Evaluación del desplazamiento de las fuentes y los cambios de dosis-volumen después del implante permanente de braquiterapia de baja tasa de dosis para tumores de próstata. / Seeds displacement and dose-volume changes assessment after permanent LDR prostate brachytherapy.

Cárdenas Szigety, Rodrigo (2013) Evaluación del desplazamiento de las fuentes y los cambios de dosis-volumen después del implante permanente de braquiterapia de baja tasa de dosis para tumores de próstata. / Seeds displacement and dose-volume changes assessment after permanent LDR prostate brachytherapy. Maestría en Física Médica, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
5Mb

Resumen en español

Waterman et al. han observado la existencia de edema prostático luego de la realización de implantes permanentes de braquiterapia de próstata como tratamiento terapéutico y/o paliativo de adenocarcinoma de próstata. Este edema provoca el cambio de volumen prostático y el movimiento de las fuentes implantadas. Los cambios afectan la dosimetría planificada para el tratamiento. El comportamiento del edema es decreciente en forma exponencial con el tiempo y puede ser descripto mediante dos parámetros que son su magnitud y su tiempo de resolución. En este trabjo se analizan los datos de pacientes tratados con braquiterapia permanente de próstata con semillas de 125 Ι en el Instituto Oncológico Ángel H. Roffo para determinar la correlación de la magnitud del edema con parámtros quirúrgicos, del paciente y de la dosis administrada. También se realizaron simulaciones numéricas mediante un código desarrollado en MATLAB que incorpora a la dosimetría de braquiterapia el efecto del edema. De esta forma, se realizaron simulaciones variando los parámetros del edema y evaluando cómo impacta el edema en la dosimetría general y en los valores de los índices de calidad del tratamiento CI, DHI, DNR y ODI. Con esta herramienta se simularon los índices de calidad para los pacientes estudiados considerando el edema y se compararon estos resultados con las dosimetrías intraoperatoria y de post-implante. Por último se realizó una evaluación del tiempo de post-implante para el cual se obtendrán los mismos valores de índices dosimétricos calculados considerando el edema.

Resumen en inglés

Waterman et al. have observed existence of prostatic edema after perform of therapeutic or palliative permanent prostate brachytherapy for prostate adenocarcinoma. The edema produces changes on prostate volume and movement of implanted radioactive sources. These changes affect the calculated dosimetry of the treatment. The edema decreases exponentially and it can be characterized by two parameters: magnitude of edema and the time in which edema resolves. In this thesis, data of patients treated with permanent prostate brachytherapy with 125 I seeds in Instituto Oncológico Ángel H. Roffo were analyzed in order to determinate the correlation between edema magnitude with surgical and patient-dependent parameters and with intensity of radiation implanted. Also, numerical simulations performed by a developed MATLAB code were done. The code incorporates to the brachytherapy dosimetry a prostate edema model. On this way, simulations were performed varying the edema parameters and studies of their impact on dosimetry and the quality indices CI, DHI, DNR and ODI were done. With this tool, quality indices were simulated for studied patients and these results were compared with their intraoperative and post-implant dosimetry. Finally, were calculated the optimum screening time in which post-implant quality indices are equal to those calculated taking edema into account.

Tipo de objeto:Tesis (Maestría en Física Médica)
Palabras Clave:Prostate, Prostata, Brachytherapy, Braquiterapia, Edema, Neoplasms, Neoplasmas, [Quality indices, Índices de calidad]
Referencias:[1] World Health Organization. The Global Burden of disease. 2004 Update. [2] Estadsticas vitales. Informacion basica. Año 2010. Direccion Nacional de Estadís- ticas e Informacion de salud. Ministerio de Salud de la Nacion. [3] M. G. Abriata Registros de mortalidad de la DEIS. Ministerio de Salud de la Nacion Argentina. Julio 2010 [4] ICRP 105. Proteccion Radiologica en Medicina. Mayo 2011. [5] J. Z. Wang et al. Eect of edema, relative biological eectiveness, and dose heterogeneity on prostate brachytherapy. Medical Physics 33, (2006). [6] M. A. Moerland et al., Decline of dose coverage between intraoperative plan- ning and post implant dosimetry for I-125 permanent prostate brachytherapy: Comparison between loose and stranded seed implants. Radiotherapy and Oncology 91, (2009). [7] F. H. Attix, Radiological Physics and Radiation Dosimetry, Wiley-VCH Verlag, (2004). [8] P. Mayles, A. Nahum, J.C. Rosenwald, Handbook of Radiotherapy Physics. Theory and practice., Taylor & Francis Group, (2007). [9] L. L. Anderson et al . A \natural" volume-dose histogram for brachytherapy. Medical Physics Vol 13 No6, (1986). [10] AAPM Recommendations on Dose Prescription and Reporting Methods for Per- manent Interstitial Brachytherapy for Prostate Cancer. Report of AAPM Task Group 137, American Association of Physicists in Medicine, (2009). [11] G. Tortora & B. Derrickson, Principios de Anatoma y Fisiologa 11ra Edicion, Editorial Panamericana, (2006). [12] C. A. Perez, Principles and Practice of Radiation Oncology 3rd Edition, Lippincott Williams & Wilkins, (1998). [13] Apuntes de Oncologa de la carrera de Medicina, Ponticia Universidad Catolica de Chile, (2007). [14] E. B. Podgorsak, Radiation Oncology Physics: A Handbook for Teachers and Students, IAEA, (2005). [15] M. A. Moerland, et al. Evaluation of permanent 125I prostate implants using radiography and magnetic resonance imaging. Int. J. Radiat. Oncol. Biol. Phys 37, (1997). [16] Z. Chen et al. The impact of prostate edema on cell survival and tumor control after permanent interstitial brachytherapy for early stage prostate cancers. Physics in Medicine and Biology 56, (2011). [17] B. Marples, N. E. Cann, C. R. Mitchell, P. J. Johnston, M. C. Joiner. Evidence for the involvement of DNA-dependent protein kinase in the phenome- na of low dose hyper-radiosensitivity and increased radioresistance International Journal of Radiation Biology 78, (2002). [18] S. C. Short, J. Kelly, C. R. Mayes, M. Woodcock, M. C. Joiner. Low- dose hypersensitivity after fractionated low-dose irradiation in vitro. International Journal of Radiation Biology 77, (2001). [19] G. G. Steel, Growth Kinetics of Tumors. Oxford: Clarendon Press, (1977). [20] T. E. Wheldon, Mathematical Models in Cancer Research. Bristol: Adam Hilger, (1988). [21] A. d'Onofrio, A general framework for modeling tumor-immune system com- petition and immunotherapy: Mathematical analysis and biomedical inferences. Physica D 208, (2004). [22] Waterman et al. Edema associated with I-125 or Pd-103 prostate brachythe- rapy and its impact on post-implant dosimetry: an analysis based on serial CT aquisition. International Journal of Radiation Oncology Biology Physics 41, No5 (1998). [23] N. Yue et al. A dynamic model for the estimation of optimum timing of computed tomography scan for dose evaluation of 125I or 103Pd seed implant of prostate. International Journal of Radiation Oncology Biology Physics Vol. 43, No2 (1999). [24] T. Monajemi et al. Dose calculation for permanent prostate implants incorpo- rating spatially anisotropic linearly time-resolving edema. Medical Physics Vol. 38, No4 (2011). [25] Z. Chen et al. Dosimetric eects of edema in permanent prostate seed implants: a rigorous solution. International Journal of Radiation Oncology Biology Physics Vol. 47, No5 (2000). [26] M. Van Gellekom et al. Biologically eective dose for permanent prostate brachytherapy taking into account postimplant edema. International Journal of Radiation Oncology Biology Physics Vol. 53, No2 (2002). [27] N. Yue et al. Edema-induced increase in tumour cell survival for 125I and 103Pd prostate permanent seeds implants-a bio-mathematical model. Physics in Medicine and Biology 47, (2002). [28] G. Leclerc et al. Prostatic edema in 125I permanent prostate implants: Dy- namical dosimetry taking volume changes into account. Medical Physics Vol. 33, No33 (2006). [29] N. Dogan et al. Eect of prostatic edema on CT-based postimplant dosimetry. International Journal of Radiation Oncology Biology Physics Vol. 53, No2 (2002). [30] R.B. Firestone, Table of Isotopes 8th Edition, Wiley-Interscience, (1996). [31] Instructions for the use of RAPID Strand for Interstitial Brachytherapy Treat- ments. 43-7000I English Revised, August, (2009). [32] R. Nath et al. Dosimetry of interstitial brachytherapy sources: recommenda- tions of the AAPM Radiation Therapy Committee Task Group No. 43. American Association of Physicists in Medicine. Medical Physics 22, (1995). [33] VariSeed 7.1 User Guide. [34] I. Ali et al . A comparative study of seed localization and dose calculation on pre- and post-implantation ultrasound and CT images for low-dose-rate prostate brachytherapy. Physics in Medicine and Biology 54, (2009). [35] V. Narayana et al . Impact of dierences in ultrasound and computed tomo- graphy volumes on tratment planning of permanent prostate implants. Int. J. Radiation Oncology Biol. Phys. Vol. 37 No5, (1997). [36] ICRP 60. 1990 Recommendations of the International Commission on Radiological Protection. [37] J. C. Ganz et al . Radiation-induced edema after Gamma Knife treatment for meningiomas. Stereotactic and functional neurosurgery 66, (1996). [38] M. J. Evans & J. S. Rosenthal, Probabilidad y estadstica , Editorial Reverte, (2005). [39] J. L. Myers & A. D. Well, Research design and Statistical Analysis 2nd Edition, Lawrence Eribaum, (2003). [40] K. D. Badiozamani et al . Anticipating prostatic volume changes due to prostate brachytherapy. Int. J. Cancer. Radiation Oncology Investigation No63, (1999). [41] J. Bucci et al . Predictive factors of urinary retention following prostate brachyt- herapy. Int. Journal of Radiation Oncology Biol. Phys. Vol 53, (2002). [42] L. Eapen et al . Correlating the degree of needle trauma during prostate brachyt- herapy and the development of acute urinary toxicity. Int. Journal of Radiation Oncology Biol. Phys. Vol 59, (2004). [43] J. Markman et al. On the validity of the superposition principle in dose calcula- tions for intracavitary implants with shielded vaginal colpostats. Medical Physics 28, (2001). [44] A. S. Meigooni, R. Nath. Tissue inhomogeneity correction for brachytherapy sources in a heterogeneous phantom with cylindrical symmetry. Medical Physics 19, (1992). [45] G. Anagnostopoulos et al . An analytical dosimetry model as a step towards accounting for inhomogeneities and bounded geometries in 192Ir brachytherapy treatment planning. Physics in Medicine and Biology 7, (2003). [46] M. Pinkawa et al . Evaluation of source displacement and dose-volume changes after permanent prostate brachytherapy with stranded seeds. Radiotherapy and Oncology 84, (2007).
Materias:Medicina > Oncología
Divisiones:ROFFO
Código ID:434
Depositado Por:Marisa G. Velazco Aldao
Depositado En:04 Abr 2014 13:12
Última Modificación:04 Abr 2014 13:12

Personal del repositorio solamente: página de control del documento