Desarrollo y aplicaciones de nuevas bibliotecas de secciones eficaces neutrónicas para H2O, D2O y HDO. / Generation and application of new neutron cross section libraries for H2O, D2O, and HDO.

Márquez Damián, José I. (2014) Desarrollo y aplicaciones de nuevas bibliotecas de secciones eficaces neutrónicas para H2O, D2O y HDO. / Generation and application of new neutron cross section libraries for H2O, D2O, and HDO. Tesis Doctoral en Ciencias de la Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
5Mb

Resumen en español

Las leyes de scattering para agua pesada y liviana disponibles en las bibliotecas de datos evaluados están basadas esencialmente en dos modelos, y ambos utilizan espectros de frecuencias obtenidos experimentalmente en la década de 1960. Estos modelos tienen diferencias sustanciales con mediciones de secciones eficaces y, dependiendo de la aplicación, un impacto significativo en cálculos neutrónicos. Para mejorar esta situación, en esta tesis se presenta una metodología basada en cálculos de dinámica molecular para la obtención de espectros generalizados de frecuencias y generación de modelos para calcular leyes de scattering. Esta metodología se utilizó para calcular espectros de frecuencias para agua liviana, pesada y semipesada, que fueron validados con valores experimentales disponibles en la bibliografía. Utilizando estos espectros de frecuencia y datos experimentales se desarrollaron modelos de scattering y se calcularon leyes de scattering en formato ENDF-6 y secciones eficaces para agua liviana, pesada y semipesada. Estas secciones eficaces resultan un avance respecto a los cálculos con modelos existentes. Finalmente, se realizó una aplicación de estas secciones eficaces a problemas de ingeniería nuclear. Se encontró una mejora significativa en el cálculo de sistemas críticos moderados y reflejados por agua pesada, y en el cálculo de transmisión de neutrones fríos en agua pesada.

Resumen en inglés

The scattering laws for light and heavy water available from evaluated nuclear data libraries are based essentially on two models, and both use parameters that were originally measured in the 1960’s. These models show substantial differences with cross section measurements and, depending on the application, a significant impact on some neutronic calculations. To improve over the existing situation, in this thesis a molecular-dynamics-based methodology for the calculation of generalized frequency spectra and the generation of models to compute scattering laws is presented. This methodology was used to calculate frequency spectra for light water, heavy water and HDO, which were validated against experimental values available in the literature. These calculated spectra and experimental values were used to calculate scattering laws in ENDF-6 format and cross sections for light water, heavy water and HDO. These cross sections result in an advance over the cross sections calculated with the existing scattering models. Finally, these cross sections were applied to nuclear engineering problems. A significant improvement was found in the calculation of heavy water moderated and reflected critical systems, and in the calculation of cold neutron transmission in heavy water.

Tipo de objeto:Tesis (Tesis Doctoral en Ciencias de la Ingeniería)
Palabras Clave:Scattering; Dispersión; Heavy water; Agua pesada, [Scattering law; Ley de scattering; Thermal cross section; Sección eficaz térmica; Light water; Agua liviana; Agua semipesada]
Referencias:[1] IAEA Nuclear Data Section. Computer Index of Nuclear Reaction Data (CINDA). URL http://www-nds.iaea.org/exfor/cinda.htm. 2 [2] IAEA Nuclear Data Section. About EXFOR. URL http://www-nds.iaea.org/ nrdc/about/about-exfor.html. 2 [3] Herman, M., Capote, R., Carlson, B., Obložinský, P., Sin, M., Trkov, A., et al. EMPIRE: Nuclear Reaction Model Code System for Data Evaluation. Nucl. Data Sheets, 108, 2655, 2007. 2 [4] Larson, N. Updated Users’ Guide for SAMMY: Multilevel R-matrix Fits to Neutron Data using Bayes’ Equations, Oak Ridge National Laboratory Technical Report ORNL. ORNL/TM-9179 R, 8, 2008. 2 [5] BNL National Nuclear Data Center. Evaluated Nuclear Data File (ENDF). URL http://www.nndc.bnl.gov/endf. 2 [6] Chadwick, M., Herman, M., Obložinsk` y, P., Dunn, M. E., Danon, Y., Kahler, A., et al. ENDF/B-VII. 1 nuclear data for science and technology: Cross sections, covariances, fission product yields and decay data. Nuclear Data Sheets, 112 (12), 2887–2996, 2011. 2, 29 [7] X-5 Monte Carlo Team. MCNP–A General Purpose Monte Carlo N-Particle Transport Code, Version 5. Inf. téc., LA-UR-03-1987, Los Alamos National Laboratory., 2003. 2, 67 [8] Trkov, A., Leszczynski, F., Lopez Aldama, D. E. Library Update: Final Report of a Coordinated Research Project. International Atomic Energy Agency, Vienna, 2007. 2 [9] MacFarlane, R., Muir, D. The NJOY Nuclear Data Processing System, Version 99. Inf. téc., Los Alamos National Laboratory, 1999. 2, 28 [10] Greene, N., Ford III, W., Petrie, L., Arwood, J. AMPX-77: A modular code system for generating coupled multigroup neutron-gamma cross-section libraries from ENDF/BIV and/or ENDF/BV. Inf. téc., Oak Ridge National Lab., TN (United States), 1992. 2 [11] Zemach, A. C., Glauber, R. Dynamics of neutron scattering by molecules. Physical Review, 101 (1), 118, 1956. 4 [12] Nelkin, M. Scattering of slow neutrons by water. Physical Review, 119 (2), 741, 1960. 4 [13] Honeck, H. An incoherent thermal scattering model for heavy water. Trans. Am. Nuclear Soc., 5 (1), 1962. 4 [14] Egelstaff, P., Schofield, P. On the evaluation of the thermal neutron scattering law. Nuclear Science and Engineering, 12, 260–270, 1962. 4, 12 [15] Parks, D. E., Beyster, J., Nelkin, M., Wikner, N. Slow Neutron Scattering and Thermalization with Reactor Applications, 1970. 4, 8 [16] Koppel, J., Triplett, J., Naliboff, Y. GASKET: A Unified Code for Thermal Neutron Scattering. GA-7417 (Rev.). Inf. téc., General Atomics, 1967. 4 [17] Koppel, J., Houston, D. Reference manual for ENDF thermal neutron scattering data. GA-8774, ENDF-269. Inf. téc., General Atomics, 1978. 4, 28 [18] Mattes, M., Keinert, J. Thermal neutron scattering data for the moderator materials H2O, D2O and ZrHx in ENDF-6 format and as ACE library for MCNP (X) codes. INDC (NDS)-0470. Inf. téc., IAEA, 2005. 4, 29 [19] Kahler, A., MacFarlane, R., Mosteller, R., Kiedrowski, B., Frankle, S., Chadwick, M., et al. ENDF/B-VII. 1 neutron cross section data testing with critical assembly benchmarks and reactor experiments. Nuclear Data Sheets, 112 (12), 2997–3036, 2011. 4 [20] Sublet, J.-C., Cullen, D., MacFarlane, D. How Accurately Can We Calculate Neutrons Slowing Down In Water? Nuclear Technology, 168, 293–297, 2009. 4 [21] Roubtsov, D., Kozier, K., Becker, B., Danon, Y. Neutron Thermal Scattering Laws For Light And Heavy Water For Modeling Critical Assemblies And TOF Experimental Set- Ups With Neutron Transport Codes. The 22nd International Conference on Transport Theory (ICTT-22), 2011. 4 [22] Novikov, A., Vankov, A., Gosteva, L. Temperature dependence of the general spectrum for water. Journal of Structural Chemistry, 31 (1), 77–85, 1990. 7, 16, 22, 31, 32 [23] Bellissent, M., Chen, S., Zanotti, J. Single-particle dynamics of water molecules in confined space. Physical Review E, 51 (5), 1995. 7, 22 [24] Soper, A., Benmore, C. Quantum differences between heavy and light water. Physical review letters, 101 (6), 065502, 2008. 7, 49 [25] Squires, G. Introduction to the theory of thermal neutron scattering. Cambridge University Press, 2012. 8 [26] Foderaro, A. Elements of Neutron Interaction Theory. Inf. téc., 1971, 1971. 8 [27] Lovesey, S. Theory of neutron scattering from condensed matter, tomo 1. Clarendon Press Oxford, 1984. 8 [28] MacFarlane, R. New thermal neutron scattering files for ENDF/B-VI release 2. LA– 12639-MS. Inf. téc., Los Alamos National Laboratory, 1994. 12 [29] Vineyard, G. H. Scattering of slow neutrons by a liquid. Physical Review, 110 (5), 999, 1958. 15 [30] Sköld, K. Small energy transfer scattering of cold neutrons from liquid argon. Physical Review Letters, 19 (18), 1023–1025, 1967. 15 [31] Marquez Damian, J., Malaspina, D., Granada, J. Vibrational spectra of light and heavy water with application to neutron cross section calculations. The Journal of Chemical Physics, 139 (2), 024504, 2013. 16 [32] Toukan, K., Rahman, A. Molecular-dynamics study of atomic motions in water. Phys. Rev. B: Condens. Matter;(United States), 31 (5), 1985. 16 [33] Bansil, R., Berger, T., Toukan, K., Ricci, M., Chen, S. A molecular dynamics study of the OH stretching vibrational spectrum of liquid water. Chemical physics letters, 132 (2), 165–172, 1986. [34] Corongiu, G., Clementi, E. Molecular dynamics simulations with a flexible and polarizable potential: Density of states for liquid water at different temperatures. The Journal of chemical physics, 98, 4984, 1993. [35] Lie, G., Clementi, E. Molecular-dynamics simulation of liquid water with an ab initio flexible water-water interaction potential. Physical Review A, 33 (4), 2679, 1986. [36] Marti, J., Padro, J., Guardia, E. Molecular dynamics simulation of liquid water along the coexistence curve: Hydrogen bonds and vibrational spectra. The Journal of chemical physics, 105, 639, 1996. 16, 18 [37] Lisichkin, Y., Saharova, L., Marti, J., Novikov, A. Temperature dependence of the generalized frequency distribution of water molecules: comparison of experiments and molecular dynamics simulations. Molecular Simulation, 31 (14-15), 1019–1025, 2005. 16, 22 [38] González, M., Abascal, J. A flexible model for water based on TIP4P/2005. The Journal of chemical physics, 135 (22), 224516–224516, 2011. 16, 18 [39] Nelson, M. T., Humphrey, W., Gursoy, A., Dalke, A., Kalé, L. V., Skeel, R. D., et al. NAMD: a parallel, object-oriented molecular dynamics program. International Journal of High Performance Computing Applications, 10 (4), 251–268, 1996. 18 [40] Plimpton, S., Crozier, P., Thompson, A. LAMMPS-large-scale atomic/molecular massively parallel simulator. Sandia National Laboratories, 2007. 18 [41] Smith, W., Yong, C., Rodger, P. DL_POLY: Application to molecular simulation. Molecular Simulation, 28 (5), 385–471, 2002. 18 [42] Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A., Berendsen, H. GROMACS: fast, flexible, and free. Journal of computational chemistry, 26 (16), 1701–1718, 2005. 18, 19 [43] Berendsen, H., Grigera, J., Straatsma, T. The missing term in effective pair potentials. Journal of Physical Chemistry, 91 (24), 6269–6271, 1987. 18 [44] Jorgensen, W. L., Madura, J. D. Temperature and size dependence for Monte Carlo simulations of TIP4P water. Molecular Physics, 56 (6), 1381–1392, 1985. 18 [45] Egelstaff, P. An introduction to the liquid state. Academic Press London, 1967. 20, 45 [46] Mills, R. Self-diffusion in normal and heavy water in the range 1-45. deg. The Journal of Physical Chemistry, 77 (5), 685–688, 1973. 21, 25, 31 Bibliografía 84 [47] Martí, J., Guàrdia, E., Padró, J. Dielectric properties and infrared spectra of liquid water: Influence of the dynamic cross correlations. The Journal of chemical physics, 101, 10883, 1994. 21 [48] Lappi, S. E., Smith, B., Franzen, S. Infrared spectra of H16 2 O, H18 2 O and D2O in the liquid phase by single-pass attenuated total internal reflection spectroscopy. Spectrochim. Acta A, 60 (11), 2611–2619, 2004. 21, 22, 23 [49] Dawidowski, J. Tesis de Doctorado. Instituto Balseiro - Universidad Nacional de Cuyo, 1993. 21 [50] Novikov, A., Lisichkin, Y., Fomichev, N. Generalised Frequency Spectrum of Water at 300-600 K. Russian journal of physical chemistry, 60, 1337, 1986. 22 [51] Haywood, B., Page, D. Scattering Laws for Heavy Water at 540 K and Light Water at 550 K. En: Proceedings of the Symposium on Neutron Thermalization and Reactor Spectra held at Ann Arbor, Michigan, tomo 1, pág. 361. IAEA, 1968. 22, 23, 29 [52] Padró, J., Martí, J. An interpretation of the low-frequency spectrum of liquid water. The Journal of chemical physics, 118, 452, 2003. 22 [53] Von Blanckenhagen, P. Intermolecular vibrations and diffusion in water investigated by scattering of cold neutrons. Berichte der Bunsengesellschaft für physikalische Chemie, 76 (9), 891–903, 1972. 23, 57 [54] Larsson, K., Dahlborg, U. A study of the diffusive atomic motions in glycerol and of the vibratory motions in glycerol and heavy water by cold neutron scattering. En: Proceedings of the Symposium on Inelastic Scattering of Neutrons held at Chalk River, Canada, tomo 1, pág. 317. IAEA, 1963. 23 [55] Falk, M., Ford, T. Infrared spectrum and structure of liquid water. Canadian Journal of Chemistry, 44 (14), 1699–1707, 1966. 25, 26 [56] Lawrence, C., Skinner, J. Vibrational spectroscopy of HOD in liquid DO. I. Vibrational energy relaxation. The Journal of Chemical Physics, 117, 5827, 2002. 25 [57] Martí, J., Padró, J., Guàrdia, E. Molecular dynamics calculation of the infrared spectra in liquid H2O D2O mixtures. Journal of Molecular Liquids, 62 (1), 17–31, 1994. 25 [58] Marquez Damian, J., Malaspina, D., Granada, J. An evaluation of the scattering law for light and heavy water in ENDF-6 format, based on experimental data and molecular dynamics. En: Nuclear Data for Science and Technology 2013. Nueva York, EE. UU. 2013. 28 [59] Marquez Damian, J., Malaspina, D., Granada, J. CAB Models for Water: A New Evaluation of the Thermal Neutron Scattering Laws for Light and Heavy Water in ENDF-6 format. Annals of Nuclear Energy, 65, 280, 2014. 28 [60] Haywood, B., Thorson, I. The Scattering Law for Light and Heavy Water at 20 C and 150 C. En: Proceedings of the Brookhaven Conference on Neutron Thermalization, pág. 26. 1962. 28 [61] Koppel, J., Young, J. The role of interference scattering in neutron thermalization by heavy water. Nukleonik, 7, 408, 1965. 28 [62] Keinert, J., Mattes, M., Sartori, E. JEF-1 scattering law data. JEF Report 2/JEF/DOC 41.2. Inf. téc., IKE Stuttgart, 1984. 29 [63] Yoshida, K., Wakai, C., Matubayasi, N., Nakahara, M. A new high-temperature multinuclear-magnetic-resonance probe and the self-diffusion of light and heavy water in sub-and supercritical conditions. The Journal of chemical physics, 123, 164506, 2005. 31 [64] Bischoff, F., Bryant, W., Esch, L., Lajeunesse, C., Moore, W., Pan, S., et al. Low Energy Neutron Inelastic Scattering (LENIS) in Linear Accelerator Project Progress Report RPI-328-27. Inf. téc., 1967. 34 [65] Novikov, A., Iskenderov, S. Temperature dependence of quasielastic scattering of slow neutrons by water. Atomic Energy, 42 (6), 571–574, 1977. 45 [66] Teixeira, J., Bellissent-Funel, M.-C., Chen, S.-H., Dianoux, A.-J. Experimental determination of the nature of diffusive motions of water molecules at low temperatures. Physical Review A, 31 (3), 1913, 1985. 45 [67] Russell, J., Neill, J., Brown, J. Total Cross Section Measurements of H2O. GA-7581. Inf. téc., General Atomics, 1966. 45 [68] Heinloth, K. Scattering of Subthermal Neutrons of H2O, CH2O2 and C6H6. Z. Physik, 163, 218, 1961. 45 [69] Zaitsev, K., Petrov, V., Kuznetsov, S., Langer, O., Meshkov, I., Perekrestenko, A. The Total Cross Sections of the Interaction of ultracold Neutrons with H2O and D2O. Atomic Energy, 70 (3), 238–242, 1991. 45 [70] Harling, O. Slow-Neutron Scattering and the Dynamics of Heavy Water. Inf. téc., 1968. 51 [71] Harling, O. Compilation of Double Differential Cross Section and the Scattering Law for H2O and D2O at 299 K an for H2O at 268 K (BNWL-436). Inf. téc., Battelle-Northwest, Richland, Wash., 1967. 51 [72] Beyster, J. e. a. Integral Neutron Thermalization - Annual Summary Report (GA-6824). Inf. téc., General Atomics, 1965. 58 [73] Kornbichler, S. Bestimmung der Diffusionskonstanten D (E0, T) und Dv (T) thermischer Neutronen in H2O, Phenylen, ZrH1, 92 und D2O durch Messung der Streuwinkelverteilungen: II. Zirkonhydrid und schweres Wasser. Nukleonik, 7, 281, 1965. 58 [74] Granada, J. Tesis de Licenciatura en Física. Instituto Balseiro - Universidad Nacional de Cuyo, 1973. 65 [75] Ravignani, D. Tesis de Licenciatura en Física. Instituto Balseiro - Universidad Nacional de Cuyo, 1994. 65 [76] Granada, J. Slow-neutron scattering by molecular gases: A synthetic scattering function. Physical Review B, 31 (7), 4167–4177, 1985. 65 [77] Marquez Damian, J., Granada, J., D., R. Improvement on the calculation of D2O moderated critical systems with new thermal neutron scattering libraries. Annals of Nuclear Energy, 71, 206, 2014. 66 [78] Briggs, J. e. International Handbook of Evaluated Criticality Safety Benchmark Experiments. Organization for Economic Co-operation and Development-Nuclear Energy Agency (OECD-NEA), 2009. 66 [79] van der Marck, S. C. Benchmarking ENDF/B-VII. 0. Nuclear Data Sheets, 107 (12), 3061–3118, 2006. 70 [80] Taylor, R., Hollenbach, D. Variations in Computed Neutron Multiplication of Deuterium Moderated Highly Enriched Uranium Systems. Trans. Am. Nuclear Soc., 108, 509, jun. 2013. 70 [81] Roubtsov, D., Kozier, K., Chow, J., Plompen, A., Kopecky, S., Svenne, J., et al. Reactivity Impact of 2H and 16O Elastic Scattering Nuclear Data on Critical Systems with Heavy Water. En: Nuclear Data for Science and Technology 2013. Nueva York, EE.UU. 2013. 70 [82] Marquez, A. Tesis de Maestría en Ingeniería. Instituto Balseiro - Universidad Nacional de Cuyo, 2013. 75 [83] Bonneton, M., Lovotti, O., Mityukhlyaev, V., Thiering, R. Installation and Testing of the OPAL (ANSTO) Cold Neutron Source. En: Joint Meeting of the National Organization of Test, Research, and Training Reactors and the International Group on Research Reactors. Gaithersburg, EE.UU. 2005. 75 [84] Rahman, A., Singwi, K., Sjölander, A. Theory of slow neutron scattering by liquids. I. Physical Review, 126 (3), 986, 1962. 79 [85] Rahman, A., Stillinger, F. Molecular dynamics study of liquid water. The Journal of Chemical Physics, 55, 3336, 1971. 79
Materias:Ingeniería nuclear
Divisiones:Energía nuclear > Ingeniería nuclear > Física de neutrones
Código ID:475
Depositado Por:Marisa G. Velazco Aldao
Depositado En:26 Nov 2014 13:51
Última Modificación:26 Nov 2014 13:51

Personal del repositorio solamente: página de control del documento