Diseño conceptual del núcleo de un reactor ADS (Acelerator-driven system). / Conceptual design of the core of an ADS (Accelerator-Driven System).

Tacca, Marcos S. (2014) Diseño conceptual del núcleo de un reactor ADS (Acelerator-driven system). / Conceptual design of the core of an ADS (Accelerator-Driven System). Proyecto Integrador Ingeniería Nuclear, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
7Mb

Resumen en español

ADS son las siglas de Accelerator Driven System, es decir "sistema accionado por acelerador". El concepto básico detrás de estos reactores es utilizar una fuente de neutrones externa acoplada a un núcleo subcrítico. Los neutrones son provistos en general a través de reacciones inducidas por un haz de partículas aceleradas. En el presente trabajo se realiza un análisis de estos sistemas, se estudia su modelado y se propone un diseño de un reactor de este tipo. Durante la mayor parte del trabajo se utilizó la línea de cálculo determinística CONDOR-CITVAP, desarrollada por el Departamento de Ingeniería Nuclear de INVAP. La misma fue sometida a una validación básica debido a las características de los sistemas a modelar. La validación se llevó a cabo mediante el modelado de dos reactores, comparando los cálculos realizados con los de otros autores. Como criterio de diseño se propuso un reactor térmico de baja potencia. Se planteó su uso para el estudio de la física de neutrones de este tipo de sistemas, o como fuente de neutrones para distintas aplicaciones menores, en función de la fuente utilizada. Para el estudio se utilizó como base el reactor RA-6, partiendo de un modelo del mismo realizado en un trabajo anterior. Se estudiaron diferentes configuraciones, evaluando el desempeño de dos tipos de fuentes: generadores de neutrones y fuente de fotoneutrones. Se observó que el factor más importante que determina el tipo de fuente utilizada es la intensidad de neutrones que puede entregar. Se realizaron cálculos con un código Monte Carlo, que mostraron una correspondencia aceptable entre la línea determinística y el código probabilístico. Se realizó además un breve análisis de la cinética del sistema, para evaluar la posibilidad de la obtención de un fujo pulsado con la fuente de fotoneutrones.

Resumen en inglés

ADS is the acronym for Accelerator Driven System. The basic concept behind this type of reactor is to use an external neutron source coupled to a subcritical core. Neutrons are provided generally by a reaction induced by a beam of accelerated particles. In the present work an analysis of these systems is performed, their modeling is studied and a design for an ADS is proposed. The calculation method used during most of the work involved the deterministic codes CONDOR and CITVAP, developed by the Department of Nuclear Engineering of INVAP. It became necessary to perform a basic validation of these calculation codes, due to the characteristics of the modeled systems. The validation was carried out by modeling two reactors and comparing the calculations with those of other authors. The proposed aim of the design was a low power, thermal reactor. Such reactor was intended to be used for the study of the neutron physics of these systems, or as a neutron source for various minor applications, depending to the source used. As a basis for the study, the RA-6 reactor was used, based on a model previously performed in another work. Different configurations were studied, evaluating the performance of two kinds of sources: neutron generators and photoneutron source. It was observed that the most important factor that defines the suitable source to use is the neutrons intensity that such source can provide. Calculations with a Monte Carlo code were performed, which showed an acceptable correlation between deterministic and probabilistic codes. A brief analysis of the system's kinetics was also performed in order to assess the possibility of obtaining a pulsed flux with the photoneutron sources.

Tipo de objeto:Tesis (Proyecto Integrador Ingeniería Nuclear)
Información Adicional:Materia específica: Neutrónica
Palabras Clave:Neutron sources; Fuentes de neutrones; Design; Diseño; [Accelerator driven system; ADS; Subcritical reactor; Reactor subcrítico]
Referencias:[1] Nifeneckerand, H., David, S., Meplan, O. Accelerator driven subcritical reactors. Institute of physics publishing Bristol and Philadelphia, 2003. v, 5, 6, 8, 9, 13 [2] Reda, M., Harmon, J. A photoneutron source for bulk material studies. International Centre for Diraction Data, 2004. v, v, 11, 12 [3] Arai, M., Crawford, K. Neutron Imaging and Applications, cap. 2 - Neutron Sources and Facilities. 2009. v, 13 [4] dos Santos, A., Abe, A. Y., et al. NEA/NSC/DOC/(95)03/IV LEU-COMPTHERM- 077 - Critical loading congurations of the IPEN/MB-01 reactor. Inf. téc., 2006. v, viii, 21, 23 [5] Maiorino, J., Carluccio, T. The sub critical core of IPEN-MB-01 driven by a neutron source in the IAEA collaborative work on LEU fuel utilization in accelerator driven system- nal results. International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, 2011. v, 21, 23, 24 [6] NEA/NSC/DOC(2001)13. Comparison calculations for an accelerator-driven minor actinide burner. Inf. téc., 2001. v, 29, 30 [7] Makarashvili, V., Chemerisov, S., Micklich, B. Simulations of a linac-based photoneutron source. Nuclear Instruments and Methods in Physics Research A 696 136 140, 2012. vi, 45, 46, 47, 48 [8] Devan, K., et al. Photo-neutrons produced at the pohang neutron facility based on an electron linac. Journal of the Korean Physical Society, Vol. 49, No. 1, pp. 89 96, 2006. vi, 46, 48, 65 [9] Durisi, E., Zanini, A., Manfredotti, C., et al. Design of an epithermal column for BNCT based on D-D fusion neutron facility. Nuclear Instruments and Methods in Physics Research, 2007. viii, 10, 37 [10] Kim, G. N., et al. Pulsed neutron source using 100-MeV electron linac at Pohang accelerator laboratory. Particle Accelerator Conference, 1999. viii, 11, 12 [11] Lamarsh, J. R. Introduction to Nuclear Reactor Theory. Longman Higher Education, 1966. 3 [12] Nifeneckerand, H., David, S., Loiseaux, J., Meplan, O. Basics of accelerator driven subcritical reactors. Nuclear Instruments and Methods in Physics Research, 2001. 4 [13] Cintas, A. Analisis de datos y desarrollo de modelos de calculo neutronico para sistemas hibridos, ADS. Tesis Doctoral, Instituto Balseiro - Universidad Nacional de Cuyo, 2013. 4, 18, 19, 25 [14] Montagnini, B., Cerullo, N., Giusti, V., Sumini, M. Feasibility of a small accelerator driven subcritical reactor for BNCT applications. Nuclear Science and Technology, 2000. 4, 37 [15] Henry, A. F. Nuclear Reactor Analysis. The MIT Press, 1975. 5 [16] Hetrick, D. L. Dynamics of Nuclear Reactors. The University of Chicago Press, 1971. 5 [17] Furukawa, K., et al. The combined system of accelerator molten salt breeder (AMSB) and molten salt converter reactor (MSCR). Japan Seminar on Thorium Fuel Reactors, Naora (Japan), 1982. 6 [18] Bowman, C. D., et al. Nucl. Instrum. Meth. A320336-Report LA-UR-93-752. Inf. téc., Los Alamos, 1992. 6 [19] Carminati, F., et al. CERN-AT-93-47 (ET). Inf. téc., CERN/LHC/96-01 (EET), 1992. 6 [20] Kononov, V., Bokhovko, M., Kononov, O., Soloviev, N., Chu, W., Nigg, D. Accelerator-based fast neutron sources for neutron therapy. Nuclear Instruments and Methods in Physics Research, 2006. 10 [21] NSD-GRADEL-FUSION - website http://www.nsd-fusion.com/. 10 [22] Adelphi Tecnology Inc. - website http://www.adelphitech.com/. 10 [23] Fantidis, J. G., Dimitrios, B. V., Constantinos, P., Nick, V. Fast and thermal neutron radiographies based on a compact neutron generator. Theoretical and Applied Physics, 2012. 10 [24] Petwal, V. C., Senecha, V. K., Subbaiah, K. V., Soni, H. C., Kotaiah, S. Optimization studies of photo-neutron production in high-Z metallic targets using high energy electron beam for ads and transmutation. PRAMANA, 2007. 11, 38 [25] Ridikas, D., Safa, H., Giacrir, M.-L. Conceptual study of neutron irradiator-driven by electron accelerator. 11, 12, 38 [26] Beller, D. Overview of the AFCI reactor-accelerator coupling experiments (RACE) project. 13 [27] MYRRHA: Multi-purpose hybrid research reactor for high-tech applications - website http://myrrha.sckcen.be/. 14 [28] Power reactors and sub-critical blanket systems with lead and lead-bismuth as coolant and/or target material. Inf. téc., IAEA, 2003. 14 [29] Mochi, I. INVAP's Nuclear Calculation System. Science and Technology of Nuclear Installations, 2010. 15, 17 [30] Villarino, E. CONDOR Calculation Package. International Conference on the New Frontiers of Nuclear Technology: Reactor Physics, Safety and High-Performance Computing., 2002. 16 [31] Villarino, E., Lecot, C., Mochi, I. CITVAP v3.8 improved version of CITATION II MTR-PC v3.0 system: User Manual, 2012. 16 [32] Fowler, T. B., Vondy, D. R., Cunningham, G. W. Nuclear Reactor Core Analysis Code: CITATION, 1971. 16 [33] Villarino, E., Mochi, I. FLUX v2.0 User Manual. 17 [34] RSICC Computer code collection - CITATION-LDI 2. Inf. téc., OAK Ridge National Laboratory, 1999. 18 [35] dos Santos, A., Abe, A. Y., et al. NEA/NSC/DOC/(95)03/IV LEU-COMPTHERM- 054 - Critical loading congurations of the IPEN/MB-01 reactor with UO2, and UO2-Gd2O3 rods. Inf. téc., 2009. 21 [36] NEA/NSC/DOC/(95)03/IV LEU-COMP-THERM-058 - Critical loading congurations of the IPEN/MB-01 reactor with large void in the reector. Inf. téc. 21 [37] Fantidis, J. G., et al. Fast and thermal neutron radiographies based on a compact neutron generator. Journal of Theoretical and Applied Physics, 2012. 37 [38] Fantidis, J., et al. Optimised BNCT facility based on a compact D-D neutron generator. International Journal of Radiation Research, 2013. 37 [39] Current status of neutron capture therapy. Inf. téc., IAEA, 2001. 37 [40] Reda, M., et al. A photo-neutron source for a sub-critical nuclear reactor program. AIP Conference Proceedings, vol. 680(1), pp. 800-803., 2003. 38, 46 [41] Torabi, F., et al. Photoneutron production by a 25 MeV electron linac for BNCT application. Annals of Nuclear Energy, 2012. 38 [42] AlZaben, Y. I. Validación experimental de la línea de cálculo CONDOR-CITVAP con los datos experimentales del reactor RA-6. Proyecto Fin de Carrera, Instituto Balseiro - Universidad Nacional de Cuyo, 2013. 38, 39, 64 [43] Yamamotoa, A., Shiroya, S. Study on neutronics design of accelerator driven subcritical reactor as future neutron source, part 1: static characteristics. Annals of Nuclear Energy, 2003. 40 [44] Kumar, M., et al. Utilization of 10 MeV RF electron linear accelerator for research and industrial applications. Indian Journal of Pure and applied physics, 2012. 55 [45] Yamamotoa, A., Shiroya, S. Study on neutronics design of accelerator driven subcritical reactor as future neutron source, part 2: kinetic characteristics. Annals of Nuclear Energy, 2003. 66
Materias:Ingeniería nuclear > Ingeniería de reactores
Divisiones:INVAP
Código ID:466
Depositado Por:Marisa G. Velazco Aldao
Depositado En:06 Oct 2014 11:07
Última Modificación:15 Oct 2014 10:37

Personal del repositorio solamente: página de control del documento