Algoritmos para el procesamiento concurrente de señales y su aplicación en sonoluminiscencia. / Concurrent signal processing algorithms with applications in sonoluminescence.

Dellavale Clara, Héctor D. (2012) Algoritmos para el procesamiento concurrente de señales y su aplicación en sonoluminiscencia. / Concurrent signal processing algorithms with applications in sonoluminescence. Tesis Doctoral en Ciencias de la Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
74Mb

Resumen en español

El contenido de esta tesis abarca el desarrollo y aplicación de un sistema multifrecuencia para la exploración de los límites de concentración de energía en el fenómeno de sonoluminiscencia. Como parte del sistema multifrecuencia se incluye el diseño de una etapa amplificadora de alta tensión (V_out =100V_p ) y considerable ancho de banda ( BW = 400kHz @ C_L = 2nF ) para la excitación de los actuadores piezoeléctricos. Los algoritmos de procesamiento digital utilizados para el diseño del sistema multifrecuencia incluyen la técnica Lock in, filtros recursivos y moduladores Delta- Sigma. La implementación eficiente de las arquitecturas concurrentes asociadas a estos algoritmos se realiza mediante la utilización de dispositivos de lógica programable, específicamente tecnología FPGA (Field Programmable Gate Array). A partir de la generación de código HDL (Hardware Description Language) re-utilizable se propone además la integración de los módulos de procesamiento en un sistema lock in multifrecuencia y multicanal orientado a aplicaciones del tipo ECISTM (Electric Cellsubstrate Impedance Sensing, Applied BioPhysics) y EBIS (Electrical Bio Impedance Sensing). Las arquitecturas desarrolladas para el sistema lock in multicanal resultan escalables en el número de etapas lock in (firmware) y número de canales analógicos de salida (firmware/hardware). La implementación de las arquitecturas propuestas muestra que con la tecnología de los dispositivos de lógica programable disponible actualmente (tecnología CMOS de 90nm a 28nm ) es posible la implementación de decenas de módulos lock in y canales analógicos de salida en un único dispositivo FPGA. Para el estudio del campo acústico en sonoluminiscencia se propone un modelo analítico del resonador esférico y se realiza una descripción semi-analítica del sistema resonador-burbuja. Los modelos propuestos permiten identifican los mecanismos disipativos que determinan el factor de calidad del sistema resonante. Se analiza además como la emisión acústica de la burbuja sonoluminiscente y su interacción con el resonador esférico determinan la amplitud y fase relativa de las componentes armónicas que conforman el campo acústico. En los últimos capítulos se presenta el análisis de los resultados obtenidos mediante la aplicación del sistema multifrecuencia en los experimentos de sonoluminiscencia realizados con solución acuosa de ácido sulfúrico. Los resultados obtenidos muestran que la utilización de una excitación bi-armónica constituye un mecanismo que posibilita atrapar, e incluso estabilizar espacialmente, burbujas sonoluminiscentes en condiciones de muy bajas concentraciones de gas disuelto en el líquido ( ≈1mbar ). Mediante la utilización de una excitación bi-armónica y ≈1mbar de xenón disuelto en solución acuosa de ácido sulfúrico al 85% en peso, se obtuvo un límite de ≈ 70kK para la temperatura máxima del gas contenido en la burbuja sonoluminiscente. Este límite es impuesto por la inestabilidad posicional causada por la componente de frecuencia fundamental de la excitación bi-armónica. Esta conclusión se obtuvo a partir del análisis de las fuerzas hidrodinámicas que actúan sobre la burbuja. Las fuerzas hidrodinámicas se calcularon a partir del modelo numérico para la dinámica del radio de la burbuja. Luego, estas predicciones teóricas fueron validadas con los datos experimentales.

Resumen en inglés

A multifrequency system based on Field Programmable Gate Array (FPGA) technology is described. The proposed system was tailored to explore the energy concentration limit in single bubble sonoluminescence (SBSL). Besides, a high-voltage wide-bandwidth amplifier (V_out =100V_p , BW = 400kHz @ C_L = 2nF ) was designed and assembled in order to excite the piezoelectric drivers. The implemented digital signal processing (DSP) includes the lock in technique, recursive filters and noise shaping modulators. In order to improve the reusability of the DSP blocks described through hardware description language (HDL), the design was partitioned in concurrent architectures. These architectures were described in parametrized code style. As a consequence, the DSP blocks were readily integrated in a multifrequency and multichannel lock in system suitable for other applications: ECISTM (Electric Cell-substrate Impedance Sensing, Applied BioPhysics) and EBIS (Electrical Bio Impedance Sensing). The proposed multichannel lock in system is scalable in the number of lock in stages (firmware) and analog output channels (firmware/hardware). In case of the current technology ( 90nm to 28nm CMOS technology), the synthesis results for the proposed architectures show that it is possible to implement the order of tens lock in stages and analog output channels in a single FPGA device. On the other hand, the acoustic field in the liquid within a spherical solid shell is calculated. The proposed model takes into account Stoke’s wave equation in the viscous fluid, the membrane theory to describe the solid shell motion and the energy loss through the external couplings of the system. A point source at the resonator center is included to reproduce the acoustic emission of a sonoluminescence bubble. Furthermore, the interaction between the bubble acoustic emission and the resonator modes is analyzed. It was found that the bubble acoustic emission produces local maxima in the resonator response. In addition, the multifrequency system is applied to explore the energy concentration limit in SBSL with sulfuric acid. The experimental results show that a bi-harmonic excitation makes it possible to trap and spatially stabilize the sonoluminescent bubble with very low amount of gas dissolved in the liquid ( ≈1mbar ). As a result, in case of the bi-harmonic excitation and sulfuric acid aqueous solution with xenon dissolved ( ≈1mbar ), it has been found ≈ 70kK for the peak temperature for the gas at the bubble collapse. It was found that this limit is due to the positional instability produced by the fundamental frequency of the harmonic excitation. This result was obtained through the analysis of the hydrodynamical forces acting on the bubble. The hydrodynamical forces were calculated using the numerical model for the radial dynamics of the bubble. Besides, these teoretical results were validated against the experimental data.

Tipo de objeto:Tesis (Tesis Doctoral en Ciencias de la Ingeniería)
Palabras Clave:Lock-in amplifiers; Amplificadores lock-in; Noise; Ruido; Noise-shaping modulators; Moduladores delta-sigma; Sonoluminescence; Sonoluminiscencia
Referencias:[1] M. Sonnaillon and F. Bonetto, A low-cost, high-performance, digital signal processor-based lock in amplifier capable of measuring multiple frequency sweeps simultaneously, Rev. Sci. Instrum. 76 (2005). [2] Maximiliano O. Sonnaillon, Tesis de doctorado: Procesamiento digital de señales en amplificadores lock in, Instituto Balseiro (2007). [3] A. Oppenheim, R. Schafer and J. Buck, Discrete-Time Signal Processing, Prentice-Hall, New Jersey (1999). [4] R. Schreier and G. Temes, Understanding Delta-Sigma Data Converters, Wiley- IEEE Press, New Jersey (2005). [5] G. Bourdopoulos, A. Pnevmatikakis, V. Anastassopoulos, T. Deliyannis, Delta- Sigma Modulators Modeling, Design and Applications, Imperial College Press (2003). [6] Walt Kester et al., Mixed-Signal and DSP Design Techniques, Analog Devices Inc. (2000). [7] Xilinx Inc., ML403 Evaluation Platform User Guide, UG080 v2.5 (2006). [8] Xilinx Inc., Spartan-3E FPGA Starter Kit Board User Guide, UG230 v1.1 (2008). [9] M. Min, O. Märtens and T. Parve, Lock–in measurement of bio-impedance variations, Measurement No. 27, Elsevier (2000). [10] M. Min and T. Parve, Improvement of Lock-in Electrical Bio-Impedance Analyzer for Implantable Medical Devices, IEEE Trans. on Inst. and Meas. 56, No. 3, pp. 968-974 (2007). [11] R. Gordon, R. Land, M. Min, T. Parve, R. Salo, A Virtual System for Simultaneous Multi-frequency Measurement of Electrical Bioimpedance, International J. of Bioelectromagnetism, 7, No. 1, pp. 243-246 (2005). [12] Y. Granot, A. Ivorra and B. Rubinsky, Frequency-Division Multiplexing for Electrical Impedance Tomography in Biomedical Applications, International J. of Biomedical Imaging, 2007, ID 54798 (2007). [13] Giaever & Keese, A morphological biosensor for mammalian cells, Nature 366, 1993. URL: www.biophysics.com. [14] Mariela I. Bellotti, Tesis de Doctorado: Evaluación biológica y fisicoquímica de dispositivos ECIS postulados para el diagnostico de patologías oculares, Universidad de Buenos Aires (2010). [15] M. Brenner, S. Hilgenfeldt, and D. Lohse, Single-bubble sonoluminescence, Rev. Mod. Phys. 74, 425-484 (2002). [16] Raúl Urteaga, Tesis de Doctorado: Concentración de Energía en Sonoluminiscencia, Instituto Balseiro (2008). [17] S. Hilgenfeldt and D. Lohse, Predictions for Upscaling Sonoluminescence, Phys. Rev. Lett. 82, 1036 (1999). [18] G. Puente, P. García-Martínez and F. Bonetto, Single-bubble sonoluminescence in sulfuric acid and water: Bubble dynamics, stability and continuous spectra, Phys. Rev. E 75, 016314 (2007). [19] G. Puente, R. Urteaga, and F. Bonetto, Numerical and experimental study of dissociation in an air-water single-bubble sonoluminescence system, Phys. Rev. E 72, 046305 (2005). [20] Gabriela F. Puente, Tesis de Doctorado: Sonoluminiscencia y Cavitación en Burbujas: Análisis Dinámico y de Estabilidad en Regiones Altamente no Lineales, Instituto Balseiro (2005). [21] G. Puente, and F. Bonetto, Proposed method to estimate the liquid-vapor accommodation coeficient based on experimental sonoluminescence data, Phys. Rev. E. 71, 056309 (2005). [22] R. Urteaga, D. Dellavale, G. Puente, and F. Bonetto, Experimental study of transient paths to the extinction in sonoluminescence, J. Acoust. Soc. Am. 124, 1490-1496 (2008). [23] J. Ketterling and R. Apfel, Using phase space diagrams to interpret multiple frequency drive sonoluminescence, J. Acoust. Soc. Am. 107, 819-826 (2000). [24] R. Holt and D. Gaitan, Observation of stability boundaries in the parameter space of single bubble sonoluminescence, Phys. Rev. Lett. 77, 3791–3794 (1996). [25] D. Gaitan and R. Holt, Experimental observations of bubble response and light intensity near the threshold for single bubble sonoluminescence in an air-water system, Phys. Rev. E 59, 5495-5502 (1999). [26] J. Ketterling and R. Apfel, Extensive experimental mapping of sonoluminescence parameter space, Phys. Rev. E 61, 3832-3837 (2000). [27] H. Lin, B. Storey, A. Szeri, Rayleigh-Taylor instability of violently collapsing bubbles, Phys. of Fluids 14, 2925 (2002). [28] Y. An, T. Lu, and B. Yang, Instability of sonoluminescing bubbles under a nonspherical symmetrical acoustic-pressure perturbation, Phys. Rev. E 71, 026310 (2005). [29] J. Dam and M. Levinsen, Second mode of recycling together with period doubling links single-bubble and multibubble sonoluminescence, Phys. Rev. Lett. 94, 174301 (2005). [30] J. Dam, M. Levinsen, and M. Skogstad, Stable nonspherical bubble collapse including period doubling in sonoluminescence, Phys. Rev. E 67, 026303 (2003). [31] R. Urteaga, D. Dellavale, G. Puente, and F. Bonetto, Positional stability as the light emission limit in sonoluminescence with sulfuric acid, Phys. Rev. E 76, 056317 (2007). [32] John Logue, Virtex Synthesizable Delta-Sigma DAC, Xilinx Application Note XAPP154 (1999). [33] John Logue, Virtex Analog to Digital Converter, Xilinx Application Note XAPP155 (1999). [34] Steve Winder, Analog and Digital Filter Design, 2nd Ed., Newnes - Elsevier Science (2002). [35] A. Oppenheim and A. Willsky, Signal and Systems, 2da Ed., Prentice-Hall (1996). [36] J. Proakis and D. Manolakis, Digital Signal Processing: Principles, Algorithms and Applications, 3rd Ed., Prentice-Hall (1996). [37] Uwe Meyer-Baese, Digital Signal Processing with Field Programmable Gate Arrays, 3rd Ed., Springer (2007). [38] T. Parks and C. Burrus, Digital Filter Design, John Wiley & Sons (1987). [39] R. Crochiere and A. Oppenheim, Analysis of linear digital networks, Proc. of the IEEE 3 No. 4 (1975). [40] S. Smith, The Scientist and Engineer's Guide to Digital Signal Processing, 2nd Ed, California Technical Publishing, EE.UU. (1999), URL: http://www.dspguide.com. [41] H. Nyquist, Certain Topics in Telegraph Transmission Theory, Trans. AIEE, pp. 617-644 (1928). Reimpreso en Proc. of the IEEE 90, No. 2, pp. 280-305 (2002). [42] C. Shannon, Communication in the Presence of Noise, Proc. of IRE 27, No. 1, pp. 10-21 (1949). Reimpreso en Proc. of the IEEE 86, No. 2, pp. 447-457 (1998). [43] Xilinx Inc., LogiCore DDS v5.0 (2005). [44] S. Li, W. Chen, L. Jiang, Y. Zhu, and C. Wang, Single Bubble Sonoluminescence Driven by Biharmonic Ultrasound, Chin. Phys. Lett. 20, 2053 (2003). [45] D. Krefting, R. Mettin, and W. Lauterborn, Two-frequency driven single-bubble sonoluminescence, J. Acoust. Soc. Am. 112, 1918-1927 (2002). [46] X. Lu, A. Prosperetti, R. Toegel, and D. Lohse, Harmonic enhancement of singlebubble sonoluminescence, Phys. Rev. E 67, 056310 (2003). [47] W. Chen, X. Chen, M. Lu, G. Miao, and R. Wei, Single bubble sonoluminescence driven by non-simple-harmonic ultrasounds, J. Acoust. Soc. Am. 111, 2632-2637 (2002). [48] F. Moraga, R. Taleyarkhan, R. Lahey, and F. Bonetto, Role of very-highfrequency excitation in single-bubble sonoluminescence, Phys. Rev. E 62, 2233– 2237 (2000). [49] K. Hargreaves and T. Matula, The radial motion of a sonoluminescence bubble driven with multiple harmonics, J. Acoust. Soc. Am. 107, 1774-1776 (2000). [50] R. Urteaga and F. Bonetto, Trapping an intensely bright, stable sonoluminescing bubble, Phys. Rev. Lett. 100, 074302 (2008). [51] D. Dellavale, M. Sonnaillon, F. Bonetto, FPGA Based Multi-Harmonic Control System for Single Bubble Sonoluminescence, Proc. of IV Southern Programmable Logic Conference (2008), URL: http://ieeexplore.ieee.org. [52] J. Millman and C. Halkias, Electrónica integrada Circuitos y sistemas analógicos y digitales, 10a Edición, Editorial Hispano Europea (1988). [53] N. Theophanous, S. Tsitomeneas, G. Alexakis and A. Arapoyianni, A Highvoltage electrooptic drive amplifier using a power MOSFET pair, IEEE Trans. on Inst. and Meas. 37, 49-52 (1988). [54] D. Dellavale, R. Urteaga, F. Bonetto, Analytical study of the acoustic field in a spherical resonator for single bubble sonoluminescence, J. Acoust. Soc. Am. 127, 186-197 (2010). [55] W. Baker, Axisymmetric modes of vibration of thin spherical shell, J. Acoust. Soc. Am. 33, 1749-1758 (1961). [56] M. Moldover, J. Mehl, and M. Greenspan, Gas-filled spherical resonator: Theory and experiment, J. Acoust. Soc. Am. 79, 253-272 (1986). [57] J. Holzfuss, M. Rüggeberg and R. Holt, Acoustical stability of a sonoluminescing bubble, Phys. Rev. E 66, 046630 (2002). [58] F. Seeley, Effects of higher-order modes and harmonics in single bubble sonoluminescence, J. Acoust. Soc. Am. 105, 2236-2242 (1999). [59] D. Flannigan and K. Suslick, Plasma formation and temperatura measurement during single-bubble cavitation, Nature (London) 434, 52-55 (2005). [60] S. Hopkins, S. Putterman, B. Kappus, K. Suslick, and C. Camara, Dynamics of sonoluminescing bubble in sulfuric acid, Phys. Rev. Lett. 95, 254301 (2005). [61] A. Moshaii, M. Faraji, S. Tajik-Nezhad, Study of single bubble Sonoluminescence in phosphoric acid, Ultrasonics Sonochemistry 18, 1148-1152 (2011). [62] A. Moshaii and R. Sadighi-Bonabi, Role of liquid compressional viscosity in the dynamics of a sonoluminescing bubble, Phys. Rev. E 70, 016304 (2004). [63] R. Toegel, S. Luther, and D. Lohse, Viscosity destabilizes sonoluminescing bubbles, Phys. Rev. Lett. 96, 114301 (2006). [64] R. Nigmatulin, I. Akhatov, N. Vakhitova, and R. Lahey, On the forced oscillations of a small gas bubble in a spherical liquid-filled flask, J. Fluid Mech. 414, 47-73 (2000). [65] G. Stokes, On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids, Trans. Cambridge Philos. Soc. 8, 287- 319 (1845). [66] P. Morse and K. Uno Ingard, Theoretical Acoustics, McGraw-Hill, New York (1970). [67] M. Buckingham, Causality, Stokes' wave equation, and acoustic pulse propagation in a viscous fluid, Phys. Rev. E 72, 026610 (2005). [68] J. Lighthill, Waves in Fluids, Cambridge University Press, New York (2003). [69] P. Kundu and I. Cohen, Fluid Mechanics, Academic, San Diego (2002). [70] H. F. Weinberger, A first course in partial differential equations with complex variables and transform methods, Dover Publications Inc., New York 1995. [71] M. Abramowitz and I. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables Vol. 55, Dover Publications, New York (1972). [72] W. Soedel, Vibrations of Shells and Plates, Dekker, New York (2004). [73] Stephen P. Timoshenko, Theory of Plates and Shells, McGraw-Hill, New York (1940). [74] L. Kinsler and A. Frey, Fundamentals of Acoustics, Wiley, New York (1962). [75] J. Mehl, Spherical acoustic resonator: Effects of shell motion, J. Acoust. Soc. Am. 78, 782-788 (1985). [76] T. G. Leighton, The Acoustic Bubble, Academic, London (1994). [77] B. Van Der Pol and H. Bremmer, Operational Calculus Based on the Two-sided Laplace Integral, Cambridge University Press, London (1955). [78] R. Pecha and B. Gompf, Microimplosions: Cavitation collapse and shock wave emission on a nanosecond time scale, Phys. Rev. Lett. 84, 1328-1330 (2000). [79] J. Holzfuss, M. Rüggeberg, and A. Billo, Shock wave emissions of a sonoluminescing bubble, Phys. Rev. Lett. 81, 5434-5437 (1998). [80] Z. Wang, R. Pecha, B. Gompf, and W. Eisenmenger, Single bubble sonoluminescence: Investigations of the emitted pressure wave with a fiber optic probe hydrophone, Phys. Rev. E 59, 1777-1780 (1999). [81] T. Matula, I. Hallaj, O. Cleveland, L. Crum, W. Moss, and R. Roy, The acoustic emissions from single-bubble sonoluminescence, J. Acoust. Soc. Am. 103, 1377- 1382 (1998). [82] K. Weninger, P. Evans, and S. Putterman, Time correlated single photon Mie scattering from a sonoluminescing bubble, Phys. Rev. E 61, (2000). [83] K. Weninger, B. Barber, and S. Putterman, Pulsed Mie scattering measurements of the collapse of a sonoluminescing bubble, Phys. Rev. Lett. 78, 1799-1802 (1997). [84] T. Asase and Y. Watanabe, Observation of Shock Wave Propagation by a Sonoluminescing Bubble, Japanese J. of App. Phys. 43, 403-404 (2004). [85] D. F. Gaitan et al., Transient cavitation in high-quality-factor resonators at high static pressures, J. Acoust. Soc. Am. 127, 3456-3465 (2010). [86] W. Heywang, K. Lubitz, W. Wersing, Piezoelectricity, Springer series in material science 114, Springer-Verlag Berlin Heidelberg (2008). [87] Channel Industries Inc., Piezoelectric Ceramics, URL: www.channelindustries.com. [88] Bradley P. Barber, Tesis de Doctorado: Synchronous picosecond sonoluminescence, University of California (1992). [89] J. Smith III and X. Serra, PARSHL: An Analysis/Synthesis Program for Non- Harmonic Sounds Based on a Sinusoidal Representation, Proc. of ICMC-87, Tokyo, Computer Music Association (1987). [90] D. Gaitan, L. Crum, C. Church, R. Roy, Sonoluminescence and bubble dynamics for a single, stable, cavitation bubble, J. Acoust. Soc. Am. 91, 3166-3183 (1992). [91] J. Holzfuss, M. Rüggeberg, and R. Mettin, Boosting sonoluminescence, Phys. Rev. Lett. 81, 1961-1964 (1998). [92] H. Ogi, A. Matsuda, K. Wada, and M. Hirao, Brightened single-bubble sonoluminescence by phase-adjusted high-frequency acoustic pulse, Phys. Rev. E 67, 056301 (2003). [93] J. Thomas, Y. Forterre, and M. Fink, Boosting Sonoluminescence with a High- Intensity Ultrasonic Pulse Focused on the Bubble by an Adaptive Array, Phys. Rev. Lett. 88, 074302 (2002). [94] K. Weninger, R. Hiller, B. Barber, D. Lacoste, S. Putterman, Sonoluminescence from Single Bubbles in Nonaqueous Liquids: New Parameter Space for Sonochemistry, J. of Phys. Chemistry 99, 14195 (1995). [95] F. Seeley, D. Gregory, S. Thompson, and J. Brown, Temporally stabilized sonoluminescence in ethylene glycol, Acoust. Res. Lett. Online 6 (1), 48-52 (2005). [96] J. Magnaudet and D. Legendre, The viscous drag force on a spherical bubble with a time-dependent radius, Phys. of Fluids 10, 550 (1998). [97] A. Reddy and A. Szeri, Coupled dynamics of translation and collapse of acoustically driven microbubbles, J. Acoust. Soc. Am. 112, 1346-1352 (2002). [98] R. Sadighi-Bonabi, R. Rezaei-Nasirabad, and Z. Galavani, The dependence of the moving sonoluminescing bubble trajectory on the driving pressure, J. Acoust. Soc. Am. 126, 2266-2272 (2009). [99] Z. Galavani, R. Rezaei-Nasirabad, S. Bhattarai, On the dynamics of moving single bubble sonoluminescence, Phys. Lett. A 374, 4531-4537 (2010). [100] Ludmila M. Rechiman and F. Bonetto, Levitation location shifting of a SBSL bubble in a highly viscous fluid. Numerical study, Ultrasonics, Enviado para su publicación (2011). [101] T. Matula, S. Cordry, R. Roy, and L. Crum, Bjerknes force and bubble levitation under single-bubble sonoluminescence conditions, J. Acoust. Soc. Am. 102, 1522-1527 (1997). [102] A. Troia, D. Ripa, R. Spagnolo, Moving single bubble sonoluminescence in phosphoric acid and sulphuric acid solutions, Ultrasonics Sonochemistry 13, 278-282 (2006). [103] A. Moshaii, K. Imani, and M. Silatani, Sonoluminescence radiation from different concentrations of sulfuric acid, Phys. Rev. E 80, 046325 (2009).
Materias:Ingeniería
Divisiones:Energía nuclear > Ingeniería nuclear > Termohidráulica
Código ID:338
Depositado Por:Marisa G. Velazco Aldao
Depositado En:13 Jul 2012 15:31
Última Modificación:05 Oct 2021 12:05

Personal del repositorio solamente: página de control del documento