Simulaciones numéricas de estabilidad en burbujas de cavitación acústica e inercial. / Numerical simulations of stability on acoustic and inertial cavitating bubbles.

Rechiman, Ludmila M. (2013) Simulaciones numéricas de estabilidad en burbujas de cavitación acústica e inercial. / Numerical simulations of stability on acoustic and inertial cavitating bubbles. Tesis Doctoral en Ingeniería Nuclear, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
63Mb

Resumen en español

El colapso violento de burbujas ha demostrado ser un método efectivo de compresión para concentrar energía evidenciado en la posible emisión de luz en condiciones muy particulares de los parámetros que gobiernan el problema. Sin embargo, en el espacio de fases donde dicha figura de mérito aumenta se inducen inestabilidades que limitan los procesos de compresión. En este trabajo se estudia la dinámica de burbujas en dos casos particulares según el campo de presiones del líquido circundante a la misma, y las posibles inestabilidades que se pueden presentar en cada caso. En el caso de burbujas excitadas por un campo de presiones periódico impuesto por ultrasonido, nuestro propósito fue desarrollar un modelo que permita describir la “inestabilidad de trayectoria” que se presenta en burbujas inmersas en diferentes fluidos viscosos, y los posibles métodos para suprimir las pseudo-órbitas producto de dicha inestabilidad. Para ello, se implementó un modelo que de forma acoplada resuelve tanto la dinámica radial como de traslación que presentan dichas burbujas, resolviendo completamente las tres escalas temporales involucradas. Para la resolución de la fuerza de historia, que le atribuye la característica de ecuación integrodiferencial a la ecuaci ón que representa la dinámica de traslación, se empleó un nuevo método denominado “método de la ventana”. En este contexto, nuestro modelo es capaz de describir por primera vez las principales fuerzas hidrodinámicas que actúan sobre una burbuja en el régimen de respuesta lineal y no lineal inmersas en los principales fluidos de trabajo empleados en el campo de estudio de Sonoluminiscencia. Asimismo, dicho modelo permite identificar las regiones del espacio de fases donde se produce la inestabilidad de trayectoria originada debido a la acción de la fuerza de historia. Mostramos las características principales del modelo y contrastamos los resultados con predicciones teóricas existentes y con mediciones experimentales realizadas en nuestro laboratorio, demostrando consistencia entre ellos. Para poder realizar la comparación entre los datos experimentales y teóricos, se planteó un esquema iterativo cuyo propósito es mantener la concentración de gas no condensable disuelta en el líquido constante, parámetro que es el que efectivamente se controla en los experimentos reales. Asimismo, la herramienta de cálculo desarrollada permitió estudiar tres posibles métodos independientes para obtener burbujas espacialmente fijas, condición necesaria para su correcta caracterización experimental y presumiblemente para maximizar la concentración de energía. Dichos métodos son: amplitudes de campo de presión de excitación única suficientemente bajas, emplear un fluido de trabajo altamente desgasado y empleo de la excitación multi-frecuencia, armónica en la mayoría de los casos. Todos los métodos se analizan con el modelo numérico en contraste con experimentos, y se muestra bajo que configuración de parámetros el modelo predice la supresión de pseudo-órbitas. Por otra parte, en el caso de cavitación inercial en el cual las burbujas de cavitación son generadas en un campo de presión constante, se estudió cómo limita la inestabilidad de forma Rayleigh-Taylor las máximas temperaturas que pueden alcanzar los contenidos de gas dentro de la misma. Asimismo, se desarrolló un esquema de descomposición en armónicos esféricos del contorno de una burbuja obtenido a partir de información experimental, compatible con la teoría que predice la ruptura o no de la misma debido a la mencionada inestabilidad de forma.

Resumen en inglés

It is a known fact that strongly collapsing bubbles is an effective method for compression of the interior gas contents to obtain high energy concentrations. This fact is demonstrated by the emission of a brief flash of light under very specific conditions of the parameters that rule the problem. However, in the phase space where the figure of merit given by the energy concentration rises, several instabilities take place, thus limiting the process of compression. In the present work, we study the bubble dynamics in two particular cases according to the pressure field of the surrounding liquid, an also the possible instabilities that may be present in each case. In the case of bubbles driven by a periodic pressure field imposed by ultrasound, our purpose is to develop a model that allows to describe the “path instability” that may be present for bubbles in different viscous liquids and the possible methods that suppress the pseudo-orbits produced by the mentioned instability. To get these objectives accomplished, we implemented a model that solves in a coupled way the translational and the radial dynamics that characterize these bubbles by solving the three time scales involved. To solve the history force, which credits the translational equation to be an integrodifferential equation, we used a new method coined “window method”. In this context, the model is able to describe, for the first time, the principal hydrodynamic forces that act on these bubbles in the linear and non-linear response regime and in the main working fluids used in the Sonoluminescence study field. Furthermore, the model is able to show the regions of the phase space in which the path instability is developed due to the action of the history force. We detailed the main features of the model, and we compared results with current theoretical results reported in the literature as well as with experimental data, and we show good agreement between them. To be able to compare numerical results with experimental measurements, we developed an iterative scheme which allows to keep the gas concentration in the liquid constant, because this is the parameter which is effectively controlled in the real experiments. Moreover, the developed numerical tool allows us to study three different methods to get spatially stationary bubbles, condition that is necessary for the correct experimental characterization and presumably to maximize the energy concentration. We have studied three independent methods to get spatially fixed bubbles that consist in: keeping the amplitude of the pressure field below a certain threshold, using strongly degassed liquid and using multi-frequency excitation, harmonic in most of the cases. All methods were analyzed with the numerical model in comparison with experimental data, and it is also shown under what configuration of parameters the model predicts the suppression of the pseudo-orbits. On the other hand, we have studied the inertial cavitation of bubbles in which the inception and collapse is under a constant pressure field. In this case, we have studied how the shape instability Rayleigh-Taylor plays a role on the maximum attainable temperatures of the inside bubble contents. Furthermore, we have developed a numerical framework to make an axisymmetric decomposition in spherical harmonics of the bubble shape which is compatible with the theory that predicts its pinch-off or absence of it due to the Rayleigh-Taylor instability.

Tipo de objeto:Tesis (Tesis Doctoral en Ingeniería Nuclear)
Palabras Clave:Cavitation; Cavitación; Bubble dynamics; Dinámica de burbujas; Shape instabilities; Inestabilidades de forma; hydrodynamic forces; Fuerzas hidrodinámicas; History force; Fuerza de historia; Window method; Método de la ventana
Referencias:[1] Leighton, T. G. The acoustic bubble. Academic Press, 1994. 1, 3, 8, 9, 12, 21, 32, 82, 91, 122 [2] Flannigan, D. J., Hopkins, S. D., Camara, C. G., Putterman, S. J., Suslick, K. S. Measurement of pressure and density inside a single sonoluminescing bubble. PRL, 96, 204301, 2006. 1 [3] Yosioka, K., Omura, A. The light emission from a single bubble driven by ultrasound and the spectra of acoustic oscillations. Proc Annual Meet Acoust Soc Jpn., 361, 125–126, 1962. 2 [4] Gaitan, D. F. An experimental investigation of acoustic cavitation in gaseous liquids. Phd thesis, University of Mississippi, 1990. 2, 27 [5] Gaitan, D. F., Crum, L. A., Church, C., Roy, R. Sonoluminescence and bubble dynamics for a single, stable, cavitation bubble. J. Acoust. Soc. Am., 91, 3166– 3183, 1992. 2, 27 [6] Harrison, M. An experimental study of single bubble cavitation noise. J. Acoust. Soc. Am., 24, 1952. 2, 18 [7] Lauterborn, W., Ohl, C. D. Cavitation bubble dynamics. Ultrasonics Sonoche- mistry., 4, 65–75, 1997. 3, 18 [8] Akhatov, I., Lindau, O., Topolnikov, A., Mettin, R., Vakhitova, N., Lauterborn, W. Collapse and rebound of a laser-induced cavitation bubble. Phys. Fluids., 13, 2805–2819, 2001. 3, 18, 110 [9] Brujan, E. A., Keen, G. S., Vogel, A., Blake, J. R. The final stage of the collapse of a cavitation bubble close to a rigid boundary. Phys. Fluids., 14, 85–91, 2002. 3, 18 [10] Rayleigh, L. On the pressure developed in a liquid during the collapse of a spherical cavity. Philosophical Magazine Series 6, 34, 94–98, 1917. 3, 5, 110 [11] Nigmatulin, R. I., Akhatov, I. S., Topolnikov, A. S., Bolotnova, R. K., Vakhitova, N. K., Lahey(Jr.), R. T., et al. Theory of supercompression of vapor bubbles and nanoscale thermonuclear fusion. Phys. Fluids, 17, 107106, 2005. 3 [12] Young, F. R. Sonoluminescence. CRC Press, 2005. 3 [13] Kappus, B., Khalid, S., Chakravarty, A., Putterman, S. Phase transition to an opaque plasma in a sonoluminescing bubble. PRL, 106, 234302, 2011. 3 [14] Khalid, S., Kappus, B., Weninger, K., Putterman, S. Opacity and transport measurements reveal that dilute plasma models of sonoluminescence are not valid. PRL, 108, 104302, 2012. 3 [15] Bemani, F., Sadighi-Bonabi, R. Plasma core at the center of a sonoluminescing bubble. Phys. Rev. E, 87, 013004, 2013. 3 [16] Suslick, K. S., Didenko, Y., Fang, M. M., Hyeon, T., Kolbeck, K. J., McNamara, W. B., et al. Acoustic cavitation and its chemical consequences. Proc. Royal Soc. A., 357, 335–353, 1999. 4 [17] Gong, C. Ultrasound induced cavitation and sonochemical effects. Phd thesis, Massachusetts Intitute of Technology, 1999. 4 [18] Johnsen, E., Colonius, T. Shock-induced collapse of a gas bubble in shockwave lithotripsy. J. Acoust. Soc. Am., 124, 2011–2020, 2008. 4 [19] Ohl, C. D., Arora, M., Ikink, R., de Jong, N., Versluis, M., Delius, M., et al. Sonoporation from jetting cavitation bubbles. Biophys J., 91, 4285–4295, 2006. 4 [20] Philipp, A., Lauterborn, W. Cavitation erosion by single laser-produced bubbles. J. Fluid Mech., 361, 75–116, 1998. 4 [21] Lauterborn, W., Kurz, T. Physics of bubble oscillations. Rep. Prog. Phys., 73, 2010. 4, 20, 75 [22] Holzfuss, J., R¨uggeberg, M., Mettin, R. Boosting sonoluminescence. PRL, 81, 1961–1964, 1998. 4 [23] Hargreaves, K., Matula, T. J. The radial motion of a sonoluminescence bubble driven with multiple harmonics. J. Acoust. Soc. Am., 107, 1774–1776, 2000. 4 [24] Moraga, F. J., Taleyarkhan, R. P., Lahey(Jr.), R. T., Bonetto, F. J. Role of veryhigh- frequency excitation in single-bubble sonoluminescence. Phys. Rev. E., 62, 2233–2237, 2000. 4 [25] Didenko, Y. T., McNamara, W. B., Suslick, K. S. Molecular emission during single bubble sonoluminescence. Nature, 407, 877–879, 2000. 5, 28, 73 [26] Flannigan, D. J., Suslick, K. S. Plasma formation and temperature measurement during single-bubble cavitation. Nature (London), 434, 52–55, 2005. 5, 27, 73 [27] Hopkins, S. D., Putterman, S. J., Kappus, B. A., Suslick, K. S., Camara, C. G. Dynamics of a sonoluminescing bubble in sulfuric acid. PRL, 95, 254301, 2005. 5, 27, 73 [28] Urteaga, R., Bonetto, F. J. Trapping an intensely bright, stable sonoluminescing bubble. PRL, 100, 074302, 2008. 5, 27, 28, 39, 73, 76, 96, 97, 100, 109 [29] Dellavale, D. H., Rechiman, L. M., Rossell´o, J. M., Bonetto, F. J. Upscaling energy concentration in multifrequency single-bubble sonoluminescence with strongly degassed sulfuric acid. Phys. Rev. E, 86, 016320, 2012. 5, 27, 28, 73, 76, 83, 91, 96, 97, 107, 111 [30] Dellavele, D. Algoritmos para el procesamiento concurrente de se˜nales y su aplicaci ´on en sonoluminiscencia. Tesis de doctorado, Instituto Balseiro. Univ. Nac. Cuyo, 2012. 5, 76, 83, 91, 98, 99, 100, 107, 136 [31] Young, F. R. Cavitation. Imperial College Press, 1999. 5, 111 [32] Plesset, M. J. Appl. Mech, 16, 277, 1949. 5 [33] Louisnard, O., Gonz´alez-Garc´ıa, J. Acoustic cavitation. Ultrasound Technologies for food and bioprocessing, 12, 13–64, 2011. 8, 12 [34] Abramowitz, M., Stegun, I. A. Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover books, 1970. 10, 91, 96 [35] Shampine, L. F. Vectorized adaptive quadrature in MATLAB. J. of Computatio- nal and Applied Mathematics, 211, 131–140, 2008. 11 [36] Briggs, L. J. Limiting negative pressure of water. J. Appl. Phys., 21, 721–722, 1950. 12 [37] Plesset, M. S., Prosperetti, A. Bubble dynamics and cavitation. Annual Rev. Fluid Mech., 9, 145–185, 1977. 15 [38] Brenner, M. P., Hilgenfeldt, S., Lohse, D. Single-bubble sonoluminescence. Rev. Mod. Phys., 74, 425–484, 2002. 15, 22, 23, 24, 75, 80, 90, 100 [39] Hilgendeldt, S., Brenner, M. P., Grossmann, S., Lohse, D. Analysis of Rayleigh- Plesset dynamics for sonoluminescing bubbles. J. Fluid Mech., 365, 171–204, 1998. 15 [40] Keller, J. B. Bubble oscilations of large amplitude. J. Acoustic Soc. Am., 68, 628–633, 1980. 15, 29 [41] L¨ofstedt, R., Barber, B. P., Putterman, S. J. Toward a hydrodynamic theory of sonoluminescence. Phys. Fluids, 5, 2911–2928, 1993. 15 [42] Prosperetti, A., Lezzi, A. Bubble dynamics in a compressible liquid. Part 1. First-order theory. J. Fluid Mech., 168, 457–478, 1986. 15, 17, 29 [43] Yasui, K. Variation of liquid temperature at bubble wall near the sonoluminescence threshold. Journal of the Physical Society of Japan, 65, 2830–2840, 1996. 15, 112 [44] Yasui, K. Chemical reactions in a sonoluminescing bubble. J. Phys. Soc. Jpn., 66, 2911–2920, 1997. 15 [45] Yasui, K. Alternative model of single-bubble sonoluminescence. Phys. Rev E, 56, 6750–6760, 1997. 15 [46] Puente, G. F. Sonoluminiscencia y cavitaci´on en burbujas: an´alisis din´amico y de estabilidad en regiones altamente no lineales. Tesis de doctorado, Instituto Balseiro. Univ. Nac. Cuyo, 2005. 15, 76, 99, 112, 113, 136 [47] Toegel, R., Lohse, D. Phase diagrams for sonoluminescing bubbles: A comparison between experiment and theory. J. of Chemical Physics, 118, 1863–1875, 2003. 15 [48] Lin, H., Storey, B., Szeri, A. J. Inertially driven inhomogeneities in violently collapsing bubbles: the validity of the Rayleigh-Plesset equation. J. Fluid Mech., 452, 145–162, 2002. 15 [49] Lezzi, A., Prosperetti, A. Bubble dynamics in a compressible liquid. Part 2. Second-order theory. J. Fluid Mech., 185, 289–321, 1987. 17 [50] Fuster, D., Dopazo, C., Hauke, G. Liquid compressibility effects during the collapse of a single cavitating bubble. J. Acoust. Soc. Am., 129, 122–131, 2011. 17 [51] Buogo, S., Cannelli, G. B. Implosion of an underwater spark-generated bubble and acoustic energy evaluation using the Rayleigh model. J. Acoust. Soc. Am., 111, 2594–2600, 2002. 18 [52] Baghdassarian, O., Tabbert, B., Williams, G. Luminescence characteristics of laser-induced bubbles in water. PRL, 83, 2437–2440, 1999. 18, 122 [53] Brouillette, M. The Richtmyer-Meshkov instability. Annu. Rev. Fluid Mech., 34, 445–468, 2002. 20 [54] Urteaga, R. Concentraci´on de energ´ıa en sonoluminiscencia. Tesis de doctorado, Instituto Balseiro. Univ. Nac. Cuyo, 2008. 20, 74, 76, 98, 99, 100, 120 [55] Hilgendeldt, S. Sonoluminescence and bubble dynamics. Phd thesis, University Marburg, 1997. 20, 25 [56] Hilgendeldt, S., Lohse, D. Phase diagrams for sonoluminescing bubbles. Phys. Fluids, 96, 1996. 20, 24, 25, 75, 82, 90, 111 [57] Eller, A. Force on a bubble in a standing acoustic wave. J. Acoustic Soc. Am., 43, 170–171, 1968. 20 [58] Crum, L. A. Bjerknes forces on bubbles in a stationary sound field. J. Acoust. Soc. Am., 57, 1363–1370, 1975. 21 [59] Parlitz, U., Mettin, R., Luther, S., Akhatov, I., Voss, M., Lauterborn, W. Spatiotemporal dynamics of acoustic cavitation clouds. Proc. Royal Soc. A., 357, 313334, 1999. 21, 34 [60] Matula, T. J., Cordry, S. M., Roy, R., Crum, L. A. Bjerknes force and bubble levitation under single-bubble sonoluminescence conditions. J. Acoust. Soc. Am., 102, 1522–1527, 1997. 21, 73, 74, 80, 84, 95 [61] Leighton, T. G., Walton, A. J., Pickworth, M. J. W. Primary Bjerknes forces. Eur J. Phys, 11, 47–50, 1990. 21, 32 [62] Puente, G. F., Garc´ıa-Mart´ınez, P. L., Bonetto, F. J. Single-bubble sonoluminescence in sulfuric acid and water: Bubble dynamics, stability, and continuous spectra. Phys. Rev. E, 75, 016314, 2007. 21, 27, 76, 82, 83, 91, 136 [63] Urteaga, R., Dellavale, D. H., Puente, G. F., Bonetto, F. J. Positional stability as the ligth emmission limit in sonoluminescence with sulfuric acid. Phys. Rev. E., 76, 056317, 2007. 21, 27, 43, 74, 76 [64] Eller, A., Flynn, H. G. Rectified diffusion during nonlinear pulsations of cavitation bubbles. J. Acoustic Soc. Am., 37, 493–503, 1965. 22 [65] Fyrillas, M. M., Szeri, A. J. Dissolution or growth of soluble spherical oscillating bubbles. J. Fluid Mech., 277, 381–407, 1994. 22, 75, 82 [66] Urteaga, R., Dellavale, D., Puente, G. F., Bonetto, F. J. Experimental study of transient paths to the extinction in sonoluminescence. J. Acoust. Soc. Am., 124, 1490–1496, 2008. 23 [67] Holzfuss, J. Surface-wave instabilities, period doubling, and an approximate universal boundary of bubble stability at the upper threshold of sonoluminescence. Phys. Rev. E, 77, 066309, 2008. 23 [68] Rechiman, L. M., Bonetto, F. J., Rossell´o, J. M. Effect of the Rayleigh-Taylor instability on maximum reachable temperatures in laser-induced bubbles. Phys. Rev. E., 86, 027301, 2012. 23, 103, 123 [69] Brenner, M. P., Lohse, D., Dupont, T. F. Bubble shape oscillations and the onset of sonoluminescence. PRL, 75, 954–957, 1995. 24 [70] Puente, G. F., Bonetto, F. J. Proposed method to estimate the liquid-vapor accommodation coefficient based on experimental sonoluminescence data. Phys. Rev. E, 71, 056309, 2005. 27, 122, 123 [71] Toegel, R., Luther, S., Lohse, D. Viscosity destabilizes sonoluminescing bubbles. PRL, 96, 114301, 2006. 29, 31, 33, 54, 59, 63, 71, 72, 73, 95 [72] Magnaudet, J., Legendre, D. The viscous drag force on a spherical bubble with a time-dependent radius. Phys. Fluids., 10, 550–554, 1998. 29, 31, 32, 33, 53, 54, 55, 56 [73] Sadighi-Bonabi, R., Rezaei-Nasirabad, R., Galavani, Z. The dependence of the moving sonoluminescing bubble trajectory on the driving pressure. J. Acoustic Soc. Am., 126, 2266–2272, 2009. 29, 38 [74] Galavani, Z., Rezaei-Nasirabad, R., Bhattarai, S. On the dynamics of moving single bubble sonoluminescence. Phys. Letters A, 374, 4531–4537, 2010. 29 [75] Mirheydari, M., Sadighi-Bonabi, R., Rezaee, N., Ebrahimi, H. Optimization of the bubble radius in a moving single bubble sonoluminescence. Physica Scripta, 83, 055403, 2011. 29 [76] Sadighi-Bonabi, R., Mirheydari, M., Rezaee, N., Ebrahimi, H. Effects of fluid viscosity on a moving sonoluminescing bubble. Phys. Rev. E, 84, 026301, 2011. 29 [77] Hilgenfeldt, S., Grossmann, S., Lohse, D. Sonoluminescence light emission. Phys. Fluids, 11, 1318–1330, 1999. 30 [78] Akhatov, I., Mettin, R., Ohl, C., Parlitz, U., Lauterborn, W. Bjerknes force threshold for stable single bubble sonoluminescence. Phys.Rev.E., 55, 3747–3750, 1997. 31, 82, 83, 91, 96 [79] Batchelor, G. K. Introduction to Fluid Mechanics. Cambridge University Press, 1967. 32, 126 [80] Press, W., Teukolsky, S., Vetterling, W. Numerical Recipies in C: The art of scientific computing. Cambridge University Press, 1992. 34, 57 [81] Reddy, A. J., Szeri, A. J. Coupled dynamics of translation and collapse of acoustically driven microbubbles. J. Acoust. Soc. Am., 112, 1346–1952, 2002. 34 [82] Toilliez, J. O. Coupled radial and translational responses of microbubbles subject to ultrasound driving within a biomedical framework. Phd thesis, University of California, Berkeley, 2008. 34 [83] Toilliez, J. O., Szeri, A. J. Optimized translation of microbubbles driven by acoustic fields. J. Acoust. Soc. Am., 123, 1916–1930, 2008. 34 [84] Poling, B., Thomson, G., Fried, D., Rowley, R., Wilding, W. Perry’s Chemical Engineers’ Handbook. Section 2: Physical and Chemical Data., tomo 8th Edition. McGraw Hill, 2008. 38, 59, 66, 115 [85] Young, T. F., Grinstead, S. R. The surface tensions of aqueous sulfuric acid solutions. Annals New York Academy of Science, 51, 765–780, 1949. 38 [86] Morrison, F. A., Stewart, M. B. Small bubble motion in an accelerating liquid. J. Appl. Mech., 43, 399–403, 1976. 44 [87] van Eijkeren, D. F., Hoeijmakers, H. W. M. Influence of the history term in a Langrangian method for oil-water separation. 7th International Conference on Multiphase Flow. ICMF 2010, 2010. 52 [88] Chung, J. N. The motion of particles inside a droplet. Transactions of the ASME, 104, 438–445, 1982. 52 [89] Tchen, C. Mean Value and Correlation Problems connected with the Motion of Small Particles suspended in a turbulent fluid. Phd thesis, Delft University, 1947. 52 [90] Hinze, J. O. Turbulence. McGraw-Hill, 1975. 52 [91] Armenio, V., Fiorotto, V. The importance of the forces acting on particles in turbulent flows. Phys. Fluids, 13, 2437–2440, 2001. 52 [92] Loth, E., Dorgan, A. J. An equation of motion for particles of finite Reynolds number and size. Environ. Fluid Mech., 9, 187–206, 2009. 52, 56 [93] Maxey, M. R., Riley, J. J. Equation of motion for small rigid sphere in a nonuniform flow. Phys. Fluids, 4, 883–889, 1983. 52 [94] Basset, A. B. On the motion of a sphere in a viscous liquid. Phil. Trans. R. Soc. Lond. A, 179, 43–63, 1888. 53 [95] Basset, A. B. Treatise on hydrodynamics. Deighton Bell, 1888. 53 [96] Yang, S., Leal, L. G. A note on memory-integral contributions to the force on an accelerating spherical drop at low Reynolds number. Phys. Fluids, 3, 1822–1824, 1991. 53 [97] Mei, R., Klausner, J. F., Lawrence, C. J. A note on the history force on a spherical bubble at finite Reynolds number. Phys. Fluids, 6, 418–420, 1994. 53 [98] Ren, C., MacKenzie, A. R. Closed-form approximations to the error and complementary error functions and their applications in atmospheric science. Atmosp- heric Science Letters, 8, 70–73, 2007. 54, 55 [99] Dorgan, A. J., Loth, E. Efficient calculation of the history force at finite Reynolds numbers. Int. J. Multiphase Flow, 33, 833–848, 2007. 56, 57, 58 [100] van Hinsberg, M. A. T., ten Thije Boonkkamp, J. H. M., Clercx, H. J. H. An efficient, second order method for the approximation of the Basset history force. J. Comp. Phys., 230, 1465–1478, 2011. 56 [101] Washburn, E. International Critical Tables. Knovel, 2003. 59, 115 [102] West, R., Selby, S. Handbook of Chemistry and Physics. The Chemical Rubber Co., 1967. 59, 115 [103] Ouellette, N. T., Xu, H., Bodenschatz, E. A quantitative study of threedimensional langrangian particle tracking algorithms. Experiments in Fluids, 40, 301–313, 2006. 63, 136 [104] Rechiman, L.M., Dellavale, D. H., Bonetto, F. J. Numerical description of moving single bubble sonoluminescence state in sulfuric acid. Proceedings of the MECOM 2012. Volume XXXI. Asociaci´on Argentina de Mec´anica Computacional., p´ags. 255–278, 2012. 73 [105] Matula, T. Bubble levitation and translation under single-bubble sonoluminescence conditions. J. Acoustic Soc. Am, 114, 775–781, 2003. 75, 90 [106] Rechiman, L. M., Dellavale, D., Bonetto, F. J. Path suppression of strongly collapsing bubbles at finite and low Reynolds numbers. Phys. Rev. E., 87, 063004, 2013. 78, 81, 92, 93, 95, 100, 102 [107] Hao, Y., Prosperetti, A. The effect of viscosity on the spherical stability of oscillating gas bubbles. Phys. Fluids, 11, 1309–1317, 1999. 82, 83, 90, 91, 111, 113 [108] Lin, H., Storey, B. D., Szeri, A. J. Rayleigh-Taylor instability of violently collapsing bubbles. Phys. Fluids, 14, 2002. 83, 111 [109] Storey, B. D. Shape stability of sonoluminescence bubbles: Comparison of theory to experiments. Phys. Rev. E, 64, 017301, 2001. 83 [110] Xu, H., Suslick, K. S. Molecular emission and temperature measurements from single-bubble sonoluminescence. PRL, 104, 244301, 2010. 85 [111] L¨ofstedt, R., Weninger, K., Putterman, S., Barber, B. P. Sonoluminescing bubbles and mass diffusion. Phys. Rev. E., 51, 4400–4410, 1995. 100 [112] Barber, B., Putterman, S. Light scattering measurements of the repetitive supersonic implosion of a sonoluminescing bubble. PRL, 69, 1992. 100 [113] Gompf, B., Pecha, R. Mie scattering from a sonoluminescing bubble with high spatial and temporal resolution. Phys. Rev. E, 61, 5253–5256, 2000. 100 [114] Urteaga, R., Garc´ıa-Mart´ınez, P. L., Bonetto, F. J. Dynamics of sonoluminescing bubbles within a liquid hammer device. Phys. Rev. E., 79, 016306, 2007. 110, 129 [115] Gong, S. W., Ohl, C. D., Klaseboer, E., Khoo, B. C. Scaling law for bubbles induced by different external sources: Theoretical and experimental study. Phys. Rev. E, 81, 2010. 110 [116] Farhat, M., Chakravarty, A., Field, J. E. Luminescence from hydrodynamic cavitation. Proc. Royal Soc. A., 2010. 110 [117] Brennen, C. E. Fission of collapsing cavitation bubbles. J. Fluid Mech, 472, 153–166, 2002. 111 [118] Augsd¨orfer, U. H., Evans, A. K., Oxley, D. P. Thermal noise and the stability of single sonoluminescing bubbles. Phys. Rev. E, 61, 5278–5286, 2000. 111 [119] W. C. Moss, J. W. W., D. B. Clarke, Young, D. A. Hydrodynamic simulations of bubble collapse and picosecond sonoluminescence. Phys. Fluids, 6, 2979–2985, 1994. 113 [120] Toegel, R., Gompf, B., Pecha, R., Lohse, D. Does water vapor prevent upscaling sonoluminescence? PRL, 85, 3165–3168, 2000. 113 [121] Haynes, W. Handbook of Chemistry and Physics. Taylor & Francis, 1956. 115 [122] Chakravarty, A., Georghiou, T., Phillipson, T. E., Walton, A. J. Stable sonoluminescence within a water hammer tube. Phys. Rev. E, 69, 066317, 2004. 120 [123] Plesset, M. S. On the stability of fluid flows with spherical symmetry. J. Appl. Phys., 25, 96–98, 1954. 126, 127 [124] Prosperetti, A. Viscous effects on perturbed spherical flows. Quaterly of Applied Mathematics, 1, 339–352, 1977. 127 [125] Prosperetti, A. Advanced mathematics for applications. Cambridge University Press, 1977. 127 [126] Garc´ıa-Mart´ınez, P. L. Ondas de compresi´on y de choque en sonoluminiscencia. Tesis de grado en ingenier´ıa nuclear, Instituto Balseiro. Univ. Nac. Cuyo, 2004. 136 [127] Garc´ıa-Mart´ınez, P. L., Puente, G. F., Bonetto, F. J. Hydrodynamic simulation and spectra determination in aqueous h2so4 solutions cavitation bubbles. Procee- dings of the MECOM 2005. Volume XXIV .Asociaci´on Argentina de Mec´anica Computacional., p´ags. 2597–2605, 2005. 136 [128] Dellavale, D., Urteaga, R., Bonetto, F. J. Analytical study of the acoustic field in a spherical resonator for single bubble sonoluminescence. J. Acoust. Soc. Am., 127, 186–197, 2010. 136
Materias:Ingeniería
Divisiones:Gcia. de área de Energía Nuclear > Gcia. de Ingeniería Nuclear > Cavitación y biotecnología
Código ID:421
Depositado Por:Marisa G. Velazco Aldao
Depositado En:07 Feb 2014 11:23
Última Modificación:11 Feb 2014 09:24

Personal del repositorio solamente: página de control del documento