Análisis de datos y desarrollo de modelos de cálculo neutrónico para sistemas híbridos, ADS. / Data analysis and development of models for neutronic calculation of hibrid systems, ADS.

Cintas, Ana (2013) Análisis de datos y desarrollo de modelos de cálculo neutrónico para sistemas híbridos, ADS. / Data analysis and development of models for neutronic calculation of hibrid systems, ADS. Tesis Doctoral en Ciencias de la Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
36Mb

Resumen en español

Desde hace algunas décadas, a nivel mundial, se investigan alternativas para disminuir la radiotoxicidad de ciertos isótopos que provienen, mayoritariamente, de los combustibles gastados de centrales nucleares de potencia. El presente trabajo evalúa una de estas alternativas, los denominados ADS (Accelerator Driven Systems), sistemas capaces de reducir la radiotoxicidad de ciertos actínidos menores y productos de fisión mediante fisiones y transmutaciones. Desafortunadamente, hasta el momento no se ha puesto en operación, en el mundo, una instalación de estas características. Sin embargo, se han realizado experimentos adaptando reactores de investigación en configuraciones convenientes para la obtención de parámetros neutrónicos. Considerando que pocos países tienen acceso a este tipo de instalaciones, los principales desarrollos se realizan mediante modelos computacionales, que además complementan a las mediciones experimentales. La investigación realizada se encuentra orientada al análisis de los datos necesarios para evaluar dichos sistemas y el desarrollo de metodologías a través de simulaciones numéricas para obtener parámetros neutrónicos relevantes. Adaptando códigos neutrónicos, comúnmente utilizados en reactores críticos, se realizaron numerosos modelos de ADS. La convalidación de los resultados obtenidos se realizó a través de la participación en un benchmark internacional, donde se presentaron resultados numéricos y experimentales. Se presenta, además, el diseño local de un ADS basado en la instalación crítica RA8. Se comprueba la viabilidad, desde el punto de vista neutrónico, de que adecuando el RA8 es posible desarrollar un ADS con el cual realizar numerosos experimentos en favor de la investigación y el desarrollo tecnológico nacional de los ADS.

Resumen en inglés

Since a few decades there are research projects worldwide analyzing alternatives to reduce the radiotoxicity of certain isotopes that come, mainly, from spent nuclear fuel from nuclear power plants. This work analyzes one of these alternatives, known as ADS (Accelerator Driven Systems), which seek to reduce the radiotoxicity of certain minor actinides and fission products through fission and transmutation. Unfortunately, to this day, there are no such facilities working in the world. Although, experiments have been carried out using research reactors to obtain neutronic parameters. Considering that few countries have access to this kind of facilities, the developments are made mainly by computational modelling, complemented with experimental measurements. Our research is oriented to the analysis of the data needed to evaluate and the development of methodologies using numerical simulations to obtain relevant neutronic parameters. Adapting neutronic codes, commonly used in critical reactor, numerous ADS models have been made. We also present a possible local ADS design, based on the RA8 critical facility. We test the feasibility, from the neutronic perspective, of adapting RA8 to develop an experimental ADS to do research supporting R&D of ADS in the country.

Tipo de objeto:Tesis (Tesis Doctoral en Ciencias de la Ingeniería)
Palabras Clave:Data analysis; Análisis de datos; Hybrid systems; Sistemas híbridos; Subcritical reactor; Sistemas subcríticos; Neutronic analyses; Análisis neutrónico; Computational modelling; Modelado computacional
Referencias:[1] U.S. DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum. A technology roadmap for generation iv nuclear energy systems, December 2002. [2] Knebel J. U. Heusener, 2000. Internationale Zeitschrift fur Kernenergie atw Jg, 6, pp. 350-358. [3] J.R Maiorino, 2005. International Nuclear Atlantic Conference- INAC2005- ISBN: 85-99141-01-5. [4] Carlo et al Rubbia. Conceptual design of a fast neutron operated high power energy amplifier, 1995. CERN AT 95-44, 29/9/95. [5] M.V. Ramana et al H. Feiveson, Z. Mian. Spent fuel from nuclear pwer reactors - an overview of a new study by the international panel on fissile materials. The International Panel on Fissile Materials - Program on Science and Global Security, Princeton University June 2011. [6] DOE. Appendix a: Inventory and characteristics of spent nuclear fuel, high-level radioactive waste, and other materials, February 2002. DOE/EIS-0250; Final Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level RadioactiveWaste at Yucca Mountain, Nye County, Nevada. [7] C. Fazio, 19-30 Nov. 2007. Lectures given at the School on Physics, technology and Applications of Accelerator Driven Systems (ADS), ICTP,Trieste. [8] D. Rozon. Candu spent fuel: a waste or a resource? NWMO ADVISORY COUNCIL COUNCIL DISCUSSION PAPER, January, 2005. [9] ARN. Factores dosimétricos para irradiación externa y contaminación interna, y niveles de intervención para alimentos, 2003. Autoridad Regulatoria Nuclear. [10] M. Salvatores et al. Challenges and potential benefits of partitioning and transmutation (p& t). NEA News, 2006. [11] CEA. e-den A Nuclear Energy Division Monograph . Treatment and recycling of spent nuclear fuel. Commissariat à l’energie atomique, Paris, 2008. [12] M. Salvatores. Accelerator driven system (ads), physics principles and specificities. Journal dePhysique IV. [13] NEA Data Bank. Janis 2.1, June. 2004. [14] Institute for Transuranium Elements. Advanced fuel cycle for accelerator driven system: Fuel fabrication and reprocessing. European Commission -Joint Research Centre, 2001. [15] Abderrahim H. A. Et al. Myrrha: A multipurpose accelerator driven system for research and development. Nuclear Instruments and Methods in Physics Research, 2001. [16] Technical Reports series No318 IAEA. Compendium of neutron spectra and detector responses for radiation protection purposes. IAEA, Vienna, 1990. [17] F. G. Knoll. Neutron sources for basic physics and applications. OECD/NEA Report, Pergamon press, 1983. [18] Del Mar Ventures Neutron Generators. www.sciner.com,. [19] Adelphi Technology Inc. web site: http://www.adelphitech.com. [20] Project Leader: Hamid Aït Abderrahim. www.sckcen.be/myrrha/. [21] Didier DE BRUYN, 19-30 Nov. 2007. Lectures given at the School on Physics, technology and Applications of Accelerator Driven Systems (ADS), ICTP,Trieste. [22] Y. Kadi and J.P. Revol. Design of an accelerator-driven system for the destruction of nuclear waste. Lectures given at the Workshop on Hybrid Nuclear Systems for Energy Production, Utilisation of Actinides & Transmutation of Long-Lived Radioactive Waste Trieste, 3 - 7 September 2001. [23] NEA/OECD. Accelerator-driven systems (ads) and fast reactors (fr) in advanced nuclear fuel cycles. 2002. [24] Tomas Junqueraa Alex C. Muellera Jean-Luc Biarrotte, Sébastien Boussona and Aurélia Oliviera. A reference accelerator scheme for ads applications. Nuclear Instruments & methods in physics research, 2006. [25] P. Seltborg. Source efficiency and high-energy neutronics in accelerator-driven systems. PhD thesis, Department of Nuclear and Reactor Physics, Royal Institute of Technology, 2005. [26] O. Meplan H. Nifenecker and S. David. Accelerator Driven Subcritical reactors. 2003. [27] A. E. Profio. Experimental Reactor Physics. 1976. [28] A. Åhlander W. Gudowski T. Stummer H. Kiyavitskaya V. Bournos Y. Fokov I. Serafimovich S. Chigrinov I. C.-M. Persson, P. Seltborg. Analysis of reactivity determination methods in the subcritical experiment yalina. Nuclear Instruments and Methods in Physics Research A 554, pp. 374-383, 2005. [29] J. R. Lamarsh. Introduction to Nuclear Reactor Theory. 1966. [30] S. C.van der Marck and R. K. Meulekamp. Calculating the effective delayed neutron fraction using monte carlo techniques. 2004. [31] R. E. MacFARLANE. The NJOY Nuclear Data Processing System, up112 - NJOY version 99.112, 2005. Los Alamos National Laboratory, USA. [32] X-5 Monte Carlo Team. MCNP - A general Monte Carlo N- Particle Transport Code, Version 5, April 2003. [33] Nuclear Energy Agency. www.nea.fr/dbdata. [34] M. Salvatores and R. Jacqmin. Uncertainty and target accuracy assessment for innovative systems using recent covariance data evaluations. A report by theWorking Party on International Evaluation Co-operation of the Nuclear Science Committee (WPEC-26), NEA/WPEC-26, OECD, Paris, 2008. [35] Cuba Prepared by D. López Aldama Centro de Gestión de la Información y Desarrollo de la Energía Miramar, La Habana and A. L. Nichols Nuclear Data Section International Atomic Energy Agency Vienna, December 2008. [36] E. White and RSICC Data Library Collection D. T. Ingersoll. VITAMIN-B6:A Fine-Group Cross Section Library Based on ENDF/B-VI for Radiation Transport Applications, 1996. [37] version 5.1 ORNL/TM-2005/39. SCALE: A Modular Code System for Performing Standardized Computer Analyses for Licensing Evaluation, November 2006. [38] E.Lopasso A.Cintas. Elección de bibliotecas master y optimización de la discretización energética en un sistema subcrítico con fuente. Inf. Tec. CNEA-CAB 47-030-2005. [39] W.A.Rhoades and D.B.Simpson. The TORT Three-Dimensional Distcrete Ordinates Neutron/Photon Transport Code, RSICC Computer Code Collection,DOORS3.2, October 1997. [40] U.D. Bitelli J. R. Maiorino, A. Santos. Specification of the sub critical core of the ipen/mb-01 driven by a neutron generator within the iaea sub crp on low enrichment uranium (leu) fuel utilization in accelerator driven sub critical assembly system (ads). Instituto de Pesquisas Energéticas e Nucleares. [41] A.Cintas. Cálculos neutrónicos para sistemas críticos y subcríticos con mcnp. Inf. Tec. CNEA-CAB 47-015- 2005. [42] I.Márquez A.Cintas, E.Lopasso. Cálculos neutrónicos con scale/tort y mcnp. Inf. Tec. CNEA-CAB 47-001- 2007. [43] I.Márquez A.Cintas, E.Lopasso. Cálculos neutrónicos en el reactor subcrítico con fuente ipen/mb-01. Inf. Tec. CNEA-CAB 47-028-2007. [44] S. C.van der Marck. Benchmarking endf/b-vii.0. Nuclear Data Sheets, 2006. [45] W. Gudowski (RIT-Sweden) V. Bournos et al (SNAS-Belarus); Y. Gohar (ANL-USA); C-M Persson. Yalinathermal benchmark specifications for the iaea coordinated research projects on low enriched uranium fuel utilization in accelerator driven sub critical assembly system. March, 2007. [46] W. Gudowski (RIT-Sweden) V. Bournos et al (SNAS-Belarus); Y. Gohar (ANL-USA); C-M Persson. Yalinabooster benchmark specifications for the iaea coordinated research projects on low enriched uranium fuel utilization in accelerator driven sub critical assembly system. March, 2007. [47] I.Márquez A.Cintas, E.Lopasso. Neutronic design of a subcritical, source driven reactor at the ra-8 facility. Nuclear Engineering and Design, pages 771 –775, 2009. [48] Ra-8 planos. Comunicación interna con el RA-6 y la división de combustibles del CAB. [49] D. F. Hergenreder. Desarrollo y puesta en operación de un sistema experimento-cálculo para la determinación de la distribución de potencia en reactor ra-8, trabajo especial dela carrera de ing. nuc. Master’s thesis, Instituo Balseiro, Universidad de Cuyo, Junio 1999. [50] High Tech Sources. Neutron source specifications. website: http://www.hightechsource.co.uk. [51] IAEA Nuclear Data Services. Wimsd-iaea-172 group cross section library. www-nds.iaea.org/wimsd/.
Materias:Ingeniería nuclear > Ingeniería de reactores
Ingeniería nuclear > Control de residuos radioactivos
Divisiones:Energía nuclear > Ingeniería nuclear > Física de reactores y radiaciones
Código ID:422
Depositado Por:Marisa G. Velazco Aldao
Depositado En:11 Feb 2014 10:43
Última Modificación:11 Feb 2014 10:43

Personal del repositorio solamente: página de control del documento