Fricción interna, mecanismos de endurecimiento y cambios microestructurales en aceros templados y revenidos . / Internal friction, mechanisms of hardening and microstructural changes on carbon steels quenched and tempered.

Hoyos Quintero, John J. (2014) Fricción interna, mecanismos de endurecimiento y cambios microestructurales en aceros templados y revenidos . / Internal friction, mechanisms of hardening and microstructural changes on carbon steels quenched and tempered. Tesis Doctoral en Ciencias de la Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
33Mb

Resumen en español

En este trabajo, se establecen correlaciones originales entre la microestructura, las propiedades mecánicas y la fricción interna de dos aceros al carbono (0,7 %, en peso de carbono) templados y revenidos. La fricción interna permite identificar mecanismos de relajación atribuidos a las dislocaciones, aportando nuevos elementos para entender los mecanismos de endurecimiento y la respuesta mecánica de estos aceros. La evolución de la microestructura se determina principalmente mediante microscopía electrónica de barrido y difracción de rayos X, complementándola con la medición de propiedades físicas (saturación magnética, potencia termoeléctrica y dilatometría), para identificar cambios específicos como la disminución del contenido de carbono intersticial, la precipitación de carburos o la descomposición de la austenita retenida. La respuesta mecánica se evalúa mediante medidas de dureza, ensayos de impacto y de tracción. La fricción interna se mide mediante espectroscopía mecánica, en los modos de vibración libre y forzada. Se plantea el empleo de la espectroscopía mecánica (fricción interna) para evaluar cualitativamente la densidad de dislocaciones de aceros templados y revenidos. También se identifican mecanismos de relajación que pueden asociarse a la formación de superficies de fractura dúctil y frágil. La susceptibilidad a la fragilización no sólo depende de la composición química sino también la cantidad de austenita retenida y su estabilidad durante el revenido. Adicionalmente, se desarrolla un modelo alotrópico para estimar la dureza de los aceros templados durante el revenido, considerando el efecto de las condiciones de austenización.

Resumen en inglés

In this work, correlations between the microstructure, mechanical properties and internal friction of two carbon steels (0,7 wt % carbon) quenched and tempered are established. The internal friction allows to identify the relaxation mechanisms attributed to dislocations, proportionating new elements to understand the hardening mechanisms and the mechanical response of these steels. The microstructure evolution is analyzed by scanning electron microscopy and Xray diffraction. The measurement of physical properties (magnetic saturation, thermoelectric power and dilatometry) to identify specific changes as reduction of carbon content in solid solution, precipitation of carbides and decomposition of retained austenite was realized, too. The mechanical response was evaluated by measurements of hardness, impact and tensile test. The internal friction was measured by mechanical spectroscopy from the free decay of the oscillations and forced vibration mode. The use of mechanical spectroscopy (internal friction) is proposed to qualitatively evaluate the dislocation density of quenched and tempered steels. The relaxation mechanisms that may be associated with the formation of ductile and brittle fracture surfaces are identified, too. The susceptibility to embrittlement must consider not only the chemical composition but also the amount of retained austenite and its stability during tempering. Additionally, an allotropic model to estimate the hardness of the quenched steels during tempering is proposed, considering the influence of austenitizing conditions.

Tipo de objeto:Tesis (Tesis Doctoral en Ciencias de la Ingeniería)
Palabras Clave:Steels; Aceros; Quenching; Extinción; Tempering; Revenido; Internal friction; Fricción interna; Dislocations; Dislocaciones; Fracture mechanics; Mecánica de fracturas; Embrittlement; Fragilización; [Mechanical spectroscopy; Espectroscopía mecánica]
Referencias:1. Akbay, T. Reed, R.C. Atkinson, C. Modelling reaustenization from ferrite/cementite mixtures in Fe-C steels. Acta metallurgical materialia, 47 (4), 1469 – 1480, 1994. 2. American society for testing and materials – ASTM International. Standard Test Methods and Definitions for Mechanical Testing of Steel Products. ASTM A 370 – 03a. Estados Unidos, 2003. 1 – 49. 3. American society for testing and materials – ASTM International. Standard Test Methods for Notched Bar Impact Testing of Metallic Materials. ASTM E 23 – 02a. 2003. 1 – 27. 4. Anazadeh, A. Kheirandish, Sh. Affect of the tempering temperature on the microstructure and mechanical properties of dual phase steels. Materials Science and Engineering A, 532, 21– 25, 2012. 5. Baker, L. Et al. The use of internal friction as a quality control tool in mild steel industry. Journal of Materials Processing Technology, 143 – 144, 442 – 447, 2003. 6. Berry, B. Review of internal friction due to point defects. Acta metallurgica, Vol. 10. Abril. 1962. 271 – 280. 7. Bhadeshia, H. Honeycombe, R. Formation of martensite steels. Tercera edición. Oxford: Butterworth Heinemann, 2006. 8. Bisogni, E.A. Anelasticidad en metales. Curso dictado en la escuela de postgrado de la facultad de ingeniería de San Carlos, Universidad de San Pablo, Brasil. Mayo – Junio. 1973. 9. Bojack, A. Zhao, L. Morris, P. Sietsma, J. In-situ determination of austenite and martensite formation in 13Cr6Ni2Mo supermartensitic stainless steel. Materials characterization, 71, 77 – 86, 2012. 10. Byun, T. Farrell, K. Meimei, L. Deformation in metals after low-temperature irradiation: Part I – Mapping macroscopic deformation modes on true strresdose plane. Acta Materialia, 56, 1044 – 1055, 2008. 11. Caballero, F. Capdevila, C. Alvarez, L. García de Andrés, C. Thermoelectric power studies on a martensitic stainless Steel. Scripta materialia, 50, 1061 – 1066, 2004. 12. Cardozo, C. Optimización de un hidruro complejo para almacenamiento de hidrógeno. Proyecto integrador (Ingeniería mecánica). Bariloche, Universidad Nacional de Cuyo, Instituto Balseiro, 2009. pp. 63. 13. Casagrande, A. Cammarota, G.P., Micele, L. Relationship between fatigue limit and Vickers hardness in steels. Materials Science and Engineering A, 528, 3468 – 3473, 2011. 14. Chou, T. Lin, H. Wu. S. Characterization of internal friction of Fe – 30 Mn – 6 Si – 05 Cr. Scripta materialia, 42, 445 – 450, 2000. 15. Cohen, M. The strengthening of steel. Transactions of the metallurgical society of Aime, 224, 638 – 657, 1962. 16. Colorado, H. Fricción Interna en sustrato metálico-película de TiN. Tesis (Maestría en Ingeniería área de materiales y procesos). Medellín, Universidad Nacional de Colombia, 2004. pp 10 – 50. 17. Cullity, B. D. Elements of X ray diffraction. Segunda edición. Massachustts: Prentice Hall, 1978. 18. Cullity, B. D. Stock, S. R. Elements of X ray diffraction. Tercera edición. Massachustts: Prentice Hall, 2006. 19. Dabrowski, L. Neov, S. Study of low-temperature redistribution of carbon interstitials in martensite. Journal of materials science, 33, 4261 – 4263, 1998. 20. Da Rocha, M. Silva, C. Evaluation of the martensite transformations in austenitic stainless steels. Materials science and engineering A, 517, 281 – 285, 2009. 21. De la Torre, L. Millán, Z. Oliva, L. Berenguer, M. Templado de acero – Un modelo matemático. En: Congreso Argentino de Ingeniería Mecánica, II CAIM, (2010, San Juan). 22. Díaz, A. Diseño estadístico de experimentos. Segunda edición. Medellín: Editorial Universidad de Antioquia, 2009. 23. Dieter, G. Metalurgia Mecánica. Traducción: Francisco Muñoz. Primera edición. España: Aguilar, S.A, 1967. 24. Dini, G. Uejib, R. Najafizadeha, A. Monir-Vaghefia, S. Flow stress analysis of TWIP steel via the XRD measurement of dislocation density. Materials Science and Engineering A, 527, 2759 – 2763, 2010. 25. D'Anna, G. Etude de la dynamique des dislocations dans le niobium et le tantale par une methode acoustique subresonnante. Tesis (Doctorado en Ciencias). Lausanne, Suiza, Escuela Politécnica Federal de Lausanne, EPFL, 1991. pp. 41 – 48. 26. Eisenburg, A. Beyung, C. Mechanical spectroscopy: an introductory review. Annual review matter science, 335 – 359, 1976. 27. Gao, L. Zhou, Y. Liu, J. Shen, X. Ren, Z. Effect of water quenching process on the microstructure and magnetic property of cold rolled dual phase steel. Journal of Magnetism and Magnetic Materials, 322, 929 – 933, 2010. 28. Garcés, D. Estudio de perovskitas LaBaCO2O6-δ: Propiedades de alta temperatura y su evaluación como potenciales materiales para celdas de combustible o electrolíticas de óxido sólido. Tesis (Maestría en física). Bariloche, Universidad Nacional de Cuyo, Instituto Balseiro. 2012. pp 35. 29. García de Andrés, C. Caballero, F.G. Capdevila, C. Álvarez, L.F. Application of dilatometric analysis to the study of solid – solid phase transformation in steels. Materials Characterization, 48, 101 – 111, 2002. 30. García de Andrés, C. Caballero, F. Capdevila, C. Bhadeshia, H. Modelling of kinetics and dilatometric behavior of non-isothermal perlite to austenite transformation in an eutectoid Steel. Scripta Materialia, 39 (6), 791 – 796, 1998. 31. García Mateo, C. Caballero, F. Capdevila, C. García de Andrés, C. Estimation of dislocation density in bainitic microstructures using high-resolution dilatomery. Scripta Materialia, 61, 855 – 858, 2009. 32. Garg, A. Mcnelley, T. Estimation of martensite carbon content in as – quenched AISI 52100 steel by X – ray diffraction. Materials letters, 4 (4), 214 – 218, 1986. 33. Giacovazzo, C. Monaco, H. Viterbo, D. Scordari, F. Gilli, G. Zanotti, G. Catti, M. Fundamentals of crystallographic. Primera edición. Oxford: Oxford university press, 2000. 34. Goldstein, J. Newbury, D. Joy, D. Lyman, C. Echlin, P. Lifshin, E. Sawyer, L. Michael, J. Scanning electron microscopy and x – ray microanalysis. Tercera edición. New York: Kluwer academic, 2003. 35. Golovin, S. Methods of mechanical spectroscopy in physical metallurgy. Metal science and heat treatment, 44 (5 – 6), 227 – 231, 2002. 36. Gremaud, G. Overview on dislocation-point defect interaction: the Brownian picture of dislocation motion. Materials science and engineering A, 370, 191 – 198, 2004. 37. Hall, M. Winchell, P. Tetragonality of Fe-Ni-Ti martensite. Acta metallurgica, 25, 735 – 750, 1977. 38. Hayden, H. W. Moffatt, W. G. Wulff, J. The structure and properties of materials. Volume III: Mechanical behavior. New York: John Willey and sons, INC., 1965. 39. Hermida, E. Cieri, L. Extended capabilities of an inverted torsion pendulum. Polymer testing, 25, 276 – 279, 2006. 40. Hoyos, J. Fricción interna en aceros revenidos. Tesis (Maestría en Ingeniería área de materiales y procesos). Medellín, Universidad Nacional de Colombia, 2008. pp 38 – 98. 41. Hoyos, J. Ghilarducci, A. Salva, H. Chaves, C. Vélez, J. Effects of tempering on internal friction of carbon steels. Materials Science and Engineering A, 528, 3385 – 3389, 2011. 42. Hoyos, J. Ghilarducci, A. Salva, H. Chaves, C. Vélez, J. Internal friction in martensitic carbon steels. Materials Science and Engineering A, 521 – 522, 347–350, 2009. 43. Hoyos, J. Velásquez, A. Agudelo, C. López, C. Interacción y creación de un banco de proyectos para las industrias siderúrgica y de fundición. Primera edición. Medellín: Corporación Eco-eficiente, 2011. 44. Houzé, M. Kleber, X. Fouquet, F. Delnondedieu, M. Study of molybdenum precipitation in steels using thermoelectric power measurement. Scripta materialia, 51, 1171 – 1176, 2004. 45. Hutchinson, B. Hagström, J. Karlsson, O. Lindell, D. Tornberg, M. Lindberg, F. Thuvander, M. Microstructures and hardness of as-quenched martensites (0.1– 0.5%C). Acta Materialia, 59, 5845 – 5858, 2011. 46. Jafari, M. Tsuzaki, K. Transition in fracture mode from ductile to intergranular and cleavage in 0.05%P doped high strength steel. Journal of Alloys and Compounds, 577 (1, 15), S636 - S641, 2013. 47. Jha, B. Mishra, N. Microstructural evolution during tempering of a multiphase steel containing retained austenite. Materials science and engineering A, 263, 42 – 55, 1999. 48. Johnson, R. Calculation of the energy and migration characteristics of carbon in martensite. Acta metallurgica, 13, 1259 – 1262, 1965. 49. Jun, J. Et al. Influence of tempering temperature on damping capacity in a high carbon steel. Journal of materials science letters, 20, 1025 – 1027, 2001. 50. Kim, B. Celada, C. San Martín, D. Chao, J. Vara, J. Rivera Díaz del Castillo, P. Scripta materialia, 68, 945 – 948, 2013. 51. Kitahara, H. Veji, R. Tsuji, N. Minamina, Y. Cristallographic features of lath martensite in low – carbon steel. Acta materialia, 54, 1279 – 1288, 2006. 52. Koiwa, M. A note on Dr. J. L. Materials science and engineering A, 370, 9 – 11, 2004. 53. Krauss, G. Steels: Processing, structure, and performance. Primera edición. Estados Unidos: ASTM International, 2005. 54. Kryukov, A. Debarberis, L. Hähner, P. Gillemot, F. Oszvald, F. Prediction of irradiation embrittlement of vanadium alloyed low nickel steel for future reactors. Journal of Nuclear Materials, 416, 327 – 330, 2011. 55. Lavaire, N. Massardier, V. Merlin, J. Quantitative evaluation of the interstitial content (C and/or N) in solid solution in extra-mild steels by thermoelectric power measurements. Scripta Materialia, 50 (1), 131 – 135, 2004. 56. Lebrun, N. Sprauel, J. Analysis of Broadened X-ray Diffraction Profiles: Application to the Characterization of Carbon Steels. Materials Science and Engineering A, 127, 71 – 77, 1990. 57. Lee, S. Lee, Y. Prediction of austenite grain growth during austenization of low alloy steels. Materials and design, 29, 1840 – 1844, 2008. 58. Lee, S. Pavlina, E. Van Tyne, C. Kinetics modeling of austenite decomposition for an end-quenched 1045 steel. Materials Science and Engineering A, 527, 3186 – 3194, 2010. 59. Lee, W. Su, T. Mechanical properties and microstructural features of AISI 4340 high-strength alloy Steel under quenched and tempered conditions. Journal of materials processing technology, 87, 198 – 206, 1999. 60. Lescano, E. Silvetti, S. Study of microestructure and tempered martensite embrittlement in AISI 15B41 steel. En: Congreso Internacional de Metalurgia y Materiales, SAM/CONAMET, 11, 2011. Procedia Materials Science, 1, 134 – 140, 2012. 61. Li, S. Deng, L. Wu, X. Wang, H. Min, Y. Low-frequency internal friction investigating of the carbide precipitation in solid solution during tempering in high alloyed martensitic steel. Materials Science and Engineering A, 527, 6899 – 6903, 2010. 62. Li, S. Min, N. Li, J. Wu, X. Li, C. Tang, L. Experimental verification of segregation of carbon and precipitation of carbides due to deep cryogenic treatment for tool steel by internal friction method. Materials Science and Engineering A, 575, 51– 60, 2013. 63. Liu, Y. Internal friction associated with dislocation relaxations in virgin martensite-I. Experiments. Acta Metallurgical material, 41 (11), 3277 – 3287, 1993. 64. Liu, Y. Internal friction associated with dislocation relaxations in virgin martensite-II. Interpretation. Acta Metallurgical material, 42 (3), 621 – 630, 1994. 65. Martin, R. Mari, D. Schaller, R. Influence of the carbon content on dislocation relaxation in martensitic steels. Materials science and engineering A, 521 – 522, 117 – 120, 2009. 66. Massardier, V. Lavaire, N. Soler, M. Merlin, J. Comparison of the evaluation of the carbon content in solid solution in extra-mild steels by thermoelectric power and by internal friction. Scripta Materialia, 50 (12), 1435 – 1439, 2004. 67. McMahon Jr, C. Mechanisms of intergranular fracture in alloy steels. Materials characterization, 26, 269 – 287, 1991. 68. Molinder, A quantitative study of the formation of austenite and the solution of cementite at different austenitizing temperatures for a 1.27% carbon steel. Acta Metallurgica, 4 (6), 565 – 571, 1956. 69. Morales, D. Cuantificación de fases por medio de la técnica de dilatometría en titanio Ti6Al4V. Tesis (Ingeniería Mecánica). Medellín, Universidad Nacional de Colombia, 2009. pp. 9 – 19. 70. Morito, S. Tanaka, H. Konishi, R. Furuhara, T. Maki, T. The morphology and crystallography of lath martensite in Fe – C alloys. Acta materialia, 51, 1789 – 1799, 2003. 71. Movaghar, M. Hossein, S. Shirazi, H. Iranpour, M. Nili, M. X-ray diffraction peak profile analysis aiming at better understanding of the deformation process and deformed structure of a martensitic steel. Thin Solid Films, 516, 8117 – 8124, 2008. 72. Murugesan, S. Kuppusami, P. Mohandas, E. Vijayalakshmi, M. X-ray diffraction Rietveld analysis of cold worked austenitic stainless steel. Materials Letters, 67, 173 – 176, 2012. 73. Ngai, K. Wang, Y. Magalas, L. Theoretical basis and general applicability of the coupling model to relaxations in coupled systems. Journal of alloys and compounds, 211 / 212, 327 – 332, 1994. 74. Nowick, AS. Berry, BS. Anelastic Relaxation in Crystalline Solids. Primera edición. New York: Academic Press, 1972. 75. Ogi, H. Snoek relaxation in a copper-precipitated alloy steel. Journal of alloys and compounds, 310, 432 – 435, 2000. 76. Ohmura, T. Hara, T. Tsuzaki, K. Evaluation of temper softening behavior of Fe– C binary martensitic steels by nanoindentation. Scripta Materialia, 49, 1157 – 1162, 2003. 77. Ohtani, H. McMahon, C. Modes of fracture in temper embrittled steels. Acta Metallurgical, 23, 377 – 386, 1975. 78. Oliveira, F.L.G. Andrade, M.S. Cota, A.B. Kinetics of austenite formation during continuous heating in a low carbon steel. Materials characterization, 58, 256 – 261, 2007. 79. Pantiu, G. Modelo de disolución de carburos en aceros de alto carbono.Tesis maestría en Tecnología y Ciencia de los Materiales. Buenos Aires, Universidad Nacional de General San Martín, 2004. pp 44 – 45. 80. Pauliuk, S. Wanga, T. Mülleraet, D. Steel all over the world: Estimating in-use stocks of iron for 200 countries. Resources, Conservation and Recycling, 71, 22 – 30, 2013. 81. Perez, M. Sidoroff, C. Vincent, A. Esnouf, C. Microestructural evolution of martensitic 100Cr6 bearing Steel during tempering: from thermoelectric power measurements to the prediction of dimensional changes. Acta materialia, 57, 3170 – 3181, 2009. 82. Pesicka, J. Kuzel, R. Dohofer, A. Eggeler, G. The evolution of dislocation density during heat treatment and creep of tempered martensite ferritic steels. Acta materialia, 51, 4847 – 4862, 2003. 83. Pietikäinen, J. Considerations about tempered martensite embrittlement. Materials Science and Engineering A, 273 – 275, 466 – 470, 1999. 84. Popa, N. The (hkl) Dependence of Diffraction-Line Broadening Caused by Strain and Size for all Laue Groups in Rietveld Refinement. Journal of applied Crystallographic, 31, 176 – 180, 1998. 85. Porter, D. Easterling, K. Phase transformations in metals and alloys. Segunda edición. Londres: Chapman and Hall, 1993. 86. Rana, R. Singh, S. Mohanty, O. Thermoelectric power studies of copper precipitation in a new interstitial-free steel. Scripta Materialia, 55 (12), 1107 – 1110, 2006. 87. Rajasekhar, A. Madhusudhan, G. Mohandas, T. Murti, V.S.R. Influence of austenitizing temperature on microstructure and mechanical properties of AISI 431 martensitic stainless steel electron beam welds. Materials and Design, 30, 1612 – 1624, 2009. 88. Reed, R.C. Akbay, T. Shen, Z. Robinson, J.M. Root, J.H. Determination of reaustenitisation kinetics in a Fe–0.4C steel using dilatometry and neutron diffraction. Materials Science and Engineering A, 256, 152 – 165, 1998. 89. Ribárik, G. Ungár, T. Gubicza, J. MWP-fit: a program for multiple whole-profile fitting of diffraction peak profiles by ab initio theoretical functions. Journal of applied crystallography, 34, 669 – 676, 2001. 90. Riviere, A. Measurement of a high damping: techniques and analysis. Journal of alloys and compounds, 355, 201 – 206, 2003. 91. Roytburd, A. Kurdjumov and his school in martensite of the 20th century. Materials Science and Engineering A, 273 – 275, 1 – 10, 1999. 92. Ruiz, D. Rivera – Tovar, J. Segers, D. Vandenberghe, R. Houbaert, Y. Aging phenomena in high-Si steels studied by internal friction. Materials Science and Engineering A, 442, 462 – 465, 2006. 93. Saitoh, H. Et al. Influence of substitutional atoms on the Snoek peak of carbon in b.c.c. iron. Acta materialia, 52, 1255 – 1261, 2004. 94. Salavy, J. Boccaccinib, L. Chaudhuric, P. Chod, S. Enoedae, M. Giancarlif, L. Kurtzg, R. Luoh, T. Bhanu, K. Wongj, C. Must we use ferritic steel in TBM?. Fusion Engineering and Design, 85, 1896 – 1902, 2010. 95. Salemi, A. Abdollah-Zadeh. The effect of tempering temperature on the mechanical properties and fracture morphology of a NiCrMoV steel. Materials characterization, 59, 484 – 487, 2008. 96. Samuel, F. Hussein, A. Tempering of Medium – and High–Carbon Martensites. Metallography, 15, 391 – 408, 1982. 97. Sands, D. Introducción a la cristalografía. Primera edición. Barcelona: Editorial reverté S.A. 1993. 98. San Juan, J. Gallego, I. Nó, M. Construcción de un péndulo de torsión para la medida de la fricción interna a bajas temperaturas. CENIM. Revista metalúrgica de Madrid, 37, 209-214, 2001. 99. San Martín, D. Rivera, P.E.J. García de Andrés, C. In situ study of austenite formation by dilatometry in a low carbon microalloyed Steel. Scripta Materialia, 58, 926 – 929, 2008. 100. Santofimia, M. Zhao, L. Petrov, R. Sietsma, J. Characterization of the microstructure obtained by the quenching and partitioning process in a lowcarbon steel. Materials characterization, 59, 1758 – 1764, 2008. 101. Schaller, R. Fantozzi, G. Gremaud, G., (editores). Mechanical Spectroscopy Q-1 2001. Primera edición. Zurich: Trans Tech Publications, 2001. 102. Schoeck, G. Fricción interna debido a la interacción entre dislocaciones y átomos solutos. Acta metallurgica, 11, 617 – 622, 1963. 103. Seeger, A. Progress and problems in the understanding of the dislocation relaxation processes in metals. Materials science and engineering A, 370, 50 – 66, 2004. 104. Shaeri, M. H., Saghafian, H., Shabestari, S. G., Effects of austempering and martempering processes on amount of retained austenite in Cr-Mo steels (FMU- 226) Used in Mill Liner. Journal of Iron and Steel Research International, 17 (2), 53 – 58, 2010. 105. Smoljan, B. Smoljan Prediction of mechanical properties and microstructure distribution of quenched and tempered steel shaft. Journal of Materials Processing Technology, 175, 393 – 397, 2006. 106. Speer, J. Matlock, D. Recent developments in low – carbon sheet steels. JOM, 19 – 24, 2002. 107. Stark, P. Averbach, B. Cohen, M. Influence of microstructure on the carbon damping peak in iron-carbon alloys. Acta metallurgica, 6, 149–155, 1968. 108. Stasko, R. Adrian, H. Adrian, A. Effect of nitrogen and vanadium on austenitic grain growth kinetics of a low alloy steel. Materials characterization, 56, 340 – 347, 2006. 109. Talonen, J. Hänninen, H. Damping properties of austenite stainless steels containing strain – induced martensite. Metallurgical and materials transactions A, 35 A, 2401 – 2406, 2004. 110. Tavares, S. Neto, J. Da Silva, M. Vasconcelos, I. De Abreu, H. Magnetic properties and α´ martensite quantification in an AISI 301LN stainless steel deformed by cold rolling. Materials characterization, 59, 901 – 904, 2008. 111. Teus, S. On a mechanism of a Snoek-like relaxation caused C, N,and H in fcc iron-based alloys. Acta materialia, 54, 3773 – 3778, 2000. 112. Tkalcec, I. Mechanical properties and microstructure of a high carbon steel. Tesis (Doctorado en Ciencias). Lausanne, Escuela Politécnica Federal de Lausanne Suiza, EPFL, 2004. 113. Tkalcec, I. Azcoïta, C. Crevoiserat, S. Mari, D. Tempering effects on a martensitic high carbon steel. Materials science and Engineering A, 387 – 389, 352 – 356, 2004. 114. Tkalcec, I. Mari, D. Internal friction in martensitic, ferritic and bainitic carbon steel; cold work effects. Materials science and Engineering A, 370, 213 – 217, 2004. 115. Tkalcec, I. Mari, D. Benoit, W. Correlation between internal friction background and the concentration of carbon in solid solution in a martensitic steel. Materials science and Engineering A, 442, 471 – 475, 2006. 116. Tormo, J. Schwartz, S. Benavides, E. Quaranta, N. Vigliocco, A. Botta, E. Determinación del coeficiente de expansión lineal durante el enfriamiento de chapas de acero. En: Jornadas SAM (IV Coloquio Latinoamericano de Fractura y Fatiga, 2000, Neuquén). pp. 287 – 294. 117. Torres, E. Cristalografía de la transformación martensítica. Tesis (Ingeniería Mecánica). Medellín, Universidad Nacional de Colombia, 2004. pp 33 – 61. 118. Ungár, T. Gubicza, J. Ribárik, G. Borbély, A. Crystallite size distribution and dislocation structure determined by diffraction profile analysis: principles and practical application to cubic and hexagonal crystals. Journal of applied crystallography, 34, 298 – 310, 2001. 119. Valencia, A. Tecnología del tratamiento térmico de los metales. Primera edición. Medellín: Editorial Universidad de Antioquia. 2009. 120. Vega, J. Efectos de las sustituciones de molibdeno por tungsteno en los compuestos LAMOX. Tesis (Maestría en Ciencias Físicas). Bariloche, Universidad Nacional de Cuyo, Instituto Balseiro. 2007. pp 20 – 53. 121. Ward, R. Capus, J. Internal friction effects in martensite. Journal of iron steel institute, 10, 1038–1043, 1963. 122. Waterschoot, T. Verbeken, K. De Cooman, B. Tempering kinetics of the martensitic phase in DP steel. ISIJ International, 46 (1), 138 – 146, 2001. 123. Weller, M. The Snoek relaxation in bcc metals-from steel wire to meteorites. Materials science and engineering A, 442, 21 – 30, 2006. 124. Williamson, G. Hall, W. X-ray line broadening from filed aluminium and worem. Acta metallurgica, 1, 22 – 31, 1953. 125. World Steel Association. Steel Statistical Yearbook 2013. Bruselas: worldsteel Committee on Economic Studies, 2013. 126. Yang, J. Bhadeshia, H. Austenite grain size and the martensite-start temperature. Scripta Materialia, 60 (7), 493-495, 2009. 127. Yin, X. Chen, W. Trends and development of steel demand in China: A bottom–up analysis. Resources Policy, 38, 407 – 415, 2013. 128. Yue – Jun, L. Yi – Min, L. Yu – Hua, Y. Bo – Yun, H. Apparent morphologies and nature of packet martensite in high carbon steels. Journal of iron and steel research international, 13 (3), 40 – 46, 2006. 129. Zajac, G., Pacyna, J. The kinetics of phase transformations during tempering in structural steels with nickel. Journal of Materials Processing Technology, 162–163, 442 – 446, 2005. 130. Zener, C. Anelasticity of metals. Transactions of the American Institute of Mining, Metalurgical and Petroleum Engineers. 167. 1946. pp 155-191. 131. Zhao, L. Van Dijk, N. Brück, E. Sietsma, J. Van de Zwaag, S. Magnetic and X ray diffraction measurements for the determination of retained austenite in trip steels. Materials science and engineering A, 313, 145 – 152, 2001. 132. Zhu, C. Cerezo, A. Smith, G. Carbide characterization in low – temperature tempered steels. Ultramicroscopy, 109, 545 – 552, 2009. 133. Zia-Ebrahimi, F. Krauss, G. Mechanism of tempered martensite embrittlement in medium carbon steels. Acta metallurgica, 32 (10), 1767 – 1777, 1984.
Materias:Física > Física de materiales
Divisiones:Investigación y aplicaciones no nucleares > Física > Física de metales
Código ID:483
Depositado Por:Marisa G. Velazco Aldao
Depositado En:16 Abr 2015 16:09
Última Modificación:16 Abr 2015 16:09

Personal del repositorio solamente: página de control del documento