Correcciones a la entropía de entrelazado y la constante de Newton. / Corrections to entanglement entropy and the Newton´s constant.

Testé Lino, Eduardo (2013) Correcciones a la entropía de entrelazado y la constante de Newton. / Corrections to entanglement entropy and the Newton´s constant. Maestría en Ciencias Físicas, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
882Kb

Resumen en español

La entropía de entrelazado es una magnitud relevante en diversas áreas de la física, que ha sido relacionada con varias magnitudes de la teoría de campos. En este trabajo proponemos una fórmula para el término de área de la entropía de entrelazado de un campo cuántico arbitrario en términos de correadores de la traza del tensor de energía impulso. Esta igualdad es sugerida por la fórmula de Bekenstein-Hawking que relaciona la entropía de un agujero negro con el área del horizonte de eventos y la constante de Newton. En el caso de la entropía de entrelazado, existe una relación similar entre el término de área de la misma y la corrección ΔG"-1 a la constante de Newton que hace un campo cuantico. Para calcular ΔG"-1, derivamos una generalizacion a toda dimension de una formula debida a Adler, lo que nos permite establecer la igualdad que proponemos en cualquier dimension. Comprobamos por calculos explcitos que la igualdad se cumple para los campos libres escalar y fermionico en todas las dimensiones.

Resumen en inglés

The entanglement entropy is a useful magnitude in many branches of theoretical physics; in particular, it has been related with magnitudes of quantum field theory. In this work we propose a formula for the area term of the entanglement entropy of a quantum field in terms of the correlator of the trace of the energy momentum tensor. This equality is suggested by the Bekenstein-Hawking's relation among the entropy of a black hole, the area of the event horizon and the Newton's constant. In the case of the entanglement entropy there exist a similar relation between the area term and the correction ΔG"-1 to the Newton's constant that made a quantum field. For getting ΔG"-1 (and hence the proposed formula), we use a generalization to any dimension of a formula due to Adler. We check by explicit calculations that the proposed formula holds for free scalar and fermions fields in any dimensions.

Tipo de objeto:Tesis (Maestría en Ciencias Físicas)
Palabras Clave:Entropy; Entropía; Quantum field theory; Teoría del campo cuántico; Black holes; Agujeros negros; [Entanglement entropy; Entropía de entrelazado; Geometric entropy; Entropía geométrica; Renormalization of Newton's constant; Renormalización de la constante de Newton]
Referencias:[1] Hertzberg, M. P., Wilczek, F. Some Calculable Contributions to Entanglement Entropy. Phys.Rev.Lett., 106 (050404), 2011. [arXiv:1007.0993]. 1, 30, 47 [2] Adler, S. L. Einstein gravity as a symmetry-breaking effect in quantum eld theory. Reviews of Modern Physics, 54 (3), 1982. 1, 5, 8, 9, 15, 42 [3] Cooperman, J. H., Luty, M. A. Renormalization of Entanglement Entropy and the Gravitational Eective Action, 2013. [arXiv:1302.1878v1 [hep-th]]. 1, 36, 37, 39 [4] Larsen, F., Wilczek, F. Renormalization of black hole entropy and of the gravitational coupling constant. Nucl.Phys. B, 458, 249{266, 1996. [arXiv:hep-th/9506066]. 1, 36, 37, 63 [5] Casini, H., Huerta, M. On the RG running of the entanglement entropy of a circle. Phys. Rev. D, 85 (125016), 2012. [arXiv:1202.5650v2]. 2 [6] Klebanov, I. R., Kutasov, D., Murugan, A. Entanglement as a Probe of Confinement. Nucl.Phys.B, 796, 274{293, 2008. [ arXiv:0709.2140v2 ]. 2 [7] Pakman, A., Parnachev, A. Topological Entanglement Entropy and Holography. JHEP, 0807 (0807:097), 2008. [ arXiv:0805.1891v2 ]. 2 [8] Calabrese, P., Cardy, J. L. Entanglement Entropy and Quantum Field Theory: A Non-Technical Introduction. En: International Journal of Quantum Information. 2005. [arXiv:quant-ph/0505193v1]. 2, 30, 56, 69 [9] Calabrese, P., Cardy, J. L. Entanglement Entropy and Quantum Field Theory. JSTAT, 2004. [arXiv:hep-th/0405152]. 2, 57 [10] Holzhey, C., Larsen, F., Wilczek, F. Geometric and Renormalized Entropy in Conformal Field Fheory. Nucl.Phys. B, 424, 443{467, 1994. [arXiv:hep-th/9403108v1]. 2, 57 [11] Zel'dovich, Y. B. . Zh. Eksp. Teor. Fiz. Pis'ma, (883), 1967. [JETP Lett 6, 316]. 5 [12] Sakharov, A. . Teor. Mat. Fiz., 23 (178), 1975. [Theor. Math. Phys. (USSR) 23, 435]. 5 [13] Weinberg, S. The Quantum Theory of Fields. Cambridge University Press, 2000. 7 [14] Misner, C. W., S.Thorne, K., Wheeler, J. A. Gravitation. W. H. Freeman and Company San Francisco, 1970. 10 [15] Abers, E. S., Lee, B. W. . Phys. Rep, 9 (1), 1973. 14 [16] Aspect, A., et.all. Experimental Test of Bell's Inequalities Using Time-Varying Analyzers. Phys. Rev. Lett., 49 (25), 1804{1807, 1982. 18, 19 [17] Einstein, A., Podolsky, B., Rosen, N. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Phys. Rev., 47, 777-780, 1935. 18 [18] Bell, J. S. On the Einstein Podolski Rosen paradox. Physics 1, págs. 195-200, 1964. 19 [19] Nielsen, M. A., Chuang, I. L. Quantum Computation and Quantum Information. Syndicate of the University of Cambridge, 2000. 20 [20] Sorkin, R. On the entropy of the vacuum outside a horizon. En: International Conference on General Relativity and Gravitation. 1983. [http://www.perimeterinstitute.ca/ personal/ rsorkin/some.papers/31.padova.entropy.pdf.]. 20, 36 [21] H.Casini, M.Huerta. Entanglement entropy in free quantum eld theory. J.Phys.A, 42 (504007), 2009. [arXiv:0905.2562v3]. 21, 32, 33, 56 [22] Callan, C., Wilczek, F. On geometric entropy. Phys. Lett. B, 333, 55-61, 1994. [arXiv:hep-th/9401072v3]. 21, 36 [23] Solodukhin, S. Entanglement entropy of black holes. Living Rev. Relativity, 14, 2011. [arXiv:1104.3712v1]. 25, 36 [24] Vassilevich, D. V. Heat kernel expansion: user's manual. Phys.Rept., 388, 279{360, 2003. [arXiv:hep-th/0306138v3]. 27 [25] URL http://en.wikipedia.org/wiki/Bessel_function. 29, 65 [26] Casini, H., Fosco, C. D., Huerta, M. Entanglement and alpha entropies for a massive Dirac field in two dimensions. J.Stat.Mech.0507, (P07007), 2005. [arXiv:condmat/ 0505563v2]. 32 [27] Kleinert, H. Path Integrals in Quantum Mecanics, Statistics, Polymers Physics, and Financial Markets. World Scientific Publishing Co. Pte. Ltd., 2009. 32 [28] Kabat, D. Black Hole Entropy and Entropy of Entanglement. Nucl.Phys.B, 453, 281{302, 1995. [arXiv:hep-th/9503016]. 33, 36 [29] Hawking, S. Particle Creation by Black Holes. Commun. Math. Phys., 43, 199- 220, 1975. 36 [30] Bekenstein, J. D. Black holes and entropy. Phys. Rev. D7, págs. 2333-2346, 1973. [31] Hawking, S. Black Holes and Thermodynamics. Phys. Rev. D13, págs. 191-197, 1976. [32] Wald, R. M. The thermodynamics of black holes. Living Rev. Rel. 4, 2001. [arXiv:gr-qc/9912119]. 36 [33] Solodukhin, S. N. The conical singularity and quantum corrections to entropy of black hole. Phys.Rev. D51, págs. 609-617, 1995. [arXiv:hep-th/9407001]. 36 [34] Fursaev, D. V. Black hole thermodynamics and renormalization. Mod.Phys.Lett. A10, págs. 649{656, 1995. [arXiv:hep-th/9408066]. [35] Fursaev, D. V., Solodukhin, S. N. On one loop renormalization of black hole entropy. Phys.Lett. B, 365, 51{55, 1996. [arXiv:hep-th/9412020]. [36] Demers, J., Lafrance, R., Myers, R. C. Black hole entropy without brick walls. Phys. Rev. D52, 1995. [arXiv:gr-qc/9503003]. [37] Fursaev, D. V., Miele, G. Cones, spins and heat kernels. Nucl.Phys. B, 484, 697-723, 1997. 36 [38] Susskind, L., Uglum, J. Black hole entropy in canonical quantum gravity and superstring theory. Phys.Rev.D50, págs. 2700{2711, 1994. [arXiv:hep-th/9401070v3 ]. 36, 63 [39] Birrell, N. D., Davies, P. C. W. Quantum Fields in Curved Space. Cambridge University Press, 1982. 44, 63 [40] Cardy, J. L. Conformal Invariance and Statistical Mechanics. En: E. Brezin, J. Zinn-Justin (eds.) Les Houches, Session XLIX, 1988 , Champs, Cordes et Phenomenes Critiques: Fields, Strings and Critical Phenomena, edited by , Elsevier Science Publishers BV A989. 56, 70 [41] Zamolodchikov, A. B. \Irreversiblity" of the ux of the renormalization group in a 2d eld theory. Pis'ma Zh. Eksp. Teor. Fiz., 43, 565, 1986. 56, 58, 70 [42] Hertzberg, M. P. Entanglement Entropy in Scalar Field theory. J. Phys. A: Math. Theor., 46 (015402), 2013. 64 [43] Ryu, S., Takayanagi, T. Holographic derivation of entanglement entropy from AdS/CFT. Phys. Rev. Lett., 96 (181602), 2006. [arXiv:hep-th/0603001]. 64 [44] Watson, G. N. Theory of Bessel Functions. Cambridge University Press, 1922. 66 [45] Completeness and basic properties of sets of special functions. Cambridge University Press, 1977. 66, 67
Materias:Física
Divisiones:Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Sistemas complejos y altas energías > Partículas y campos
Código ID:433
Depositado Por:Marisa G. Velazco Aldao
Depositado En:31 Mar 2014 14:00
Última Modificación:03 Abr 2014 15:23

Personal del repositorio solamente: página de control del documento