Diseño conceptual de reactor de investigación con combustible con hidrógeno. / Conceptual Design of Research Reactor with Hydrogenated Fuel

Boschetti, Facundo N. (2013) Diseño conceptual de reactor de investigación con combustible con hidrógeno. / Conceptual Design of Research Reactor with Hydrogenated Fuel. Proyecto Integrador Ingeniería Nuclear, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
6Mb

Resumen en español

La experiencia reunida a partir de los combustibles TRIGA® y la correcta interpretación de su mecanismo de pérdida de moderación conforme aumenta la temperatura del mismo, permite considerar la posibilidad de emplear hidruro de zirconio como moderador en elementos combustible de diseño tipo placa para reactores de investigación. En este trabajo se presentan distintos diseños de combustibles MTR, procediéndose a analizar en cada caso la relación entre las dimensiones características de los mismos y la de las distintas variables en juego con el obje-tivo de obtener coeficientes de potencia y temperatura en el combustible semejantes a los presentes en los diseños TRIGA®. Se procedió asimismo a efectuar un detallado estudio de los materiales y combustibles nucleares involucrados en los diseños propuestos de forma tal de poder distinguir fortalezas y debilidades en cada uno de ellos, más allá de los resultados a nivel de cálculo de celda relativo a sus respectivos coeficientes. Para poder llevar a cabo los análisis previos se debió validar la línea de cálculo neutrónica Condor-Citvap, con-juntamente con la biblioteca de secciones eficaces HELIOS. Esto requirió la reproducción de configuraciones críticas y experiencias de incremento de potencia en un reactor TRIGA®. La información reunida al respecto demuestra la necesidad de aunar esfuerzos en la correcta determinación de las secciones eficaces microscópi-cas del hidrógeno y zirconio en la estructura cristalina del hidruro correspondiente. Finalmente los estudios preliminares realizados en el presente trabajo muestran la potencial capacidad de obtener coeficientes de reactividad como los planteados previamente, con diseños compatibles con las geo-metrías y dimensiones de los combustibles tipo placa actuales. Las tendencias presentes han llevado a analizar la posibilidad de emplear combustibles monolíticos a base de uranio-molibdeno más allá de los combustibles dispersos a base de siliciuro de uranio; los resultados empleando esta primer aleación (U-Mo) han sido de par-ticular interés no solo desde el punto de vista de lo que a coeficientes de reactividad le compete sino también desde el punto de vista de la apertura de nuevos caminos en lo que concierne a fabricación de elementos combustibles para reactores MTR.

Resumen en inglés

The experience gathered from TRIGA ® fuel elements and the correct interpretation of their mechanism of loss of moderation as the temperature increases, allows us to consider the possibility of using zirconium hydride as moderator in the design of plate-type fuel elements for research reactors. In this paper we present different designs of MTR fuels, analyzing in each case the relationship between the characteristic dimensions of them and that of the different variables involved, in order to get power and fuel temperature reactivity coefficients similar to those present in TRIGA ® designs. A detailed study of nuclear fuels and materials involved in the proposed fuel elements was made, with the goal of distinguish strengths and weaknesses in each of them coming from this area, instead of studying only their respective coefficients that result from a cell calculation. To carry out the studies it was necessary to validate previously Condor-Citvap neutron calculation line, in con-junction with the library of cross sections HELIOS. This required the reproduction of critical configurations and experiences of power increase coming from a TRIGA® reactor. The information collected demonstrates the necessity of making an effort in the correct determination of the microscopic cross sections of hydrogen and zirconium in the crystal structure of the zirconium hydride. Finally, preliminary studies in this paper show the potential ability to obtain reactivity coefficients such as those coming from TRIGA® experience, with designs compatible with the geometries and dimensions of the current plate-type fuels. Present trends have led to analyze the possibility of using fuels based on monolithic molybdenum uranium beyond dispersed uranium silicide fuels; results using this first alloy (U-Mo) have been of particular interest, not only from the point of view of reactivity coefficients but also from the point of view of the initiation of new paths in regard to manufacturing MTR fuel elements.

Tipo de objeto:Tesis (Proyecto Integrador Ingeniería Nuclear)
Palabras Clave:Zirconium hydrides; Hidruros de circonio; Research reactors; Reactores de investigación; Materials; Materiales; Fuels; Combustibles; MTR reactor; Reactor MTR; Plate-type fuel element; Combustible tipo placa
Referencias:Capítulo 1. 1. U.S. Petent No 3,127,325. Archivada el 9 de Mayo de 1958. 2. D.M. FOUQUET, J. RAZVI y W. L. WHITTEMORE. TRIGA research reactors: “A pathway to Energy peaceful applica-tions of nuclear energy”. Nuclear News, November 2003. 3. D. OLANDER, E. GREENSPAN, H. D. GARKISCH, B. PETROVIC. “Uranium-Zirconium hydride fuel properties”. Nucle-ar Engineering and Design. 2009. Capítulo 2. 1. R. JERAJ, M. RAVNIK. JOZEF STEFAN INSTITUTE, “TRIGA® Mark II Reactor: U(20)-Zirconium Hydride Fuel Rods in Water with Graphite Reflector”. NEA/NSC/DOC/(95)03/III – Volume III – IEU-COMP-THERM-003. Capítulo 3. 1. T. SANDA, K. FUJIMURA, K. KAWASHIMA, M. YAMAWAKI, K. KONASHI, in: Proceeding of tthe Global ’97, Interna-tional Conference of the Future Nuclear System, Yokohama, Japan, 5-10 October 1997, p. 326. 2. K.E. MOORE and W. A. YOUNG, “Phase Relationships at High Hydrogen Contents in the SNAP Fuel System”, NAA-SR-12587, Atomics International (1968). 3. J.W. RAYMOND and D. T. SHOOP, “The Metallography of Zirconium-Base Alloy Hydrides,” NAA-SR-Memo-10927, North American Aviation (1965). 4. K. M. MACKAY, “Hydrogen Compounds of the Metallic Elements”, F. N. Spoon, Ltd., London (1966). 5. J. W. RAYMOND, “Equilibrium Dissociation Pressure of the Delta and Epsilon Phases in the Zirconium-Hydrogen System,” NAA-SR-9374, North American Aviation (1964). 6. M. T. SIMNAD, “The U-ZrHx Alloy: Its properties and use in TRIGA® Fuel”. 7. M. T. SIMNAD,”Study of FLIP Fuels for TRIGA® Reactors,” Gulf-GA-A9910, General Atomic (1970) 8. H. E. JOHNSON, “Hydrogen Dissociation Pressures of Modified SNAP Fuel,” NAA-SR-9295, Atomics International (1964). 9. J. C. BOKROS, “Creep Properties of a Zirconium-Hydrogen Uranium Alloy,” J. Nucl. Mater., 3, 216 (1961). 10. J. T. BERLING, G. D. JOHNSON, “Elevated Temperature Tensile Creep Propeties of Zr-10%wt. U-alloys Hydrides,” NAA-SR-Memo-11649, Atomics International (1965). 11. M. SIMNAD, F. C. FOUSHEE, G. B. WEST, “FUEL ELEMENTS FOR PULSED TRIGA® RESEARCH REACTORS”, General Atomic Company. 12. D. OLANDER, E. GREENSPAN, H. D. GARKISCH, B. PETROVIC, “Uranium-Zirconium Hydride fuel Properties”, Nucle-ar Engineering and Design. (2008) 13. B. TSUCHIYA, J. HUANG, K. KONASHI, M. TESHIGAWARA, M. YAMAWAKI, “Thermophysical properties of Zirconi-um hydride and Uranium-zirconium hydride,” J. Nucl. Mate., 289, P 329-333 (2001). 14. J. D. GYLFE et al., “Evaluation of Zirconium Hydride as Moderator in Integral Boiling Water-Superheat Reactors,” NAA-SR-5943, North American Aviation (1962). 15. H. SHIMIZU, “The Properties and Irradiation behavior of U3Si2”. Atomics International, a Division of North Ame-rican Aviation, INC. 16. M.R.FINLAY, G.L. HOFMAN, J.L. SNELGROVE, “ Irradiation behavior of Uranium Silicide Compounds”. Journal of Nuclear Materials 325 (2004) pag. 118-128. 17. L.D. LOCK, G. B. ENGLE, M. J. SNYDER, W. H. DUCKWORTH, “Survey of Refractory Uranium Compounds,” BMI-1124, August 1956. 18. N. R. KOEING, “U3Si2 Fuel Evaluation, Pt. L, Oxidation Characteristics,” NAA-SR-Memo-5199, April 1960. 19. K.M. TAYLOR, C. H. McMURTRY. “Synthesis and Fabrication of Refractory Uranium Compounds,” ORO-400, Feb-ruary 1961. 20. M. J. SNYDER, W.H. DUCKWORTH, “Properties of Some Refractory Uranium Compounds,” BMI-1223, September 1957. 21. J.L. SNELGROVE, R.F. DOMAGALA, G.L. HOFMAN, T.C. WIENCEK, G.L. COPELAND, R.W. HOBBS, R.L. SENN, ”The Use of U3Si2 Dispersed in Aluminium in Plate-Type Fuel Elements for Research and Test Reactors, Argonne Na-tional Laboratory, Report ANL/RERTR/TM-11, 1987. 22. Safety Evaluation Report related to the Evaluation of Low Enriched Uranium Silicide-Aluminum Dispersion Fuel for Use in Non-Power Reactors, U.S Nuclear Regulatory Commission, Report NUREG-1313, 1988. 23. J.P. DURAND, Y. FANJA, ”LEU fuel development at CERCA: status as of October 1993”. Proc. 16th Int. Meet. On Reduced Enrichment for Research and Test Reactors. Japan Atomic Energy Research Institute Report, Oarai, Ja-pan, JAERI-M 94-02, pp. 71-78, 1994. 24. J. L. SNELGROVE, G.L. HOFMAN, M.K. MEYER, C.L. TRYBUS, T.C. WIENCEK, “Development of very-high-density low-enriched-uranium fuels”, RERTR Program, Argonne National Laboratory, 9700 South Cass Avenue, Bldg. 207, Argonne, IL 60439-4841, USA, August 1997. 25. J. L. SNELGROVE et al, “Development of Very-High-Density Fuels by the RERTR Program,” Proceedings of the XIX International Meeting on Reduced Enrichment for Research and Test Reactors, Seoul, Korea, 7-10 October 1996. 26. P. LEMOINE, D. WACHS, “High density fuel development for Research Reactors”, Global 2007 – Advanced Nuclear Fuel Cycles and Systems (2007). 27. L. OLIVARES, J. MARIN, M. BARRERA, G. TORRES, J. LISBOA, “Nuclear fuel development base on UMo Alloys under irradiation evaluation of LEU -4.8 gU/cm3 test fuel”, The RERTR-2007 International Meeting on Reduced Enrichment for Research and Test Reactors, Praga (2007). 28. C. R. CLARK, G. C. KNIGHTON, M. K. MEYER, G.L. HOFMAN, “Monolithic Fuel Plate Development at Argonne Na-tional Laboratory,” The RERTR-2003 International Meeting on Reduced Enrichment for Research and Test Reac-tors, Chicago (2003). 29. G. L. HOFMAN et al. “Low-temperature irradiation behavior of uranium–molybdenum alloy dispersion Fuel”. Journal of Nuclear Materials, Volume 304, Issues 2-3, August 2002, Pages 221-236. 30. SOBA et al. “An interdiffusional model for prediction of the interaction layer growth in the system uranium–molybdenum/aluminum”. Journal of Nuclear Materials, Volume 360, Issue 3, March 2007, Pages 231-241. 31. M. I. MIRANDOU et al. “Characterization of the reaction layer in U–7wt%Mo/Al diffusion couples”. Journal of Nu-clear Materials, Volume 323, Issue 1, November 2003, Pages 29-35. 32. J. LEE et al. “Study of decomposition and reactions with aluminum matrix of dispersed atomized U-10 wt% Mo al-loy”. Journal of Nuclear Materials, Volume 306, Issues 2-3, December 2002, Pages 147-152. 33. J.D. SEASE et al. “Considerations in the Development of a process to Manufacture Low- Enriched Uranium Foil Fuel for the High Flux Isotope Reactor”. The RERTR International Meeting, September 2007. 34. D.E. BURKES et al. “Update on Mechanical Analysis of Monolithic Fuel Plates”. Research Reactor Fuel Manage-ment Conference, March 2007. 35. J. LISBOA, J. MARIN, M. BARRERA, H. PESENTI et al, “Fabricación de Placas Combustibles Monolíticas con Alea-ción Uranio-Molibdeno para uso en Reactores Nucleares de Investigación,” Suplemento de la Revista Latinoame-ricana de Metalurgia y Materiales (2009). 36. D. E. BURKES, G. S. MICKUM, D. M. WACHS et al. “Thermophysical Properties of U-10Mo Alloy,” Idaho National Laboratory (2010). 37. M.S. FARKAS, “Mechanical and Physical Properties of Fuels and Cladding Materials with Potential for use in Brookhaven’s Pulsed Fast Reactor,” Report BMI-X-455, 1967. 38. J.M. FACKELMANN et al., “Literature Survey on Dilute Uranium Alloys for Sandia Booster Concept to Sandia Cor-poration,” 1969. 39. D.E. BURKES, C.A. PAPESCH, A.P. MADDISON, T. HARTMANN, F.J. RICE, “Thermo-physical properties of DU-10 wt% Mo alloys,” Journal of Nuclear Materials. 403 (2010) pp. 160-166. 40. H.A. SALLER, R.F. DICKERSON, W.E. MUIR, “Uranium Alloys for High Temperature Application,” BMI-1098, 1956, pp. 24-27. 41. J.L. KLEIN, “Uranium and Its Alloys,” in Nuclear Reactor Fuel Elements, ed. A.R. Kaufmann, Wiley, New York-London, 1962, Chapter 3, p. 31. 42. J.R. BRIDGE, C.M. SCHWARTZ, D.A. VAUGHAN, “X-Ray Diffraction Determination of the Coefficient of Expansion of Alpha-Uranium,” Trans. AIME 206 (1956) 1282; L.T. Lloyd, Trans. AIME 209 (1957) 532 43. R.K. McGEARY (ed.), “Development and Properties of Uranium-base Alloys Resistant to Corrosion in High-Temperature Water,” USAEC Report WAPD-127 Part I, 1955. 44. Y.S. TOULOUKIAN, R.W. POWELL, C.Y. HO, P.G. KLEMENS, “Thermophysical Properties of Matter,” IFI/Plenum, New York, 1970. 45. J. JUE, B. H. PARK, C. R. CLARK, G. A. MOORE, D. D. KEISER, “Fabrication of Monolithic RERTR Fuels by Hot Isostatic Pressing,” Idaho National Laboratory, Nuclear Fuels and Materials Division (2009). 46. J. E. GARCÉS, G. BOZZOLO, “Atomistic Simulation of High-Density Uranium Fuels,” Science and Technology of Nu-clear Installations, Volume 2011, Article ID 531970. 47. E. PASQUALINI, J. FABRO, N. BOERO, “Dispersed and Monolithic Plate Type U-Mo Nuclear Fuels,” Technological and Industrial Scale Developments, 10th-Research Reactor Fuel Management (RRFM), Sofia, Bulgaria (2006). 48. “U.S Progress in the Development of Very High Density Low Enrichment Research Reactor Fuels”. M.K. Meyer, D.M. Wachs, J.F. Jue, D.D. Keiser, J. Gan, F. Rice, A. Robinson, N.E. Woolstenhulme, P. Medvedev. Idaho National Laboratory. G.L Hofman, Y.S. Kim. Argonne National Laboratory. RRFM European Research Reactor Conference 2012. Transactions. Prague, Czech Republic 18-22 March 2012. Capítulo 4. 1. I. MOCHI, ”INVAP´s Nuclear Calculation System”. Science and Technology of Nuclear Installations 2010. 2. L. SNOJ, A. TRKOV, M. RAVNIK, G. ZEROVNIK, “Testing of Cross section libraries on zirconium benchmarks”, An-nals of Nuclear Energy 42 (2012) 71-79. 3. R. JERAJ, M. RAVNIK. JOZEF STEFAN INSTITUTE, “TRIGA® Mark II Reactor: U(20)-Zirconium Hydride Fuel Rods in Water with Graphite Reflector”. NEA/NSC/DOC/(95)03/III – Volume III – IEU-COMP-THERM-003. 4. I. MELE, M. RAVNIK, A. TRKOV, JOZEF STEFAN INSTITUTE, “TRIGA® Mark II Benchmark Experiment, Part I: Steady-State Operation”. POB 100, 61111 Ljubljana, Slovenia. Received November 9, 1992. Accepted for Publication April 10, 1993. Capítulo 5. 1. S. P. BAZZANA, J. I. M. MÁRQUEZ, “RA-6 Reactor: Water Reflected, Water Moderated U(19.77)3Si2-Al Fuel Pla-tes. NEA/NSC/DOC/(95)03/II Volumen II. IEU-COMP-THERM-014.
Materias:Ingeniería nuclear
Ingeniería nuclear > Componentes y consideraciones de diseño de reactores
Divisiones:INVAP
Código ID:427
Depositado Por:Marisa G. Velazco Aldao
Depositado En:11 Mar 2014 14:22
Última Modificación:11 Mar 2014 14:22

Personal del repositorio solamente: página de control del documento