Rossi Pool, Román (2011) Plasticidad y dinámica en redes neuronales. / Plasticity and dynamics in neural systems. Tesis Doctoral en Física, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Español 6Mb |
Resumen en español
En esta tesis se analizan diversos aspectos de plasticidad neuronal y de dinámica de redes neuronales. En primer lugar, se estudia la plasticidad dependiente del tiempo desde un punto de vista de la optimización de entropía condicional. Se analizan los efectos de los tipos de dinámica neuronal (Tipo I o Tipo II) sobre las ventanas de plasticidad obtenidas con este principio. Se utilizan para ésto modelos neuronales reducidos con una función de escape que depende del valor de voltaje neuronal e introduce aleatoriedad en el sistema. Sin embargo, este modelo no permite analizar los efectos de las diferentes distribuciones de ruido sobre las ventanas de plasticidad y sólo es una buena aproximación para el ruido Gaussiano blanco. Debido a esto, se utilizan luego otros tipos de ruido para las evoluciones, haciéndose especial hincapié en ruidos simétricos y asimétricos. Se observa que algunas características de estas distribuciones tienen un gran efecto sobres las ventanas de plasticidad obtenidas. En particular, ruidos con más intensidad dan lugar a mayor LTD (long term depression) y ruidos más asimétricos separan las constantes temporales de LTD y LTP (long term potentiation). Utilizando estos dos tipos de enfoques, se obtienen una amplia gama de curvas STDP, que explican la gran mayoría de las curvas medidas en forma experimental. Se muestra luego, que la variabilidad en la corriente de entrada que una neurona recibe, puede ser explicada a través de estados balanceados de redes neuronales de gran tamaño. Se estudian estas fluctuaciones y se analiza con métodos de correlación inversa la posibilidad de identificar el tipo neuronal cuando el ruido es generado por la misma red. Además, se muestra que el ruido Gaussiano con autocorrelación exponencial, es una buena aproximación para las fluctuaciones que una neurona inmersa en este tipo de redes recibe. Finalmente, se estudia el desarrollo de las conexiones de una red recurrente con dinámica neuronal de tasa de disparo, que representa una hiper-columna de la corteza. Se obtiene, que la plasticidad Hebbiana o BCM (Bienenstock, Cooper y Munro) por si solas dan lugar a inestabilidades en el desarrollo de las sinapsis y rompen la simetría de la matriz de conexiones. Sin embargo, con la incorporación de procesos de homeostasis que tienden a estabilizar el sistema llevando la actividad neuronal a un valor esperado (actividad blanco), se logran desarrollar conexiones que cumplen las características y funciones esperadas.
Resumen en inglés
In this work several aspects of neuronal plasticity and neural-network dynamics have been analyzed. The spike-timing-dependent plasticity (STDP) was studied, using an optimization principle for the conditional entropy. This principle was applied to two types of postsynaptic dynamics, designated type I and type II. The objective is to evaluate the effect of neuronal dynamics on the plasticity profile. Reduced neuronal models with an escape-rate approximation for the stochastic part of the neural dynamic have been used. This does not allow one to analyze the effect of the noise distribution on the STDP window, and it is only a good approximation if the noise is Gaussian and white. Therefore, direct numerical simulations for the evolution of a simple neuron were performed with several noise distributions, focusing on the differences between symmetric and asymmetric ones. Some characteristic of the noise distribution have an important effect on the optimal plasticity. Stronger fluctuations give rise to larger depression and asymmetric noise distributions tend to have depressing regions with longer time scales. Depending on the parameters of the evolution and the type of noise, the optimization principle can give rise to a wide variety of STDP profiles, explaining most of the profiles measured experimentally. After that, the fluctuations of the inputs to a neuron in conductance-based balanced networks are characterized. It is possible to use reverse correlation methods to quantify the dynamical properties of single neurons and to accurately identify the types of neurons in the network. The dynamic fluctuations have a Gaussian distribution with an approximately exponential autocorrelation function. Finally, the development of a recurrent network with activity-dependent synaptic plasticity is studied. A simple model of hypercolumn of the visual cortex with recurrent connections is used. The covariance-based rules alone (Hebbian and BCM) tend to generate instabilities and to break the translational symmetry of the connections matrix. The incorporation of homeostatic plasticity in the model tends to stabilize the system by setting a target for the postsynaptic firing rate. The presence of homeostatic plasticity together with non-plastic uniform inhibition stabilizes the effect of Hebbian plasticity. The system can reach recurrent intracortical connections that are strongly modulated and display contrast invariance.
Tipo de objeto: | Tesis (Tesis Doctoral en Física) |
---|---|
Palabras Clave: | Neural networks; Redes neuronales; Plasticity; Plasticidad; Homeostasis; Optimization principles; Principios de optimizción; Balanced networks; Redes balanceadas; Recurrent networks; Redes recurrentes |
Referencias: | Abbott, L. F., & Nelson, S. B. (2000). Synaptic plasticity: taming the beast. Nature Neuroscience, 3, 1178-1183. Abbott, L. F., & Gerstner, W. (2005). Homeostasis and learning through spiketiming dependent plasticity. Methods and Models in Neurophysics: Proceedings of the Les Houches Summer School 2003, Elsevier Science. Abraham,W. C. (1997).Metaplasticity, a new vista across the field of synaptic plasticity. Prog. Neurobiol. 52, 303-323. Abramowitz, M., & Stegun, I.A., eds. (1965). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover. Agüera y Arcas, B., & Fairhall, A. L. (2003). What causes a neuron to spike? Neural Computation, 15, 1789-1807. Agüera y Arcas, B., Fairhall, A. L., & Bialek, W. (2003). Computation in Single Neuron: Hodgin and Huxley Revisited. Neural Computation, 15, 1715- 1749. Alonso J. M. (2002). Neural Connections and receptive Field properties in the primary visual cortex. Neuroscientist. 8(5), 443-56. Baroni, F., & Varona, P. (2007). Subthreshold oscillations and neuronal inputoutput relationships. Neurocomputing, 70, 1611-1614. Bazhenov, M., Rulkov, N.F., Fellous, J.M., & Timofeev, I. (2005) Role of network dynamics in shaping spike timing reliability. Physical Review E, 72, 1-5. Bell, C.C., Han, V.Z., Sugawara, Y., & Grant, K. (1997). Synaptic plasticity in a cerebellum-like structure depends on temporal order. Nature, 387, 278- 281. Bell, A., & Parra, L. (2005).Maximising sensitivity in a spiking network. In L. Saul, Y.Weiss, & L. Bottou (Eds.), Advances in neural information processing systems, Vol. 17, 121-128. MIT Press. Ben-Yishai R., Bar-Or R. L. & Sompolinsky H. 1995. Theory of orientation tuning in visual cortex. PNAS, 92, 3844-3848. Bi, G.Q., & Poo, M.M. (1998). Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. Journal of Neuroscience, 18, 10464-10472. Bi, G.Q., & Poo, M.M. (2001). Synaptic modification by correlated activity: Hebb’s postulate revisited. Annu. Rev. Neurosci., 24, 139-166. Bialek, W., & De Ruyter von Steveninck, R. R. (2003). Features and dimensions: motion estimation in fly vision. arXiv:q-bio/0505003. Bienenstock E., Cooper L. & Munro P. (1982). Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. The Journal of Neuroscience, 2(1), 32-48. Bliss, T. & A. Gardner-Medwin (1973). Long-lasting potentation of synaptic transmission in the dendate area of unanaesthetized rabbit following stimulation of the perforant path. J. Physiol., 232, 357-374. Bohte, S.M., & Mozer, M.M. (2007). Reducing Spike Train Variability: A Computational Theory Of Spike-Timing Dependent Plasticity. Neural Computation, 19, 371-403. Brette, R. & Gerstner, W. (2005). Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J. Neurophysiol., 94, 3637-3642. Brown, E.,Moehlis, J., & Holmes, P. (2004). On the Phase Reduction and Response Dynamics of Neural Oscillator Populations. Neural Computation, 16, 673-715. Brunel, N. & Latham P. (2003) Firing Rate of the Noisy Quadratic Integrateand- Fire Neuron. Neural Computation, 15(10), 2281-2306. Bryant, H. L. & Segundo J. P. (1976) Spike initiation by transmembrane current: a white-noise analysis. J Physiol, 260, 279-314. Buonomano,D.V.&MerzenichM.M. (1998). Cortical plasticity: fromsynapses to maps. Annual Review of Neuroscience, 21, 149-186. Calford M.B., Wright L.L., Metha A.B. & Taglianetti V. (2003). Topographic plasticity in primary visual cortex is mediated by local corticocortical connections. The Journal of Neuroscience, 23(16), 6434-6442. Calvin W., & Stevens C. F. (1968) Synaptic noise and other sources of randomness in motoneuron interspike intervals. J. Neurophysiol, 31, 574-587. Capocelli, R.M., & Ricciardi, L.M. (1971). Diffusion approximation and first passage-time problem for a neuron model. Biological Cybernetics, 8, 214- 223. Caporale, N. & Dan, Y. (2008). Spike-timing dependent plasticity: a Hebbian learning rule. Annu. Rev. Neurosci., 31, 25-46. Chance, F.S., Nelson, S.B. & Abbott, L.F. (1999). Complex cells as cortically amplified simple cells. Nature Neuroscience, 2, 277-283. Chechik, G. (2003). Spike time dependent plasticity and information maximization, Neural Computation, 15, 1481-1510. Chub N. & O‘Donovan M. J. (1998). Blockade and recovery of spontaneous rhythmic activity after application of neurotransmitter antagonists to spinal networks of the chick embryo. The Journal of Neuroscience, 18, 294-306. Clopath, C. (2009). Synaptic Plasticity Across Different Time Scales and its Functional Implications. PhD’s thesis. École Polytechnique Fédérale de Lausanne, Suiza. Clopath, C., Büsing, L. , Vasilaki, E. & Gerstner, W. (2010) Connectivity reflects coding: a model of voltage-based STDP with homeostasis. Nature Neuroscience, 13, 344-352. Dan, Y., & Poo,M.-m. (1998).Hebbian depression of isolated neuromuscular synapse in vitro. Science, 256, 1570-1573. Dan, Y., & Poo, M.-M. (2004). Spike timing-dependent plasticity of neural circuits, Neuron, 44, 23-30. Darian-Smith C. & Gilbert C.D. (1995) Topographic reorganization in the striate cortex of the adult cat and monkey is cortically mediated. The Journal of Neuroscience, 15, 1631-1647. Dayan, P., & Abbott, L.F. (2001). Theoretical Neuroscience. Computational and Mathematical Modeling of Neural Systems. MIT Press. De la Rocha, J., Doiron B., Shea-Brown E., Josic K. & Reyes A. (2007). Correlation between neural spike trains increase with firing rate. Nature, 448, 802-806. Debanne, D., Gahwiler, B.H., & Thompson, S.M. (1994). Asynchronous preand postsynaptic activity induces associative long-term depression in area CA1 of the rat hippocampus in vitro. Proc. Natl. Acad. Sci. USA, 91, 1148-1152. Debanne, D., Gahwiler, B.H., & Thompson, S.M. (1998). Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. Journal of Physiology, 507(1), 237-247. Egger, V., Feldmeyer, D., & Sakmann, B. (1999). Coincidence detection and efficacy changes in synaptic connections between spiny stellate neurons of the rat barrel cortex. Nature Neuroscience, 2, 1098-1105. Ermentrout, B. (1996). Type IMembranes, Phase Resetting Curves, and Synchrony. Neural Computation, 8, 979-1001. Erisir, A., Lau, D., Rudy, B., & Leonard, C.S. (1999). Function of specific K+ channels in sustained high-frequency firing of fast-spiking neocortical interneurons. Journal of Neurophysiology, 8, 2476-2489. Feldman, D. E. (2000). Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex. Neuron, 27, 45-56. Frégnac Y., Burke J. P., Smith, D., & Friedlander, M. J. (1994). Temporal covariance of pre- and post-synaptic activity regulates functional connectivity in the visual cortex.The Journal of Neurophysiology, 71, 1403-1421. Froemke, R.C. & Dan, Y. (2002) Spike-timing-dependent synaptic modification induced by natural spike trains. Nature, 416, 433-438. Galán, R.F., Ermentrout, G.B., & Urban, N.N. (2007). Reliability and stochastic synchronization in type I vs. type II neural oscillators. Neurocomputing, 70, 2102-2106. Gammaitoni, L., Hänggi, P., Jung, P., &Marchesoni, F. (1998). Stochastic resonance. Rev. Mod. Phys., 70, 223-287. Gerstner, W. (2001). A framework for spiking neuron models: The spike response model. In F. Moss & S. Gielen (Eds.), The handbook of biological physics (Vol. 4, 469-516). North Holland. Gerstner,W., & Kistler,W.M. (2002). Spiking neuronmodels: single neurons, populations, plasticity. Cambridge University Press, Cambridge. Glezer V., Tsherbach T., Gauselman V. & Bondarko V. (1982). Spatiotemporal organization of receptive fields of the cat striate cortex: the receptive fields as the grating filters. Biol. Cybern., 43, 35-49. Golowasch J., Casey M., Abbott L. F. & Marder E. (1999). Network stability from activity-dependent regulation of neuronal conductances. Neural Computation, 11, 1079-1096. Gustafsson, B., Wigstrom, H., Abraham, W. C. & Huang, Y.-Y. Long-term potentiation in the hippocampus using depolarizing current pulses as the conditioning stimulus to single volley synaptic potentials. J. Neurosci., 7, 774-780. Hansel D. & Sompolinsky H. (1992). Synchronization and computation in a chaotic neural network. Phys. Rev. Lett., 68, 718-721. Hansel D. & Sompolinsky H. (1998). Modeling feature selectivity in local cortical circuits. In C. Koch & I. Segev (Eds), Methods in Neuronal Modeling: From Synapses to Networks, (second edition, pp. 499-567). Cambridge,MA: MIT Press. Hansel, D., & Mato, G. (2001). Existence and Stability of Persistent States in Large Neuronal Networks. Phys. Rev. Lett., 86, 4175-4178. Hansel, D., & Mato, G. (2003). Asynchronous states and the Emergence of Synchrony in Large Networks of Interacting Excitatory and Inhibitory Neurons. Neural Computation, 15, 1-56. Hebb D. O. (1949). The Organization of Behavior. New York:Wiley. Helfand, E. & Greenside, H. S. (1981). Numerical Integration of stochastic diferential equations. Bell Syst. Techn. J., 60(8), 1927-1940. Hennequin, G., Gerstner, W. & Pfister, J. (2010). STDP in adaptive neurons gives close-to-optimal information transmission. Front. Comput. Neurosci., 4,143. Henry, G.H., Dreher, B. , & Bishop, P.O. (1974) Orientation specificity of cells in cat striate cortex. Journal of Neurophysiology, 37, 1394-1409. Hermann, A., & Gerstmer, W. (2001). Noise and the PSTH response to current transiets: I. General theory and application to the integrated-fire neuron. J. Comp. Neurosci., 11,135-151. Hertz J., Krogh A., Palmer R. G. (1991). Introduction to the Theory of Neural Computation. Addison-Wesley. Hertz, J. (2010), Cross-Correlations in High-Conductance States of a Model Cortical Network. Neural Computation, 22, 427-447. Hodgkin, A. L. (1948). The local electric charges associated with repetitive action in non-medulated axons. J. Physiol., (London) 107, 165-181. Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and application to conductance in excitation nerve. J. Physiol., (London) 117, 500-544. Holt, G. R., Softky, W. R., Koch, C., & Douglas, R. J. (1996). Comparison of discharge variability in vitro and in vivo in cat visual cortex neurons. J. Neurophysiol., 75, 1806-1814. Honeycutt, R. (1992). Stochastic Runge Kutta Algorithms. I. White Noise. Phys. Rev. A, 45, 600-603. Hong S., Agüera y Arcas, B., & Fairhall, A. (2007). Single neuron computation: from dynamical system to feature detector. Neural Computation, 19, 3133-3172. Hubel D.H., &Wiesel T.N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. Journal of Physiology, 160, 106-154. Izhikevich, E. (2001). Resonate and fire neurons. Neural Networks, 14, 833- 894. Izhikevich, E. (2007). Dynamical Systems in Neuroscience. The Geometry of Excitability and Bursting. The MIT Press. Karmarkar, U.R., & Buonomano, D.V. (2002). A model of spike-timing dependent plasticity: one or two coincidence detectors? Journal of Neurophysiology, 88, 507-513. Karmarkar U. R., Buonomano D. V. (2006). Different forms of homeostatic plasticity are engaged with distinct temporal profiles. European Journal of Neuroscience 23, 1575-1584. Kepecs, A., van Rossum,M.C.W., Song, S., & Tegner, J. (2002). Spike-timingdependent plasticity: common themes and divergent vistas. Biological Cybernetics, 87, 446-458. Koch, C. (1999). Biophysics of computation: Information processing in single neurons. New York: Oxford University Press. Kurniawan V. (2006). Self-organizing visual cortex model using a homeostatic plasticity mechanism. Master’s thesis. The University of Edinburgh, Scotland, UK. Lansky, P. (1984). On approximations of Stein’s neuronal model. Journal of Theoretical Biology, 107, 631-647. Latham, P.E., Richmond, B.J., Nelson, P.G., & Nirenberg, S. (2000). Intrinsic dynamics in neuronal networks. I. Theory. Journal of Neurophysiology, 83, 808-827. Lengyel, M., Kwag, J., Paulsen, O. & Dayan, P. (2005). Matching storage and recall: hippocampal spike timing-dependent plasticity and phase response curves. Nature Neuroscience, 8, 1677-1683. Lerchner, A., Ursta, C., Hertz, J., Ahmadi, M., Ruffiot, P. & Enemark, S. (2006). Response variability in balanced cortical networks. Neural Computation, 18, 634-659. Levy, W.B., & Steward, O. (1983). Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus. Neuroscience, 8, 791-797. Lisman, J. (1994) The CaM-kinase hypothesis for the storage of synaptic memory. Trends Neurosci., 17, 406-412. Lisman, J. & Zhabotinsky A. (2001). A model of synaptic memory: A CaMKII/PP1 switch that potentiates transmission by organizing an AMPA receptor anchoring assembly. Neuron, 31, 191-201. Lisman, J., Schulman H., & Cline H. (2002). The molecular basis of camkii function in synaptic and behavioural memory. Nat Rev Neurosci, 3, 175- 190. Lisman, J., & Spruston N. (2005). Postsynaptic depolarization requirements for LTP and LTD: a critique of spike timing-dependent plasticity. Nature Neuroscience, 8(7), 839-841. Lynch, G., Dunwiddie T., & V. Gribkoff. (1977). Heterosynaptic depression: a postsynaptic correlate of long-term potentiation. Nature, 266, 737-739. Maffei A., Nataraj K., Nelson S.B., Turrigiano G.G. (2006). Potentiation of cortical inhibition by visual deprivation. Nature. 443(7107), 81-4. Maffei A., Turrigiano G. G. (2008). Multiple modes of network homeostasis in visual cortex layer 2/3. The Journal of Neuroscience 28(17), 4377-4384. Magee, J.C., & Johnston, D. (1997). A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science, 275, 209-213. Mainen Z.F., & Sejnowski T.J. (1995). Reliability of spike timing in neocortical neurons. Science, 268, 1503-1506. Malenka, R.C., & Bear,M.F. (2004). LTP and LTD: an embarrassment of riches. Neuron, 44, 5-21. Maravall, M., Petersen, R. S., Fairhall, A. L., Arabzadeh, E., & Diamond, M. E. (2007). Shifts in Coding Properties and Maintenance of Information Transmission during Adaptation in Barrel Cortex. PLoS Biol., 5(2), 19. Markram, H., Lubke, J., Frotscher, M., & Sakmann, B. (1997). Regulation of synaptic eficacy by coincidence of postsynaptic APs and EPSPs. Science, 275, 213-215. Mato, G., & Samengo, I. (2008). Type I and Type II Neuron Models Are Selectively Driven by Differential Stimulus Features. Neural Computation 20, 2418-2440. Miller, K.D., & MacKay, D.J.C. (1994). The role of constraints in Hebbian learning. Neural Computation, 6 100-126. Miller, K. D. (1996). Synaptic economics: competition and cooperation in synaptic plasticity. Neuron, 17, 371-374. Mrsic-Flogel T. D., Hofer S. B., Ohki K., Reid R. C., Bonhoeffer T. & Hübener M. (2007). Homeostatic regulation of eye-specific responses in visual cortex during ocular dominance plasticity. Neuron, 54(6), 961-972 Muresan, R. C., & Savin, C. (2007). Resonance or Integration? Self-sustained Dynamics and Excitability of Neural Microcircuits. J. Neurophysiol., 97, 1911-1930. Nevian, T. & Sakmann, B. (2006). Spine Ca2+ signaling in Spike Timing Dependent plasticity. J. Neurosci., 26 (43), 11001-11013. Nowak L.G., Sanchez-Vives M.V., McCormick D.A. (2008). Lack of orientation and direction selectivity in a subgroup of fast-spiking inhibitory interneurons: cellular and synapticmechanisms and comparison with other electrophysiological cell types. Cereb Cortex, 18(5), 1058-78. Paninski, L. (2003). Convergence properties of some spike-triggered analysis techniques. Network, 14, 437-464. Pfeuty, B., Mato, G., Golomb, D., & Hansel, D. (2003). Electrical Synapses and Synchrony: The Role of Intrinsic Currents. Journal of Neuroscience, 23, 6280-6294. Pfister, J.-P., Toyoizumi, T., Barber, D., & Gerstner,W. (2006). Optimal spiketiming dependent plasticity for precise action potential firing in supervised learning, Neural Computation, 18, 1318-1348. Piomelli, D. (2003). The molecular logic of endocannabinoid signalling. Nature Reviews Neuroscience, 4, 873-884. Plesser, H.E., & Gerstner, W. (2000). Noise in integrate-and-fire neurons: from stochastic input to escape rates. Neural Computation, 12, 367-384. Pouget A., Deneve S., DucomJ. & LathamP. (1999). Narrow vsWide Tuning Curves:What’s Best for a Population Code? Neural Computation, 11(1), 85- 90. Press, W.H., Flannery, B.P., Teukolsky, S.A., & Vetterling, W.T. (1992). Numerical Recipes in FORTRAN 77: The Art of Scientific Computing (v. 1). Cambridge University Press. Renart A., Song P. & Wang X.-J. (2003). Robust spatial working memory through homeostatic synaptic scaling in heterogeneous cortical networks. Neuron, 38, 473-485. Reyes, A., Lujan, R., Rozov, A., Burnashev, N., Somogyi, P., & Sakmann, B. (1998). Target-cell-specific facilitation and depression in neocortical circuits. Nat. Neurosci., 1, 279-285. Roberts, P.D., & Bell, C.C. (2002). Spike timing dependent synaptic plasticity in biological systems. Biological Cybernetics, 87, 392-403. Rinzel, J. & Ermentrout, G.B. (1989). Analysis of Neural Excitability and Oscillations. In Koch C., Segev I. Methods in Neuronal Modeling, The MIT Press, Cambridge, Mass. Rossi Pool, R., (2006). Modelos de Aprendizaje en Percepción Visual. Tesis de Maestría en Física. Instituto Balseiro, Universidad de Cuyo, San Carlos de Bariloche, Argentina. Rossi Pool, R., & Mato, G. (2011). Spike-Timing-Dependent Plasticity and Reliability Optimization: The Role of Neuron Dynamics. Neural Computation, 23, 1768-1789. Rozov, A., Burnashev, N., Sakmann, B., & Neher, E. (2001). Transmitter releasemodulation by intracellular Ca2+ buffers in facilitating and depressing nerve terminals of pyramidal cells in layer 2/3 of the rat neocortex indicates a target cell-specific difference in presynaptic calcium dynamics. J. Physiol. 531, 807-826. Rubin, J., Gerkin R., Bi G. Q. , & Chow C. (2005). Calcium time course as a signal for spike-timing-dependent plasticity. J. Neurophysiology, 93, 2600- 2613. Rubin, J., Lee, D.D., & Sompolinsky, H. (2001). Equilibrium Properties of Temporally Asymmetric Hebbian Plasticity. Physical Review Letters, 86, 364-367. Rudolph, M., & Destexhe, A. (2003). Characterization of Subthreshold Voltage Fluctuations in NeuronalMembranes. Neural Computation, 15, 2577- 2618. Rust, N. C., Schwartz, O., Movshon, J. A„ & Simoncelli, E. P. (2005). Spatiotemporal Elements of Macaque V1 Receptive Fields. Neuron, 46, 945- 956. Schwartz, O., Pillow, J. W., Rust, N. C. & Simoncelli, E. P. (2006). Spiketriggered neural characterization. J. Vision, 6, 484-507. Seriès P., Latham P. & Pouget A. (2004). Tuning Curve Sharpening for orientation selectivity: coding efficiency and the impact of correlations. Nature Neuroscience, 7, 1129-1135. Shadlen, M.N., & Newsome, W. T. (1998). The variable discharge of cortical neurons: implications for connectivity, computation, and information codinf. Journal of Neuroscience, 18, 3870-3896. Sharp, A.A., O’Neil, M.B., Abbott, L.F., & Marder, E. (1993). The dynamic clamp: artificial conductances in biological neurons. Trends Neurosci., 16, 389-394. Shriki O. (2003). Dynamic and Computational Models of Recurrent Networks in the Brain. Ph. D. Thesis. The Hebrew University of Jerusalem. Israel. Singer W. (1995). Development and Plasticity of Cortical Processing Architectures. Science, 270, 758-764. Sjöström, P.J., Turrigiano, G.G., & Nelson. S.B. (2001) Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron, 32, 1149- 1164. Sjöström, P.J., Turrigiano, G.G.,&Nelson S.B. (2003).Neocortical LTDvia coincident activation of presynaptic nmda and cannabinoid receptors. Neuron, 39, 641-654. Sjöström, P.J., Turrigiano, G.G., & Nelson S.B. (2003). Endocannabinoiddependent neocortical layer-5 LTD in the absence of postsynaptic spiking. J. Neurophysiol., 92, 3338-3343. Softky, W. R., & Koch, C. (1993). The highly irregular firing of cortical cells is inconsistent with temporal integration of randomEPSPs. J. Neurosci. 13, 334-350. Song, S., & Abbott, L.F. (2001). Column and map development and cortical re-mapping through spike-timing dependent plasticity. Neuron, 32, 339- 350 Spiridon M. & Gerstner W (2001). Effect of lateral connections on the accuracy of the population code for a network of spiking neurons. Network: Computation in Neural Systems, 12(4), 409-421. Spitzer H., Desimone, R. & Moran, J. (1988). Increased attention enhances both behavioral and neuronal performance. Science, 240, 338-340. Stein, R. B. (1967). Some models of neuronal variability. Journal Biophysics, 7, 37-68. Sullivan T. J. & de Sa V. R. (2006). A self-organizing map with homeostatic synaptic scaling. Neurocomputing, 69, 1183-1186. Sullivan T. J. & de Sa V. R. (2008). Sleeping our way to weight normalization and stable learning. Neural Computation, 20, 3111-3130. Tateno, T., Harsch, A., & Robinson, H. P. C. (2004). Threshold Firing Frequency Current Relationships of Neurons in Rat Somatosensory Cortex: Type 1 and Type 2 Dynamics. J. Neurophysiol., 92, 2283-2294. Tateno, T., & Robinson, H.P. (2006). Rate coding and spike-time variability in cortical neurons with two types of threshold dynamics. Journal of Neurophysiology, 95, 2650-2663. Thoby-Brisson M. & Simmers J. (1998). Neuromodulatory inputs maintain expression of a lobstermotor pattern-generating network in amodulation dependent state: evidence from long-term decentralization in vitro. The Journal of Neuroscience, 18, 2212-2225. Toyoizumi, T., Pfister, J.-P., Aihara, K., & Gerstner, W. (2005). Spike-timing dependent plasticity and mutual information maximization for a spiking neuron model. In L. Saul, Y.Weiss, & L. Bottou (Editors). Advances in neural information processing systems, 17, 409-1416. Toyoizumi, T., Pfister, J.-P., Aihara, K., & Gerstner, W. (2007). Optimality model of unsupervised spike-timing-dependent plasticity: synapticmemory and weight distribution. Neural Computation, 19, 639-671. Triesch J. (2007). Synergies between Intrinsic and Synaptic Plasticity Mechanisms. Neural Computation, 19, 885-909. Troyer T. T., Krukowski A. E., Priebe N. J & Miller K. D. (1998). Contrast- Invariant Orientation Tuning in Cat Visual Cortex: Thalamocortical Input and Correlation-Based Intracortical Connectivity. The Journal of Neuroscience, 18, 5908-5927. Tuckwell H.C. (1979) Synaptic transmission in a model for stochastic neural activity. J Theor Biol, 77, 65-81. Tuckwell H.C. (1988) Introduction to Theoretical Neurobiology. In: Nonlinear and stochastic theories, vol 2. Cambridge University Press, Cambridge. Turrigiano G. G., Leslie K. R., Desai N. S., Rutherford, L. C. & Nelson, S. B. (1998). Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature, 391, 892-896. Turrigiano, G. G. (1999). Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same. Trends in Neurosciences, 22(5), 221-227. Turrigiano G.G. & Nelson S.B. (2000). Hebb and homeostasis in neuronal plasticity. Current Opinion Neurobiology, 10(3), 358-364. Turrigiano G.G. & Nelson S.B. (2004). Homeostatic plasticity in the developing nervous system. Nature Reviews Neuroscience, 5(2), 97-107. Van den Broeck, C., Parrondo, J. M., & Toral, R. (1994). Noise-induced nonequilibrium phase transition. Phys. Rev. Lett., 73, 3395-3398. van RossumM. C., Bi G. Q. & Turrigiano G. G. (2000). Stable Hebbian learning from spike timing-dependent plasticity. The Journal of Neuroscience, 20(23), 8812-8821. van Vreeswijk, C., & Sompolinsky, H. (1996). Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science, 274, 1724-1726. van Vreeswijk, C., & Sompolinsky, H. (1998). Chaotic Balanced State in a Model of Cortical Circuits. Neural Computation, 10, 1321-1371. van Vreeswijk, C. & Sompolinsky, H. (2003). Irregular activity in large networks of neurons. In: Methods and Models in Neurophysics, Lecture Notes of the XXX Les Houches Summer School, (Eds: C. Chow, B. Gutkin, D. Hansel, C. Meunier and J. Dalibard). Elsevier Science and Technology. Wang, X.-J., & Buzsáki, G. (1996). Gamma Oscillation by Synaptic Inhibition in a Hippocampal Interneuronal Network Model. J. Neurosci., 16, 6402- 6413. Wang, X.-J. (2010). Neurophysiological and Computational Principles of Cortical Rhythms in Cognition. Physiol. Rev., 90, 1195-1268. Watt, A. J., van Rossum,M. C.W.,MacLeod, K.M., Nelson, S. B. & Turrigiano, G. (2000) G. Activity co-regulates quantal AMPA and NMDA currents at neocortical synapses. Neuron, 26, 659-670. Weber C. & Triesch J. (2008). A sparse generative model of V1 simple cells with intrinsic plasticity. Neural Computation, 20, 1261-1284. Xie, X. & Seung, S. (2000). Spike-based learning rules and stabilization of persistent neural activity in recurrent neocortical circuits. In Solla, S.A.; Leen, T.K.; Muller, K.R. (eds.) Adv. Neural Inf. Process Syst., 12, 199-205. Yang, S.N., Tang, Y.G., & Zucker, R.S. (1999). Selective induction of LTP and LTD by postsynaptic [Ca2+ ] elevation. Journal of Neurophysiology, 81, 781- 787. Zhang, L.I., Tao, H.W., Holt, C.E., Harris, W.A., & Poo, M. (1998). A critical window for cooperation and competition among developing retinotectal synapses. Nature, 395, 37-44. Zhang K. & Sejnowski T. J. (1999). Neuronal Tuning: To Sharpen or Broaden?. Neural Computation, 11(1), 75-84. |
Materias: | Matemática > Estadística aplicada Medicina > Neurociencias |
Divisiones: | Investigación y aplicaciones no nucleares > Física > Física estadística |
Código ID: | 337 |
Depositado Por: | Marisa G. Velazco Aldao |
Depositado En: | 11 Jul 2012 11:32 |
Última Modificación: | 11 Jul 2012 11:32 |
Personal del repositorio solamente: página de control del documento