muller, A., Mathey, F., Bensoam, J., Production of hydrogen. US Patent 4,193,978, 1980. [138] Puszkiel, J.A., Gennari, F.C., Reversible hydrogen storage in metal-doped Mg–LiBH4 composites. Scr. Mater., 60, 667–660, 2009. [139] Gennari, F.C., Puszkiel, J.A., Enhanced hydrogen sorption kinetics of Mg50Ni–LiBH4 composite by CeCl3 addition. Journal of Power Sources, 195, 3266–3274, 2010. [140] Vajo, J.J, Mertens, F., Ahn, C.C., Bowman, R.C., Fultz, B., Altering hydrogen storage properties by hydride destabilization through alloy formation: LiH and MgH2 destabilized with Si. J. Phys. Chem. B, 108(37),13977–13983, 2004. [141] Pedersen, A.S., Kjøller, J., Larsen, B., Vigeholm, B., Magnesium for hydrogen storage. Int. J. Hydrogen Energy, 8, 205–211, 1983. [142] Xie, L., Liu,Y., Wang., Y.T., Zheng, J., Li, X.G., Superior hydrogen storage kinetics of MgH2 nanoparticles doped with TiF3. Scr. Mater., 55, 4585–4591, 2007. [143] Deledda, S., Borissova, A., Poinsignon, C., Botta, W.J., Dornheim, M., Klassen, T., Hsorption in MgH2 nanocomposites containing Fe or Ni with fluorine. J. Alloys Comp., 404– 406, 409–412, 2005. [144] Yavari, A.R., LeMoulec, A., de Castro, F.R., Deledda, S., Friedrichs, O., Botta, W.J., Vaughan, G., Klassen, T., Fernandez, A, Kvick, Å, Improvement in H-sorption kinetics of MgH2 powders by using Fe nanoparticles generated by reactive FeF3 addition. Scr. Mater., 52, 719–724, 2005. [145] Liu, F.-J., Suda, S., Properties and characteristics of fluorinated hydriding alloys. J. Alloys Comp., 231, 742–750, 1995. [146] Jin, S.-A., Shim, J.-H., Cho, Y.W., Yi, K.-W., Dehydrogenation and hydrogenation characteristics of MgH2 with transition metal fluorides. Journal of Power Sources, 172, 859– 862, 2007. [147] Jin, S.-A., Shim, J.-H., Ahn, J.-P., Cho, Y.W., Yi, K.-W., Improvement in hydrogen sorption kinetics of MgH2 with Nb hydride catalyst. Scr. Mater., 55, 5073–5079, 2007. [148] Malka, I.E., Czujko, T., Bystrzycki, J., Catalytic effect of halide additives ball milled with magnesium hydride. Int. J. Hydrogen Energy, 35, 1706–1712, 2010. [149] Malka, I.E., Bystrzycki, J., Płocinski, T., Czujko, T., Microstructure and hydrogen storage capacity of magnesium hydride with zirconium and niobium fluoride additives after cyclic loading. J. Alloys Comp., 5095, S616–S620, 2011. [150] Ma, L.-P., Kang, X.-D., Dai, H.-B., Liang, Y., Fang, Z.-Z, Wang, P.-J., Wang, P., Cheng, H.-M., Superior catalytic effect of TiF3 over TiCl3 in improving the hydrogen sorption kinetics of MgH2: Catalytic role of fluorine anion. Scr. Mater., 57, 2250–2258, 2009 [151] Au, M., Jurgensen, A., Zeigler, K., Modified Lithium Borohydrides for Reversible Hydrogen Storage (2). J. Phys. Chem. B, 110, 26482– 26487. [152] Fang, Z.Z., Ma, L. P., Kang, X. D., Wang, P. J., Wang, P., Cheng, H. M., In situ formation and rapid decomposition of Ti(BH4)3 by mechanical milling LiBH4 with TiF3. Appl. Phys. Lett., 94, 044104 (1–3), 2009. [153] Fang, Z.-Z., Kang, X.-D., Yang, Z-X., Walker, G. S., Wang, P., Combined effect of funtional cation and anion on the reversible dehydrogenation of LiBH4, J. Phys. Chem. C, 115, 11839–11845, 2011. [154] Fang, F. F., Li, Y., Song, Y., Sun, D., Zhang, Q., Ouyang, L., Zhu, M., Superior desestabilization effects of MnF2 and MnCl2 in the decomposition of LiBH4. J. Phys. Chem. C , 115, 13528–13533, 2011. [155] Y. Zhang, W. Zhang, M.–Q. Fan, S.–S. Liu, H.–L. Chu, Y.–H. Zhang, X.–Y. Gao and L.–X. Sun, Enhanced Hydrogen Storage Performance of LiBH4–SiO2–TiF3 composite, J. Phys. Chem. C, 112(10), 4005–4010, 2008. [156] Au, M., Jurgensen, A., Spencer, W.A., Anton, D.L., Pinkerton, F.E., Hwang, S.-J., Kim, C., Bowman, R.C. Jr., Stability and Reversibility of Lithium Borohydrides Doped by Metal Halides and Hydrides. J. Phys. Chem. C, 112, 18661–18671, 2008. [157] Kostka, J., Lohstroh, W., Fichtner, M., Hahn, H., Diborane Release from LiBH4/Silica- Gel Mixtures and the Effect of Additives. J. Phys. Chem. C, 111, 14026-14029, 2007. [158] Kapfenberger, C., Albert, B., Pöttgen, R., Huppertz, H., Structure refinements of iron borides Fe2B and FeB. Z. Kristallogr., 221, 477–481, 2006. [159] Schaffer, G.w., Roscoe, J. S., Stewart, C., The reduction of Iron (III) Chlorine with Lithium Aluminohydride, Borohydride: Iron (II) Borohydride. J. Am. Chem. Soc., 78, 729- 732, 1956. [160] Klavdiy, G., Volkov, M., Volkov, V., Mechanochemical Synethsis of Diborane (6) by Reactions of Alakline Tetrahydroborates with Iron (III) Chloride. Chemistry for sustainable Development, 12, 207–210, 2004. [161] Marks, T. J., Kolb, J. R., Covalent Transition Metal, Lanthanide, and Actinide Tetrahydroborate Complexes, Chemical Reviews, 77, No. 2, 263 – 293, 1977. [162] Molvinger, K., Lopez, M., Court, J., Chavant, P.Y., Iron, cobalt and nickel boride as precursor of heterogeneous oxazaborolidine catalysts. Applied Catalysis A: General, 231, 91– 98, 2002. [163] Vajo, J.J., Skeith, S.L., Mertens, F., Reversible Storage of Hydrogen in Destabilized LiBH4. J. Phys. Chem. B, 109, 3719–3722, 2005. [164] Bösenberg, U., Doppiu, S., Mosegaard, L., Barkohrdarian, G., Eigen, N., Borgschule, A., Jensen, T. R., Cerenius, Y., Gutfleisch, O., Klassen, T., Dornheim, M., Bormann, R., Hydrogen sorption properties of MgH2–LiBH4 composites. Acta Mater , 55, 3951–3958, 2007. [165] Yan, Y., Li, H-W., Meakawa, H., Miwa, K., Towata, S-i., Orimo, S-i., Formation of intermediate compound Li2B12H12 during the dehydrogenation process of the LiBH4-MgH2 system., J. Phys. Chem C, 115, 19419 – 19423, 2011. [166] Yang, J.; Sudik, A.; Wolverton, C. Destabilizing LiBH4 with a Metal (M = Mg, Al, Ti, V, Cr, or Sc) or Metal Hydride (MH2 = MgH2, TiH2, or CaH2). J. Phys. Chem. C, 111 (51), 19134–19140, 2007. [167] Bösenberg, U., Ravnsbæk, D. B., Hagemann, H., D’Anna, V., Bonatto Minella, C., Pistidda, C., van Beek, W., Jensen T.R., Bormann R., Dornheim, M., Pressure and Temperature Influence on the Desorption Pathway of the LiBH4−MgH2 Composite System. J. Phys. Chem. C, 114, 15212–15217, 2010. [168] Ohba, N.; Miwa, K.; Aoki, M.; Noritake, T.; Towata, S.; Nakamori,Y.; Orimo, S.; Züttel, First-principles study on the stability of intermediate compounds of LiBH4. A. Phys. ReV. B, 74, 075110 (1–7) , 2006. [169] Mauron, Ph.; Buchter, F.; Friedrichs, O.; Remhof, A.; Bielmann, M.; Zwicky, C. N.; Züttel, A., Stability and Reversibility of LiBH4. J. Phys. Chem. B, 112, 906–910, 2008. [170] Jin, S-Ah., Lee, Y.-Su., Shim, J-Hd., Cho, Y.W. Reversible Hydrogen Storage in LiBH4-MH2(M ) Ce, Ca) Composites J. Phys. Chem. C. , 112, 9520, 2008. [171] Lim, J-H., Shim, J.H., Lee, Y-S., Cho, Y.W., Lee, J., Dehydrogenation behavior of LiBH4/CaH2 composite with NbF5. Scr. Mater., 59, 1251 – 1254, 2008. [172] Purewal, J., Hwang, S-J., Bowman, R.C. Jr., Rönnebro, E., Fultz, B., Ahn, Hydrogen Sorption Behavior of the ScH2-LiBH4 System: Experimental Assesment of Chemical Destabilization Effects C., J. Phys. Chem. C, 112, 8481–8485, 2008. [173] Jin, S., Shim, J., Cho, Y., Yi, K., Zabara, O., Fichtner, M., Reversible hydrogen storage in LiBH4–Al–LiH composite powder, Scr. Mater, 58, 963, 2008. [174] Bösenberg, U., Kim, J.W., Gosslar, D., Eigen N., Jensen T.R., Bellosta von Colbe, J.M., Zhou, Y., Dahms, M., Kim, D.H., Günter, R., Cho, Y.W., Oh, K.H., Klassen, T., Bormann, R., Role of additives in LiBH4–MgH2 reactive hydride composites for sorption kinetics. Acta Materialia, 58, 3381–3389, 2010. [175] Vajo, J.J., Salguero, T.T., Gross, A.F., Skeith, S.L., Olson, G.L., Thermodynamic destabilization and reaction kinetics in light metal hydride systems. J. of Alloy Compd., 409 , 446, 2007. J. Alloys Comp., 446–447, 409–414, 2007. [176] Pinkerton, F.E., Meyer, M.S., Meisner, G.P., Badalogh, M.P., Vajo, J.J., Phase Boundaries and Reversibility of LiBH4/MgH2 Hydrogen Storage Material. J. Phys. Chem. C, 111, 12881–12885, 2007. [177] Barkohrdarian, G., Klassen, T., Dornheim, M., Bormann, R., Unexpected kinetic effect of MgB2 in reactive hydride composites containing complex borohydrides. J. Alloys Comp., 440, L18–L21, 2007. [178] Bösenberg, U., Vaino, U., Pranzas, P.K., Bellosta von Colbe, J.M., Goerigk, G., Welter, E., Dornheim, M., Schreyer, A., Bormann, R., On the chemical state and distribution of Zrand V-based additives in reactive hydride composites. Nanotechnology, 20, 204003(9), 2009. [179] Joyner; D. J., Johnson; O., Hercules, M-D., A study of the iron borides: III. Multiplet splitting in ESCA Fe 3s. J. Phys. F: Metal Phys., 10, 169 – 180, 1980. [180] Johnson; O., Joyner; D.J., Hercules, M.D., A study of the iron borides. 2. Electron structure, J. Am. Chem. Soc., 84, 542–547, 1980. [181] Joyner; D. J. Johnson; O., Hercules; M.D., Bullet; .M.D., Weaver, J.H., Study of the iron borides. IV. Relation of bonding to structure and magnetic behavior from photoemission experiments and ab initio calculations. Phys. Rev., B24, 3122–3137, 1981. [182] Li,G., Wangi, D., The self-consistent electronic structure of the interstitial compounds Fe2B and FeB, J. Phys. Condens. Matter , l, 1799–1808, 1989 [182] Rades, S., Kornowski, A., Weller, H., Albert, B., Wet-Chemical Synthesis of Nanoscale Iron Boride, XAFS Analysis and Crystallisation to a-FeB. ChemPhysChem , 12, 1756–1660, 2011. [183] Benedek, R., Seidman, D.N., Woodward, C., The effect of misfit on heterophase interface energies, J. Phys.: Condens. Matter 14, 2877–2900, 2002. [184] Zhang, M.-X., Kelly, P.M., Edge-to-edge matching model for predicting orientation relationships and habit planes—the improvements. Scr. Mater. 52, 963 – 968, 2005. |
Materias: | Química > Química analítica Química > Ingeniería química Química > Materiales |
Divisiones: | Aplicaciones de la energía nuclear > Tecnología de materiales y dispositivos > Fisicoquímica de materiales |
Código ID: | 328 |
Depositado Por: | Marisa G. Velazco Aldao |
Depositado En: | 15 May 2012 14:35 |
Última Modificación: | 15 May 2012 14:35 |
Personal del repositorio solamente: página de control del documento