Producción sustentable de hidrógeno empleando metales nobles soportados sobre materiales nanoestructurados basados en CeO_2. / Sustainable hydrogen production using noble metals supported on nanostructured CeO2-based materials.

Carbajal Ramos, Inés A. (2014) Producción sustentable de hidrógeno empleando metales nobles soportados sobre materiales nanoestructurados basados en CeO_2. / Sustainable hydrogen production using noble metals supported on nanostructured CeO2-based materials. Tesis Doctoral en Ciencias de la Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
11Mb

Resumen en español

La presente Tesis de Doctorado en Ciencias de la Ingeniería comprende la síntesis de metales soportados sobre materiales basados en ceria y la caracterización estructural, microestructural, textural y química de los mismos. Estos materiales fueron usados como catalizadores de la reacción de reformado de etanol con vapor de agua para la producción de hidrógeno. Se sintetizaron dos tipos de soportes basados en ceria: en uno, el CeO_2 se depositó por impregnación sobre ZrO_2 estabilizado con ytria (YSZ) de origen comercial (CeO_2(10%p/p)/YSZ) y en el otro, se preparó una solución sólida de CeO_2-ZrO_2 (Ce_0,8Zr_0,2O_2) empleando dos métodos de síntesis diferentes: uno clásico, conocido como co-precipitación (PI) y otro novedoso, que involucra el procesamiento mecanoquímico (HW) y consistió en preparar la solución sólida Ce_0,8Zr_0,2O_2 a partir de la molienda mecánica de los cloruros de Ce y Zr, en presencia de NaOH. Sobre ambos soportes se dispersaron las fases metálicas activas por el método de impregnación. Sobre CeO_2(10%p/p)/YSZ) se depositaron Ru 2 % p/p (Ru/CeO_2/YSZ), Pd 2 % p/p (Pd/ CeO_2/YSZ) y Ag 2 % p/p (Ag/ CeO_2/YSZ). Luego fueron calcinados por 5 h a 400 °C. Sobre Ce_0,8Zr_0,2O_2 (PI y HW) se depositaron los metales Ru 2 % p/p (Ru2PI y Ru2HW), Pd 2 % p/p (Pd2PI y Pd2HW), Ni 2 % p/p (Ni2PI y Ni2HW) y Ni 8 % p/p ( (Ni8PI y Ni8HW). Luego fueron calcinados por 5 h a 600 °C. Todos estos catalizadores fueron evaluados en la reacción de reformado de etanol con vapor de agua para la producción de hidrógeno. Dentro de la serie M/CeO_2/YSZ (M = Ru, Pd, Ag) los sistemas basados en Ru y Pd mostraron actividades promisorias, mientras que el catalizador con Ag presentó un pobre desempeño. Se observaron pequeñas cantidades de coque en ambos catalizadores: sobre Pd/CeO_2/YSZ conduce a la oclusión de las nanopartículas metálicas, dando como resultado una progresiva y drástica desactivación del catalizador; en el caso del catalizador Ru/CeO_2/YSZ se observa una cantidad menor de carbono en forma de filamentos grafíticos que produce una mayor accesibilidad al Ru. Dentro de las series MZPI y MZHW (M = Ru, Pd, Ni; Z = 2 y 8), los sistemas basados en Ru (2 %) y Ni (8 %) mostraron actividades promisorias, mientras que los catalizadores con Pd presentaron muy bajos rendimientos. En condiciones moderadas y leves, el desempeño del catalizador estuvo gobernado por la naturaleza de la fase metálica, la del soporte y por la interacción entre ambos. En cambio, en condiciones de reformado severas, los metales sobre el soporte PI presentaron mejor desempeño que sobre HW. Los catalizadores basados en Ni condujeron a la formación de grandes cantidades de coque, el cual pudo ser removido a temperaturas moderadas y por lo tanto es factible su regeneración. En el caso del catalizador de Ru, no se observó deposición de coque y presentó la más alta selectividad a hidrógeno. Finalmente, es destacable el excelente desempeño catalítico observado para el catalizador de Ru2PI. La adecuada combinación de las propiedades del soporte y de la interacción con la fase metálica, posibilita una alta dispersión del metal Ru y por ende una alta selectividad a hidrógeno, sin depósitos de coque y con una buena relación CO/CO_2. Este constituye un resultado original y hasta la fecha se desconoce el mecanismo de reacción, por lo que este aspecto será abordado en futuras investigaciones.

Resumen en inglés

This Ph.D Thesis in Engineering Science includes the synthesis of metals supported on ceria-based materials and their structural, microstructural, textural and chemical characterization. These materials were used as catalysts in the steamreforming of ethanol for hydrogen production. Two types of ceria-based supports Were synthesized: added by impregnation on comercial ytria-stabilized zirconia (CeO_2(10%p/p)/YSZ) and solid solution of CeO_2- ZrO_2 (Ce_0.8Zr_0.2O_2). The latter, making use of two different synthesis methods: the classic method known as co-precipitation (PI), and an innovative one which involves the mecanochemical proccesing (HW) and consists in preparing the Ce_0.8Zr_0.2O_2 solid solution from mechanical milling of CeCl_3 and ZrCl_4 in presence of NaOH. The metallic active phases were added on both supports by the impregnation method. Ru 2 % p/p (Ru/CeO_2/YSZ), Pd 2 % p/p (Pd/ CeO_2/YSZ) and Ag 2 % p/p (Ag/ CeO_2/YSZ) were supported on CeO_2(10 %p/p)/YSZ), then calcined for 5 h at 400 ºC. Ru 2 % p/p (Ru2PI and Ru2HW), Pd 2 % p/p (Pd2PI and Pd2HW), Ni 2 % p/p (Ni2PI and Ni2HW) and Ni 8 % p/p (Ni8PI and Ni8HW) were supported on Ce_0,8Zr_0,2O_2 (PI and HW) ), then calcined for 5 h at 600 ºC. All these catalysts were evaluated in the steam-reforming of ethanol for hydrogen production. Ru and Pd-based systems showed promising activities within the M/CeO_2/YSZ (M = Ru, Pd, Ag) series, while Ag catalysts showed a low performance. Small amounts of coke were observed on both catalysts, on Pd/CeO_2/YSZ it leads to the occlusion of the metallic nanoparticles, resulting in a progressive and dramatic catalyst deactivation, while a smaller amount of graphite filament-shaped carbon is observed on Ru/CeO_2/YSZ, resulting in a greater accessibility to Ru. Ru(2%) and Ni(8%) showed promising activities within the MZPI and MZHW (M = Ru, Pd, Ni; Z = 2 and 8) series, while Pd catalysts showed a poor performances. The catalyst’s performance, under moderate and mild conditions is governed by the metallic phase’s nature, the support phase’s nature and their mutual interaction. On the other hand, under severe reforming conditions the metals on the PI support show a better performance than HW. Ni-based catalysts lead to a great coke production which can be removed at moderate temperatures, and therefore are feasible to be regenerated. For Ru catalysts, carbon-deposition is not observed and this catalyst shows the highest hydrogen selectivity. Finally it must be pointed out the excellent catalytic performance showed by the Ru2PI catalyst. The adequate combination of the support’s properties and the interaction with the metallic phase enables a high dispersion of Ru and therefore high hydrogen selectivity without carbon deposition and with a good CO/CO_2 ratio. This is an original result and up to now the reaction mechanism is unknown, for which this aspect will be addressed in future research.

Tipo de objeto:Tesis (Tesis Doctoral en Ciencias de la Ingeniería)
Palabras Clave:Hydrogen; Hidrógeno; Catalysis; Catálisis; Ethanol; Etanol; Nanostructures; Nanoestructuras; [Ceria]
Referencias:[1] ITBA. Desarrollo sostenible, la clave del futuro. Diario La Nación, 01/10/2013. [2] Song, C. Introduction to hydrogen and syngas production and purification technologies. En: Liu, K., Song C., Subramani V. Hydrogen and syngas production and purification technologies. 1a ed. New Jersey: Jhon Wiley & Sons Inc., 2010 pp. 1-13. [3] British Petroleum. BP energy outlook 2030. Septiembre 2013. http://www.bp.com/content/dam/bp/pdf/statisticalreview/ BP_World_Energy_Outlook_booklet_2013.pdf [4] World Energy Outlook 2011 - GLOBAL ENERGY TRENDS OECD/IEA. Septiembre 2013. http://www.iea.org/publications/freepublications/publication/WEO2011_WEB.pdf [5] Balance energético 2 011. Argentina: Secretaría de Energía de la Nación, marzo 2013. http://www.energia.gov.ar/contenidos/verpagina.php?idpagina=3366. [6] Global Warming Potentials and Atmospheric Lifetimes (Years). Septiembre 2013. http://www.epa.gov. [7] EPA 430-S-12-002, Summary Report: Global Anthropogenic Non-CO2 Greenhouse Gas Emissions: 1990 – 2030, diciembre 2012. http://www.epa.gov/climatechange/Downloads/EPAactivities/Summary_Global_NonC O2_Projections_Dec2012.pdf [8] CO2 emissions from fuel combustion IEA statistics highlight. International Energy Agency (IAE). Septiembre 2013. http://www.iea.org/publications/freepublications/publication/CO2emissionfromfuelcom bustionHIGHLIGHTSMarch2013.pdf [9] M. Conte, A. Iacobazzi, M. Ronchetti, R. Vellone. J. Power Sources, 100 (2001) 171. [10] Laborde, M. Hidrógeno: presente y futuro. Congreso Argentino de Catálisis 2013, San Luis, Argentina. [11] Objetivos de la Planta Experimental de hidrógeno de Pico truncado. Septiembre 20163. http://www.h2truncado.com.ar/esp/objetivos.htm. [12] Subramani, V. Catalytic steam reforming technology for the production of hydrogen and syngas. En: Liu, K., Song C., Subramani V. Hydrogen and syngas production and purification technologies. 1a ed. New Jersey: Jhon Wiley & Sons Inc., 14-126, 2010. [13] Bicaková, O., Straka, P. Production of hydrogen from renewable resources and its effectiveness. International journal of hydrogen energy, 37, 11563-11578, 2012 [14] Bion, N., Duprez, D., Epron, F. Design of Nanocatalysts for Green Hydrogen Production from Bioethanol. ChemSusChem, 5, 76–84, 2012. [15] Xuan, J., Leung, M., Leung, D., Ni, M. A review of biomass-derived fuel processors for fuel cell systems. Renewable and Sustainable Energy Reviews, 13, 1301– 1313, 2009. [16] Laborde, M. et al. Producción y Purificación de Hidrógeno a Partir de Bioetanol y su Aplicación en Pilas de Combustible. 1a ed. Argentina. Orgraf., 2006. [17] Fuel cell types. National Fuel Cell Research Center, University of California, Irvine. Septiembre 2013. http://www.nfcrc.uci.edu/3/FUEL_CELL_INFORMATION/FCexplained/FC_Types.as px [18] Fuel cell basics types. Fuel cell 2000. Septiembre 2013. http://www.fuelcells.org/basics/types.html. [19] Laborde, M., Aguirre, P. Amadeo, N., Borio, D., Cornaglia, L. Mariño, F. Curso producción y purificación de hidrógeno. DIQ-FIUB, Universidad de Buenos Aires, Pabellón de Industrias, Ciudad Universitaria, Buenos Aires, 2008. [20] Vasudeva, K., Mitra, N., Umasankar, P., and Dhingra, S.C. Steam reforming of ethanol for hydrogen production: Thermodynamic analysis. International Journal of Hydrogen Energy, 21, 13-18, 1996. [21] Velu, S., Song, C. Advances in catalysis and processes for hydrogen production from ethanol reforming. Catalysis, 20, 65-106, 2007. [22] Cavallaro, S., Chiodo, V., Freni, S., Mondello, N., Frusteri, F. Performance of Rh/Al2O3 catalyst in the steam reforming of ethanol: H2 production for MCFC. Applied Catalysis: General, 249, 119-128, 2003. [23] Diagne, C., Idriss, H. Kiennemann, A.Hydrogen production by ethanol reforming over Rh/CeO2-ZrO2 catalysts . Catalysis Communications, 3, 565-571, 2002. [24] Vargas, J.C., Libs, S., Roger, A. C., Kiennemann, A. Study of Ce-Zr-Co fluoritetype oxide as catalysts for hydrogen production by steam reforming of bioethanol . Catalysis today, 417, 107–108, 2005. [25] Benito, M., Sanz, J.L., Isabel, R., Padilla, R., Arjona, R., Daza, L. Bio-ethanol steam reforming: Insights on the mechanism for hydrogen production. Journal of Power Sources, 151 , 11-17, 2005. [26] Vaidya, P., Rodrigues, A. Kinetics of Steam Reforming of Ethanol over a Ru/Al2O3Catalyst. Ind. Eng. Chem., 45, 6614-6618, 2006. [27] Cavallaro, S. Ethanol steam reforming on Rh/Al2O3 catalysts . Energy & Fuels, 14, 1195-1199, 2000. [28] Idriss, H. Ethanol Reactions over the Surfaces of Noble Metal/Cerium Oxide Catalysts. Platinum Metals Rev. 48, 105–115, 2004. [29] Chorkendorff, I., Niemantsverdriet, J. W. Concepts of modern catalysis and kinetics. 1a Ed. Weinheim: Wiley-VCH, 2003. [30] Liguras, D., Kondarides, D., Verykios, E. Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts. Applied Catalysis B: Environmental, 43, 345–354, 2003. [31] Aboudheir, A., Akande, A., Idem, R., Dalai, A. Experimental studies and comprehensive reactor modeling of hydrogen production by the catalytic reforming of crude ethanol in a packed bed tubular reactor over a Ni/Al2O3 catalyst . International Journal of Hydrogen Energy, 31, 752-761, 2006. [32] Comas, J., Dieuzeide, M.L., Baronetti, G., Laborde, M., Amadeo, N. Methane steam reforming and ethanol steam reforming using a Ni(II)-Al(III) catalyst prepared from lamellar double hydroxides. Chemical Engineering Journal, 118, 11-15, 2006. [33] Yang, Y., Ma, J., Wu, F. Production of hydrogen by steam reforming of ethanol over a Ni/ZnO catalyst. International Journal of Hydrogen Energy, 31, 877-882, 2006. [34] Barroso, M.N., Gomez, M.F., Arrúa, L.A., Abello, M.C. Hydrogen production by ethanol reforming over NiZnAl catalysts. Applied Catalysis. A, General, 304,116-123, 2006. [35] Morgenstern, D.A., Fornango, J.P. Low - temperature reforming of ethanol over copper -plated Raney nickel: A new route to sustainable hydrogen for transportation. Energy & Fuels, 19, 1708-1716, 2005, [36] Batista, M.S., Santos, R.K.S., Assaf, E.M., Assaf, J.M., Ticianelli, E.A. High efficiency steam reforming of ethanol by cobalt - based catalysts . Journal of Power Sources, 134, 27-32, 2004. [37] Kugai, J., Velu, S., Song, C. Low temperature reforming of ethanol over CeO2 supported Ni-Rh bimetallic catalysts for hydrogen production. Catalysis Letters, 101, 255-264, 2005. [38] Mariño, F., Baronetti, G., Jobbagy, M., Laborde, M. Cu-Ni-K/ -Al2O3 supported catalysts for ESR formation of hydrotalcite-type compounds as a result of metal-support interaction, Appl. Cat. A: General. 238, 41-54, 2003. [39] Frusteri F, Freni S, Spadaro L, Chiodo V, Bonura G, Donato S. H2 production for MC fuel cell by steam reforming of ethanol over MgO supported Pd, Rh, Ni and Co catalysts. Catal Commun 5, 2004; 605-611, 2004. [40] Ando, Y., Matsuoka, K., Takaig, H., Kuramoto, K. Hydrogen Production from Ethanol Steam Reforming over NobleMetal Catalysts Supported on SiO2: Mechanism of Methane Production and Reaction Conditions for Suppression of M ethane Production. Bull . hem . Soc. Jpn., 85, 517–521, 2012. [41] Breen, J.P., Burch, R., Coleman, H.M. Metal-catalysed steam reforming of ethanol in the production of hydrogen for fuel cell applications. Applied Catalysis B: Environmental, 39, 65–74, 2002. [42] Bilal, M., Jackson S. Steam reforming of ethanol at medium pressure over Ru/Al2O3: effect of temperature and catalyst deactivation. Catal. Sci. Technol., 2, 2043–2051, 2012. [43] Palma, V., Castaldoa, F., Ciambellia,P., Iaquaniello, G. CeO2-supported Pt/Ni catalyst for the renewable and clean H2 production via ethanol steam reforming, Appl. Catal. B: Environ., http://dx.doi.org/10.1016 /j.apcatb.2013.01.053, 2013. [44] Laosiripojana, N., Assabumrungrat, S. Catalytic steam reforming of ethanol over high surface area CeO2: The role of CeO2 as an internal pre-reforming catalyst. Applied Catalysis B: Environmental. 66, 29–39, 2006. [45] Oh, S., Hoflund, G. Chemical state study of palladium powder and ceria supported palladium during low-temperature CO oxidation. J. Phys. Chem. A, 110, 7609-7613, 2006. [46] Xu, W. et al. In situ studies of CeO2-supported Pt, Ru, and Pt–Ru alloy catalysts for the water–gas shift reaction: Active phases and reaction intermediates. J. Catal. 291, 117-26, 2012. [47] Yashima, M. Arashi, H., Kakishama M., Yoshimura, M. Raman scattering study of cubic-tetragonal phase transition in Zr1-xCexO2 solid solution, J. Am. Ceram. Soc. 77, 1067-1071, 1994. [48] Thomson, J. B., Armstrong, A. R., Bruce, P. G. A New class of pyrochlore solid solution formed by chemical intercalation of oxygen J. Am. Ceram. Soc. 118, 11129- 11133, 1996. [49] Otsuka-Yao-Matsuo, S., Omata, T., Izu, N., Kishimoto, H. Oxygen release behavior of CeZrO4 powders and appearance of new compounds k and t*. J. Solid State Chem. 138, 47-54, 1998. [50] Thomson, J. B., Armstrong, A. R., Bruce, P. G. An oxygen-rich pyrochlore with fluorite composition, J. SolidState Chem. 148, 56-62, 1999. [51] Daturi, M. et al. Reduction of high surface area CeO2-ZrO2 mixed oxides, J. Phys. Chem. B 104, 9186-9194,2000. [52] Kaspar, J. Ceria-containing three-way catalysts. En: K.A. Gschneider, Jr. and L Eyring. Handbook of the physics and chemistry of rare earths. Vol 29. Edited by. 2000 elsevier science b.v. [53] [Trovarelli, A. Catalysis by Ceria and related materials. Catalytic Science Series, G. J. Hutchings Ed., Imperial College Press, London, UK, vol. 2 (2002). [54 Masui, T., Ozaki, T., Machida, K., Adachi, G. Preparation of ceria-zirconia subcatalysts for automotive exhaust cleaning, J. All. Comp, 49, 303-304, 2000. [55] Masui, T., Nakano, K., Ozaki, T., Adachi, G. Kang, Z., Eyring, L., Redox behavior of ceria-zirconia solid solutions modified by the chemical filling process. Chem. Mat. 13, 1834-1840, 2001. [56] Gatica, J. M., Fornasiero, P., Kašpar, J., Lesage, T., Aiello, S., Daturi, M. Hydrogen scrambling over Rh/Ce0.68Zr0.32O2 and Rh/Al2O3 catalysts: Effects of support, metal precursor and redox aging. Phys. Chem. Chem. Phys. 4, 381-388, 2002. [57] Fornasiero, P. et al. Effects of termal pretreatment on the redox behaviour of Ce0.5Zr0.5O2: isotopic and spectroscopic study, Phys. Chem. Chem. Phys. 4, 149-159, 2002. [58] Fornasiero, P., Hickey, N., Kašpar, J., Montini, T., Graziani, M. Redox and chemisorptive properties of ex chloride and ex nitrate Rh/ Ce0.6Zr0.4O2, J. Catal. 189 339-348, 2000. [59] Taylor, K. C. Automobile Catalytic converters. Catalysis- Science and Technology; J. R. Anderson, M. Boudart, Eds. Springer-Verlag, Berlin, 1984, Chapter 5. [60] Heck, R. M., Farrauto, R. J. Catalytic air pollution control: commercial technology. Van Nostrand Reinhold, New York, 1995. [61] Llorca, J., Dalmon, J. A., Ramírez de la Piscina, P., Homs, N. In situ magnetic characterisation of supported cobalt catalysts under steam - reforming of ethanol . Applied Catalysis. A, General, 243, 261-269 , 2003. [62] Zhang, B., Tang, X., Li, Y., Cai, W., Xu, Y., Shen, W. Steam reforming of bio - ethanol for the production of hydrogen over ceria - supported Co, Ir and Ni catalysts . Catalysis Communications, 7, 367-372, 2006. [63] [Gennari, F.C.et al. Hydrogen interaction with Pd/Ce0.8Zr0.2O2 nanocomposites prepared by microemulsion, coprecipitation and supercritical CO2 treatment, Appl. Catal. A: Gen. 398 123-133, 2011. [64] Hosokawa, S., Taniguchi, M., Utani, K., Kanai, H., Imamura, S. Affinity order among noble metals and CeO2. Applied Catalysis A: General, 289, 115–120, 2005. [65] Idriss, H., Seebauer, E. G. Reactions of ethanol over metal oxides. Journal of Molecular Catalysis A: Chemical, 152, 201-212, 2000. [66] M. Yashima, N. Ishizawa, M. Yoshimura. Application of an Ion-Packing Model Based on Defect Clusters to Zirconia Solid Solutions: II, Applicability of Vegard's law. J. Am Ceram Soc, 75, 1550-57,1992. [67] Gennari, F.C., Montini, T., Fornasiero, P., Andrade Gamboa, J.J. Reduction behavior of nanoparticles of Ce0.8Zr0.2O2 produced by different approaches. International Journal of Hydrogen Energy, 33, 3554-3560, 2008. [68] Gennari, F. C., Neyertz, C., Meyer, G., Fornasiero P., Graziani, M. Hydrogen adsorption kinetics on Pd/Ce0.8Zr0.2O2 . Physical Chemistry Chemical Physics, 8, 2385- 2395, 2006. [69] Gennari, F. C., Montini, T., Hickey, N., Fornasiero P.,Graziani, M. IR investigation of the interaction of deuterium with Ce0.6Zr0.4O2 and Cl-doped Ce0.6Zr0.4O2. Applied Surface Science, 252, 8456-65. 2006. [70] Alessandri, I., Bañares, M., Ferroni, M., Depero. L. E., Fornasiero, P., Gennari, F. C., Hickey, N., Martinez-Huerta, M., Montini, T. Structural investigation of Ce2Zr2O8 after redox treatments which lead to low temperature reduction. Topics in Catalysis, 41, 35-42, 2006. [71] Gennari, F.C. , Neyertz, C., Meyer, G., Fornasiero P., Graziani, M. Kinetics of hydrogen chemisorption on high surface area Pd/Ce0.8Zr0.2O2 . Journal of Alloys and Compounds, 404-406, 317-322, 2005. [72] Frusteri, F., Freni, S., Chiodo V., Donato, S., Bonura, G., Cavallaro, S. Steam and auto-thermal reforming of bio-ethanol over MgO and CeO2 Ni supported catalysts. International Journal of Hydrogen Energy, 31, 2193–2199, 2006. [73] Profeti, L. P.R., Ticianelli, E. A., Assaf, E. M. Production of hydrogen via steam reforming of biofuels on Ni/CeO2–Al2O3catalysts promoted by noble metals. International Journal of Hydrogen Energy, 34, 5049–5060, 2009. [74] Fajardo, H. V., Probst, L. F. D., Carreño, N., Garcia, I. T. S., Valentini, A. Hydrogen Production from Ethanol Steam Reforming Over Ni/CeO2 Nanocomposite Catalysts. Catal Lett, 119, 228–236, 2007. [75] Biswas, P., Kunzru, D. Steam reforming of ethanol for production of hydrogen over Ni/CeO2–ZrO2 catalyst: Effect of support and metal loading. International Journal of Hydrogen Energy, 32, 969 – 980, 2007. [76] Garbarino, G. et al. Spectroscopic characterization of Ni/Al2O3catalytic materials for the steam reforming of renewables. Applied Catalysis A: General, 452, 163– 173, 2013. [77] Galetti, A., Gómez, M., Arrúa, L., Abello, M. C. Ni catalysts supported on modified ZnAl2O4 for ethanol steam reforming, Applied Catalysis A: General, 380, 40- 47, 2010. [78] Wu, W. et al. Steam Reforming of Ethanol on Ni/CeO2: Reaction Pathway and Interaction between Ni and the CeO2 Support. ACS Catal. 3, 975−984, 2013. [79] Leofanti, G., Padovan, M., Tozzola, G. Venturelli, B. Surface area and pore texture of catalysts. Catalysis Today, 41, 207-219, 1998. [80] Sing, K. S. W. et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity . Pure & Appl. Chem., 57, 603-619, 1985. [81] Rouquerol J. et al. Recommendations for the characterization of porous solids. Pure & Appl. Chem., 66, 1739-1758, 1994. [82] Webb J.A., Orr, C. Analytical methods in fine particle technology. 1a Ed. USA: Micromeritics Instrument Corp., 2007. [83] Sapag K., Villarroel Rocha, J. Curso: caracterización textural de sólidos mediante adsorción de gases. Clase 6. IB-CAB-UNCu. Bariloche 2012. [84] ASAP 2020 Accelerated Surface Area and Porosimetry System. Operator´s Manual. V3.04. 202-42801-01. Micromeritics Instrument Corporation, 2009. [85] Greeg, S.J., Sing, K. S. W. Adsorption, Surface Area and Porosity. 2a Ed. London: Academic Press Inc.1982. [86] Williams, D. V., Carter, C. B. Transmission Electron Microscopy, A Textbook for Materials Science. 1a Ed. USA: Springer Science Business Media. 2009 [87] Brundle C. R., Evans, Jr., C. A., Wilson S. Encyclopedia of materials characterization, surfaces, interfaces, thin films. 1a Ed. USA: Butxetworch-Heinemann. 1992. [88] Cullity, D.B., Stock S.R. Element of X – Ray Diffraction. 1ra ed. Massachusetts: Addison-Wesley, 1956. [89] Goldstein, J. I. et al. Scanning Electron Microscopy and X-Ray Microanalysis. 3ra ed. New York : Kluwer Academic/Plenum Publishers, 2003. [90] Langford, J. I., Delhez, R. D. E., Keijser, Th. H., Mittemeijer, E. J. Profile analysis for microcrystalline properties by the Fourier and other methods. Australian Journal of Physics, 41, 173-187, 1988. [91] Hastings, J.B., Thomlinson, W., Cox, D.E. Synchrotron X-Ray Powder Diffraction. Journal of Applied Crystallography, 17, 85-95, 1984. [92] Laugier, J., Bochu, B. LMGP-Suite Suite of Programs for the interpretation of Xray Experiments, ENSP/Laboratoire des Matériaux et du Génie Physique, BP 46. 38042 Saint Martin d'Hères, France. WWW: http://www.ccp14.ac.uk/tutorial/lmgp/. [93] Hatakeyama, T., Quinn, F.X. Thermal Analysis. Chichester: John Wiley & Sons Ltd, 1994. [94] TA Instrument, DSC 2910 Differential Scanning Calorimeter Operator´s Manual. New Castle, DE 19720, 2000. [95] Smith, Brian. Fundamentals of Fourier Transform Infrares Spectroscopy. 1a Ed., US: CRC Press, 1996. [96] Duval C. Inorganic termogravimetric analysis. 2a Ed. USA. Elsevier publishing company, 1963. [97] Monti, D., Baker, A. Temperature-Programmed Reduction. Parametric Sensitivity and Estimation of Kinetic Parameters. Journal of Catalysis, 83, 323-335, 1983. [98] Gatica, J.M., Baker, R., Fornasiero, P., Bernal, S., Kaspar, J. Characterization of the Metal Phase in NM/Ce0.68Zr0.32O2 (NM: Pt and Pd) Catalysts by Hydrogen Chemisorption and HRTEM Microscopy: A Comparative Study. J. Phys.Chem. B. 105, 1191–1199, 2001. [99] Bensalem, A. Bozon-Verduraz, F., Perrichon, V. Palladium-ceria catalysts: Reversibility of hydrogen chemisorption and redox phenomena. Journal of the Chemical Society, Faraday Transactions, 91, 2185-2189, 1995. [100] Bernal, S., Calving, J.J., Cifredo, G.A., Rodríguez-Izquierdo, J.M., Perrichon, V., Laachir, A. The key role of highly dispersed rhodium in the chemistry of hydrogen-ceria systems. Journal of the Chemical Society, Chemical Communications, 6, 460-462, 1992. [101] Bernal, S., Calving, J.J., Cifredo, G.A., Rodríguez-Izquierdo, J.M., Perrichon, V., Laachir, A. Reversibility of hydrogen chemisorption on a ceria-supported rhodium catalyst. Journal of Catalysis, 137, 1-11, 1992. [102] Mihaylov, M., Ivanova, E., Hadjiivanov, K. Nature of the Polycarbonyl Species on Ru/ZrO2: Reassignment of Some Carbonyl Bands. The Journal of Physical Chemistry C, 115, 13860–13867, 2011. [103] Takeguchi, T. et al. Determination of dispersion of precious metals on CeO2- containing supports. Applied Catalysis A: General, 293, 91–96, 2005. [104] Levenspiel, O. Ingeniería de las reacciones químicas. 2a Ed. New York: John Waley and Sons, 1987. [105] Couper, J., Penney, W., Fair, J. Chemical Process Equipment Selection and Design. 3a Ed. USA. Butterworth Heinemann. 2012 [106] Galetti, A. Catalizadores para la obtención de hidrógeno: preparación, caracterización y actividad catalítica en la reacción de reformado de etanol. Tesis de Doctorado. Universidad Nacional de San Luis, 2009. [107] Montini, T. Progettazione di materiali catalitici per celle a combustibile. Tesis de Doctorado. Università degli studi di Trieste, 2006. [108] Ozawa, M., Kimura, M., Sobukawa, H., Yokota, K. Highly Thermal-resistant Three-way Catalyst. R & D Review of Toyota CRDL, 27 43-53. 1992. [109] Laachir, A. et al. Reduction of CeO2 by hydrogen. Magnetic susceptibility and Fourier-transform infrared, ultraviolet and X-ray photoelectron spectroscopy measurements. Journal of the Chemical Society, Faraday Transactions, 87, 1991. [110] Otsuka-Yao, S., Morikawa, H., Izu, N., Okuda, K. Oxygen evolution properties of CeO2-ZrO2 powders as automotive exhaust sub-catalysts and the phase diagrams. Journal of the Japan Institute of Metals, 59, 1237-1246, 1995. [111] Izu, N., Omata, T., Otsuka-Yao-Matsuo, S. Oxygen release behaviour of Ce(1- x)ZrxO2 powders and appearance of Ce(8-4y)Zr4yO(14-δ) solid solution in the ZrO2-CeO2- CeO1.5 system. Journal of Alloys and Compounds, 270, 107-114, 1998. [112] Omata, T., Kishimoto, H., Otsuka-Yao-Matsuo, S., Ohtori, N., Umesaki, N. Vibrational Spectroscopic and X-Ray Diffraction Studies of Cerium Zirconium Oxides with Ce/Zr Composition Ratio = 1 Prepared by Reduction and Successive Oxidation of t′-(Ce0.5Zr0.5)O2 Phase. Journal of Solid State Chemistry,147, 573-583, 1999. [113] Kishimoto, H., Omata, T., Otsuka-Yao-Matsuo, S., Ueda, K., Hosono, H., Kawazoe, H. Crystal structure of metastable κ-CeZrO4 phase possessing an ordered arrangement of Ce and Zr ions. Journal of Alloys and Compounds, 312, 94-103, 2000. [114] Fornasiero, P. et al. Rh-Loaded CeO2-ZrO2 Solid Solutions as Highly Efficient Oxygen Exchangers: Dependence of the Reduction Behavior and the Oxygen Storage Capacity on the Structural Properties. Journal of Catalysis, 151, 168-177, 1995. [115] Fornasiero, P. et al. Modification of the Redox Behaviour of CeO2 Induced by Structural Doping with ZrO2, Journal Of Catalysis, 164,173–183, 1996. [116] Vlaic, G., Fornasiero, P., Geremia, S., Kaspar, J., Graziani, M. Relationship between the zirconia-promoted reduction in the Rh-loaded Ce0.5Zr0.5O2 mixed oxide and the Zr-O local structure. Journal of Catalysis, 168, 386-392, 1997. [117] Vlaic, G., Di Monte, R., Fornasiero, P., Fonda, E., Kaspar, J., Graziani, M. Redox property-local structure relationships in the Rh-loaded CeO2-ZrO2 mixed oxides. Journal of Catalysis, 182, 378-389, 1999. [118] Fornasiero, P., Fonda, E., Di Monte, R., Vlaic, G., Kaspar, J., Graziani, M. Relationships between structural/textural properties and redox behavior in Ce0.6Zr0.4O2 mixed oxides. Journal of Catalysis, 187, 177-185, 1999. [119] Trovarelli, A., Zamar, F., Llorca, J., de Leitenburg, C., Dolcetti G., Kissz, J. Nanophase Fluorite-Structured CeO2–ZrO2 Catalysts Prepared by High-Energy Mechanical Milling. Journal Of Catalysis, 169, 490–502, 1997. [120] Chen, Y.L., Qi, M., Yang, D.Z., Wu, K.H. Mechanical alloying of ceramics in zirconia-ceria system. Materials Science and Engineering A, 183, L9-L12, 1994. [121] Suda, A., Kandori, T., Terao, N., Ukyo, Y., Sobukawa, H., Sugiura, M. Formation of CeO2-ZrO2 solid solution during attrition milling of CeO2 powder. Journal of Materials Science Letters, 17, 89-90, 1998. [122] Suryanarayana, C. Mechanical Alloying and Milling. 1a Ed. New York: Marcel Dekker, 2004. [123] Erlt, G., Knözinger, H. Weitkamp, J. Preparation of Solid Catalysts. 1a Ed. Germany: Willey-VCH, 1999. [124] Mul, G., Moulijn, J. Preparation of supported catalysts. En: Anderson, J. Fernández García, M. Supported Metals in Catalysi. 1a Ed: Singapur: Imperial College Press, 2005, 1-40. [125] Feng, R., Yang, X., Ji, W., Au, C. Hydrothermal synthesis of stable mesoporous ZrO2–Y2O3 and CeO2–ZrO2–Y2O3 from simple inorganic salts and CTAB template in aqueous medium. Materials Chemistry and Physics, 107, 132–136, 2008. [126] Oh, M., Nho, J., Cho, S., Lee, J., Singh, R. Novel method to control the size of well-crystalline ceria particles by hydrothermal method. Materials Chemistry and Physics, 124, 134–139, 2010. [127] Sato, T., Dosaka, K., Yoshioka, T., OkumakiA Sintering of Ceria-Doped Tetragonal Zirconia Crystallized in Organic Solvents, Water, and Air. J.Am.Ceram.Soc,75, 552-556, 1992. [128] Dikmen, S., Shuk, P., Greenblatt, M. Hydrothermal synthesis and properties of Ce1-xLaxO2-δ solid solutions. Solid State Ionics, 126, 89-95, 1999. [129] Spuuterin R. Behrisch (ed.) (1981). Sputtering by Particle bombardment, Springer, Berlin. ISBN 978-3540105213. [130] Schenkel, T., Briere, M. A., Schmidt-Böcking, H., Bethge, K., Schneider, D. H. Electronic Sputtering of Thin Conductors by Neutralization of Slow Highly Charged Ions. Physical Review Letters, 78, 2481- 2484, 1997. [131] Dodd, A.C., Tsuzuki, T., McCormick. P.G. Nanocrystalline zirconia powders synthesised by mechanochemical processing. Materials Science and Engineering A, 301, 54-58, 2001. [132] Zhang, Y., Andersson, S., Muhammed, M. Nanophase catalytic oxides: I. Synthesis of doped cerium oxides as oxygen storage promoters. Applied Catalysis B, Environmental, 6, 325-337, 1995. [133] Sergent, N. Lamonier, J.-F. Aboukaïs, A. Electron paramagnetic resonance in combination with the thermal analysis, X-ray diffraction, and Raman spectroscopy to follow the structural properties of ZrxCe1-xO2 solid systems and precursors. Chemistry of Materials, 12, 3830-3835, 2000. [134] Bozo, C., Guilhaume, N., Garbowski, E., Primet, M. Combustion of methane on CeO2-ZrO2 based catalysts. Catalysis Today, 59, 33-45, 2000. [135] Masui, T., Peng, Y., Machida, K.-I., Adachi, G.-Y. Reduction behavior of CeO2- ZrO2 solid solution prepared from cerium zirconyl oxalate. Chemistry of Materials, 10, 4005-4009, 1998. [136] Kawabata, A., Hirano, S., Yoshinaka, M., Hirota, K., Yamaguchi, O. Solid solutions of metastable tetragonal ZrO2 and Ce3ZrO8 in the system ZrO2-CeO2. Journal of Materials Science, 31, 4945-4949, 1996. [137] Changming, C., Yongxiu, L., Xuezhen, Z., Weifan, C. Preparation of Well Dispersed and Ultra-Fine Ce( Zr) O2 Mixed Oxide by Mechanochemical Processing. Journal of Rare Earths, 22, 775-779, 2004. [138] Morozova, L.V., Lapshin, A.E., Panova, T.I., Glushkova, V.B. Mechanochemical synthesis of ZrO2-CeO2 solid solutions. Inorganic Materials, 38, 153-158, 2002. [139] Li, Y., Chen, W., Zhou, X., Gu, Z., Chen, C. Synthesis of CeO2 nanoparticles by mechanochemical processing and the inhibiting action of NaCl on particle agglomeration. Materials Letters, 59, 48 – 52, 2005. [140] Y.X. Li, X.Z. Zhou, Y. Wang, X.Z. You, Preparation of nano-sized CeO2 by mechanochemical reaction of cerium carbonate with sodium hydroxide. Materials Letters, 58, 245, 2003. [141] Gopalan, S., Singhal, S.C. Mechanochemical synthesis of nano-sized CeO2. Scripta Materialia, 42, 993 – 996, 2000. [142] Tsuzuki, T., McCormick, P.G. Synthesis of Ultrafine Ceria Powders by Mechanochemical Processing. Journal of the American Ceramic Society, 84, 1453- 1458, 2001. [143] Dodd, A.C., McCormick, P.G., Synthesis of nanoparticulate zirconia by mechanochemical processing. Scripta Materialia, 44, 1725-1729, 2001. [144] Dodd, A. C., Raviprasad, K., McCormick. P.G. Synthesis of ultrafine zirconia powders by mechanochemical processing. Scripta Materialia, 44, 689 – 694, 2001. [145] Dodd, A.C., McCormick, P.G. Solid-state chemical synthesis of nanoparticulate zirconia. Acta Materialia, 49, 4215-4220, 2001. [146] Livage, J., Doi, K., Maziêres, C. Nature and Thermal Evolution of Amorphous Hvdrated Zirconium Oxide. Journal of the American Ceramic Society, 51, 349-353, 1968. [147] Gutzov, S., Ponahlo, J., Lengauer, C.L., Beran, A. Phase Characterization of Precipitated Zirconia. Journal of the American Ceramic Society, 77, 1649-1652. 1994. [148] Merle-Mejean, T., Barberis, P., Ben Othmane, S., Nardou, F., Quintard, P.E. Chemical forms of hydroxyls on/in zirconia: An FT-IR study. Journal of the European Ceramic Society, 18, 1579-1586, 1998. [149] H.S.C. Outokumpu, Chemistry For Windows, Version 6.1. Outokumpu Research Oy, Finland, 2009. [150] Lin, R., Liu, W., Zhong, Y., Luo, M. Catalyst characterization and activity of Ag– Mn complex oxides. Applied Catalysis A: General, 220, 165–171, 2001. [151] Choque, V., Ramírez, P., Molyneux, D., Homs, N. Ruthenium supported on new TiO2–ZrO2 systems as catalysts for the partialoxidation of methane. Catalysis Today, 149, 248–253, 2010. [152] Zuzek, E., Abriata, J.P., San Martin, A., Manchester, F.D.. Phase Diagrams of Binary Hydrogen Systems. ASM International, Materials Park, OH, 309–322, 2000. [153] Carroll, J.J., Haug, K.L., Weisshaar, J.C., Blomberg, M.R.A. Siegbahn, P.E.M. Svensson, M. Gas Phase Reactions of Second-Row Transition Metal Atoms with Small Hydrocarbons: Experiment and Theory. J. Phys. Chem., 99, 13955–13969, 1995. [154] Zhong, Z., Ang, H., Choong, C., Chen, L., Huang, L., Lin, J. The role of acidic sites and the catalytic reaction pathways on the Rh/ZrO2 catalysts for ethanol steam reforming. Phys. Chem. Chem. Phys., 11, 872-880, 2009. [155] Sauvet, A.L., Fouletier, J. Properties of new anode materials for solid oxide fuel cells operated under methane at intermediary temperature. Journal of Power Sources, 101, 259–266, 2001. [156] Rabe, S.. Truong, T., Vogel. F., Low temperature catalytic partial oxidation of methane for gas-to-liquids applications. Applied Catalysis A: General, 292, 177–188, 2005. [157] Bernal, S., Calvino, J.J., Cifredo, G.A., Laachir, A., Perrichon, V., Herrmann, J.M. Influence of the Reduction/Evacuation Conditions on the Rate of Hydrogen Spillover on Rh/CeO2 Catalysts. Langmuir,10, 717–722, 1994. [158] Fornasiero, P. , Kaspar, J., Sergo, V., Graziani, M. Redox behavior of highsurface- area Rh-, Pt-, and Pd-loaded Ce0.5Zr0.5O2 mixed oxide. Journal of Catalysis, 182, 56-69, 1999. [159] Takeguchi, T., Furukawa, S., Inoue, M. Hydrogen Spillover from NiO to the Large Surface Area CeO2–ZrO2 Solid Solutions and Activity of the NiO/CeO2–ZrO2 Catalysts for Partial Oxidation of Methane. Journal of Catalysis, 202, 14-24, 2001. [160] Perrichon, V., Laachir, A., Abouarnadasse, S., Touret, O., Blanchard, G. Thermal stability of a high surface area ceria under reducing atmosphere. Applied Catalysis A, 129, 69-82, 1995. [161] Bernal, S., Calvino, J.J., Cauqui, M.A., Gatica, J.M., Larese, C., Pérez Omil, J.A., Pintado, J.M. Some recent results on metal/support interactions effects on NM/CeO2 (NM: noble metal). Catalysts Today,50, 175-206, 1999. [162] Galetti, A., Gomez, M., Arrúa, L., Abello, M. C. Hydrogen production by ethanol reforming over NiZnAl catalysts: Influence of Ce addition on carbon deposition. Applied Catalysis A: General, 348 , 94–102, 2008. [163] Kim, K. S., Barteau, M. A. Structure and composition requirements for deoxygenation, dehydration, and ketonization reactions of carboxylic acids on TiO2(001) single-crystal surfaces. Journal of Catalysis, 125,353-375, 1990. [164] Pestman, R., Koster, R. M., Boellaard, E., Van der Kraan,M., Ponec, V. Identification of the Active Sites in the Selective Hydrogenation of Acetic Acid to Acetaldehyde on Iron Oxide Catalysts. Journal of Catalysis 174,142–152, 1998. [165] Grootendorst, E. J., Pestman, R., Koster, R. M., Ponec, V. Selective Reduction of Acetic Acid to Acetaldehyde on Iron Oxides. Journal of Catalysis, 148, 261-269, 1994. [166] Sánchez, M.D., Moreno, M.S., Costilla, I., Gigola, C.E. Characterization of carbon nanofibers produced in the reforming of CH4 with CO2 over supported Pd. Catalysis Today, 133–135, 842–845, 2008. [167] Busca, G., Montanari, T., Resini, C., Ramis, G., Costantino, U. Hydrogen from alcohols: IR and flow reactor studies. Catalysis Today, 143, 2–8, 2009.
Materias:Química > Química analítica
Física > Física de materiales
Química > Química física
Divisiones:Gcia. de área de Aplicaciones de la tecnología nuclear > Gcia. de Investigación aplicada > Fisicoquímica de materiales
Código ID:484
Depositado Por:Marisa G. Velazco Aldao
Depositado En:17 Abr 2015 15:55
Última Modificación:20 Abr 2015 12:04

Personal del repositorio solamente: página de control del documento