Diseño de un dispositivo amortiguador basado en el efecto superelástico en aleaciones de NiTi. / Design of a damping device based on the superelastic effect in NiTi alloys.

Mayer, Rodrigo I. (2013) Diseño de un dispositivo amortiguador basado en el efecto superelástico en aleaciones de NiTi. / Design of a damping device based on the superelastic effect in NiTi alloys. Proyecto Integrador Ingeniería Mecánica, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
6Mb

Resumen en español

Se diseñó un dispositivo con capacidades de amortiguamiento y recentrado de estructuras sometidas a cargas dinámicas, haciendo uso del comportamiento superelástico de aleaciones con memoria de forma (AMF). Esta propiedad permite, por medio de una transformación martensítica inducida mediante la aplicación de una carga mecánica, imponer deformaciones cercanas al 8% y, al quitar la carga, recuperar las dimensiones originales con una deformación residual mínima. Se trata de un proceso termoelástico que involucra un ciclo de histéresis en su diagrama tensión-deformación, el cual puede aprovecharse para disipar energía. Se construyó el dispositivo, de acción uniaxial, contemplando el uso de elementos esbeltos (alambres o cintas) de aleaciones de base Níquel-Titanio con memoria de forma. Luego se caracterizó su desempeño mediante una serie de ensayos de tracción utilizando diferentes programas de movimiento y condiciones de frecuencia y amplitud de deformación variadas. Los resultados muestran que el comportamiento del material en estado de entrega se modifica al someterlo a ciclos de carga y descarga, pero se estabiliza antes de los 100 ciclos. También se encontró una importante dependencia del desempeño del dispositivo con la velocidad de deformación a causa de los efectos térmicos, auto-inducidos por el intercambio de calor latente de transformación. Aún así mostró condiciones favorables para la disipación de energía mecánica y el recentrado de estructuras. Finalmente, se desarrolló un modelo numérico para estudiar el desempeño del dispositivo en sistemas de un grado de libertad (SDF) bajo distintas condiciones.

Resumen en inglés

A damping and recentering device was designed making use of the superelastic behavior shown by shape memory alloys (SMA). Superelasticity allows for these materials to withstand large deformations (beyond 8% strain) and still recover their original shape with no significant residual strain. A thermoelastic first order transformation of its crystallographic structure is involved, meaning that there is a hysteresis loop associated to its stress-strain diagram. This may be exploited for energy dissipation. The prototype was conceived for the use of slender NiTi components, like wires and ribbons. Then it was subjected to mechanical testing under several loading conditions, varying amplitude between 1 and 5 mm, and frequency in the 0,001-5 Hz range. Results showed that material behavior changed upon cycling, although it stabilized before reaching 100 cycles. It was observed that device performance was affected by strain rate, due to thermal effects related to latent heat exchange during phase transformations. It showed an overall good recentering and damping performance. Finally, an algorithm was developed in order to numerically address its time history response in single degree of freedom (SDF) systems, under different conditions.

Tipo de objeto:Tesis (Proyecto Integrador Ingeniería Mecánica)
Palabras Clave:Alloys; Aleaciones; Shape memory effect; Efecto memoria forma; Thermoelasticity; Termoelasticidad; Martensitic transformation; Transformación martensítica; Efecto superelástico; Superelastic effect
Referencias:[1] O.E. Ozbulut, S. Hurlebaus, R. Desroches. Seismic Response Control Using Shape Memory Alloys: A Review. Journal of Intelligent Material Systems and Structures 2011, 22: 1531, 2011. [2] G. Song, N. Ma, H.N. Li. Applications of shape memory alloys in civil structures. Engineering Structures, 28,1266–1274, 2006. [3] B.Jr. Spencer, S. Nagarajaiah; State of the Art of Structural Control; Journal of Structural Engineering; 129, (7), pp.845-856, July 2003. [4] A. Martelli; Modern Seismic Protection Systems for Civil and Industrial Structures; Final Report of the SAMCO 2006; F11 Selected Papers; 2006; [5] T. Kelly; In Structure Damping And Energy Dissipation; Design Guidelines; Holmes Consulting Group; New Zealand; 2001. [6] A.K. Chopra. Dynamics of Structures. Theory and Applications to Earthquake Engineering. 1er edición. New Jersey: Prentice Hall, 1995. [7] T. Kelly; Basis Isolation in Structures, Design Guidelines; Holmes Consulting Group; 2001; Wellington, New Zealand. [8] D. Cardone; Re-centring capability of flag-shaped seismic isolation systems; Bull Earthquake Eng. 10, pp.1267–1284, March 2012. [9] T W Duerig, K N Melton, D Stöckel, C M Wayman; Engineerig Aspects of Shape Memory Alloys, 1era edición; Londres, 1990; Butterworth-Hinemann. [10] H. Soul; Aplicaciones de la Superelasticidad en Aleaciones con Memoria de Forma para el Control de Vibraciones en Estructuras; Proyecto Integrador (Ingeniería Mecánica); San Carlos de Bariloche; Instituto Balseiro, 2005. [11] M. Indirli, A. Bertocchi, R. Cami, A. Procaccio; Ongoing Research Projects at ENEA and Pilot Applications for the Seismic Protection of Cultural Heritage. In: Proc. of the Third World Conference on Structural Control Como, ed. Wiley, 2002. [12] R. Desroches, B. Smith; Shape Memory Alloys in Seismic Resistant Design and Retrofit: A Critical Review of their potential and limitations; Journal of Earthquake Engineering, Atlanta, GA, USA, 7, (3). August 2003. [13] J. Ocel, R. DesRoches, R.T. Leon, W.G. Hess, R. Krumme, J.R. Hayes, S. Sweeney; Steel Beam-Column Connections Using Shape Memory Alloys; Journal of Structural Engineering, 130, (5). May 2004. [14] H. Tamai, Y. Kitagawa; Pseudoelastic behavior of shape memory alloy wire and its application to seismic resistance member for building; Computational Materials Science, 25, 218–227, 2002. [15] M. Dolce, D. Cardone, R. Marnetto; SMA Re-centering Devices for Seismic Isolation of Civil Structures; Smart systems for bridges, structures, and highways. Conference; Newport Beach, USA; mayo 2001; SPIE proceedings series; 4330, 238-24; 2001. [16] H. Soul; Aleaciones con Memoria de Forma, Propiedades Mecánicas y Microestructura. Desarrollo de Sistemas de Amortiguamiento Basados en el Efecto Superelástico; Tesis (Doctorado en Ciencias de la Ingeniería). S. C. de Bariloche, Universidad Nacional de Cuyo, Instituto Balseiro, 2011 [17] J. A. Shaw, C. B. Churchill; M. A. Iadicola; Tips and tricks for characterizing shape memory alloy wire: Part I; Experimental Techniques; 1, 55-62; 2008. [18] T. Duerig, A. Pelton, D. Stoeckel; An Overview of Nitinol Medical Applications; Materials Science and Engineering, 273-275, pp.149-160, 1999. [19] Memry. Physical Properties of Nitinol. [en línea]. Memry Corporation, a SAES Getters company. Bethel, Connecticut, 2012. <http://memry.com/nitinol-iq/nitinolfundamentals/ physical-properties> [20] Ming H. Wu; Fabrication of Nitinol Materials and Components; Proceedings of the International Conference on Shape Memory and Superelastic Technologies, Kunming, China, pp.285-292, 2001. [21] CES EduPack 2011.2 Version 7.00. Copyright© Granta Design Limited. [22] M.F. Asbhy; Material Selection in Mechanical Design, 4ta edición; Oxford, Londres; 2011; Butterworth-Heinemann. [23] P. Wollants, J. R. Roos, L. Delaey; Thermally- And Stress-Induced Thermoelastic Martensitic Transformations In The Reference Frame Of Equilibrium Thermodynamics; Progress in Materials Science; 37, 227-288; 1993. [24] A. Isalgue, V. Torra, A. Yawny, F. C. Lovey; Metastable Effects On Martensitic Transformation In Sma, Part VI, The Clausius–Clapeyron relationship; Journal of Thermal Analisys and Calorimetry; 91,991-998; 2008. [25] A. Yawny, M. Sade, G. Eggeler; Pseudoelastic Cycling of Ultra Fine Grained Ni-rich NiTi Wires; Zeitschrift für Metallkunde; 06, 608-618; 2005. [26] A. Yawny, J. Olbricht, M. Sade, G. Eggeler; Pseudoelastic cycling and ageing effects at ambient temperature in nanocrystalline Ni-rich NiTi wire; Materials Science and Engineering, A 481–482, pp.86–90, 2008. [27] A.M. Cond´o, F.C. Lovey, J. Olbricht, Ch. Somsen, A. Yawny; Microstructural aspects related to pseudoelastic cycling in ultra fine grained NiTi; Materials Science and Engineering, A 481–482, pp.138–141, 2008. [28] D. Cardone, M. Dolce, F.C. Ponzo; Experimental Behaviour of R/C Frames Retrofitted with Dissipating and Re-centering Braces; Journal of Earthquake Engineering, 7, (3), pp. 1-36, 2003. [29] W.C. Young, R.G. Budynas; Roark's Formulas for Stress and Strain, 7ma edición; New York, 2002; McGraw-Hill. [30] M. C. Piedboeuf, R. Gauvin; Damping Behaviour of shape memory alloys, strain amplitude, frequency and temperature dependence effects; Journal of sound and vibrations; 214, 885-901; 1998. [31] Y.J. He, Q.P. Sun; On non-monotonic rate dependence of stress hysteresis of superelastic shape memory alloy bars; International Journal of Solids and Structures, 48, pp.1688–1695, 2011. [32] H. Soul, A. Isalgue, A Yawny, V. Torra, F.C. Lovey; Pseudoelastic Fatigue Of Niti Wires: Frequency And Size Effects On Damping Capacity. Smart Materials and Structures; 19, 1-7; 2010. [33] S. Saadat, J Salichs, M Noori, Z Hou, H Davoodi, I Baron,Y Suzuki, A Masuda; An overview of vibration and seismic applications of NiTi shape memory alloy; Smart Materials And Structures; 11, 218-229; 2002. [34] M.M. Branco, J.M. Kelly, L.M. Guerreiro; An algorithm to simulate the onedimensional superelastic cyclic behavior of NiTi strings, for civil engineering applications; Engineering Structures, 33, pp.3737–3747, 2011. [35] D. Fugazza; Shape Memory Alloy Devices in Earthquake Engineering: Mechanical Properties, Constitutive Modelling and Simulations; Tesis (Maestría en Ingeniería Sísmica). Pavia, Universidad de Pavia, 2003. [36] A. Masuda, M. Noori; Optimization of hysteretic characteristics of damping devices based on pseudoelastic shape memory alloys ;International Journal of Non-Linear Mechanics; 37, 1375 – 1386, 2002.
Materias:Física > Física de materiales
Metalurgia > Aleaciones
Divisiones:Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Ciencias de materiales > Física de metales
Código ID:425
Depositado Por:Marisa G. Velazco Aldao
Depositado En:07 Mar 2014 16:28
Última Modificación:07 Mar 2014 16:28

Personal del repositorio solamente: página de control del documento