Diseño de reactores de investigación con combustibles de UMO monolítico o disperso de alta performance . / Design of high performance research reactors with monolithic or dispersed fuel.

Acosta, Francisco (2015) Diseño de reactores de investigación con combustibles de UMO monolítico o disperso de alta performance . / Design of high performance research reactors with monolithic or dispersed fuel. Proyecto Integrador Ingeniería Nuclear, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF
Español
4Mb

Resumen en español

En el presente trabajo se desarrolla el diseño conceptual del núcleo de un reactor de alta performance, orientado a satisfacer la creciente demanda de reactores para la producción radioisótopos de usos médicos e industriales, y para el ensayo de combustibles y materiales para las futuras centrales nucleares de potencia. Para llevarlo a cabo se abarcaron aspectos neutrónicos y termohidráulicos. Se utilizaron combustibles de UMo, con alta densidad de uranio, ya que permiten alcanzar mayores rendimientos que los combustibles de menor densidad. Se determino que la variante monolítica del UMo es la mas adecuada para este tipo de reactores, por lo que se la empleo para el diseño de un elemento combustible de tipo placas paralelas. Se adopto un diseño de tipo tanque en pileta, levemente presurizado, y refrigerado por agua liviana con caudal descendente. Se diseño un núcleo con posiciones de irradiación In-Core y se uso una pileta de agua pesada como reflector, ya que esto permite tener gran flexibilidad al momento de posicionar dispositivos experimentales o facilidades de irradiación Ex-Core. Dentro del tanque, se utilizaron reflectores de berilio. Además, se analizaron dos diseños de núcleo con diferentes sistemas de extinción. En primer lugar, se evaluó un núcleo con cajas guía y barras de control como sistema de extinción, cuya principal ventaja resulto ser el elevado quemado de extracción de los elementos combustibles alcanzado. En segundo lugar, se estudió un núcleo con un sistema de parada constituido por elementos combustibles de control y absorbentes seguidores, que dio lugar a un margen de apagado mucho mayor que el obtenido en el primer caso. En este caso, además, pudo incorporarse una facilidad de irradiación con la que se obtuvo un nivel de flujo térmico de 1E15 n/cm"2 s, necesario para la producción de determinados radioisótopos de interés medicinal. Esta segunda configuracion de núcleo, sin embargo, tiene un costo de operación mayor al del primer núcleo evaluado.

Resumen en inglés

This thesis explores the conceptual design of the core of a high performance research reactor that is designed to satisfy the growing demand for reactors in the production of radioisotopes for medical and industrial purposes and includes the analysis of both neutronic and termal-hydraulic aspects of the design. This reactor can also be used to test fuels and materials for future nuclear power plants. I used UMo fuels, with high uranium density, because they demonstrate greater performance that lower uranium density fuels do. After conducting a research I found that the monolithic form of the UMo fuel is the most suitable for this type of reactor, which is why it was used to design a parallel-plates fuel assembly . I implemented a slightly pressurized tank in pool design, cooled by light water with downward ow. In addition, I designed a core with In-Core irradiation positions with a heavy water re ector pool, which provides great exibility to the Ex-Core facilities location. Inside the tank, I used beryllium as re ector. I also studied two cores with dierent shutdown systems. Firstly, one with guide boxes and control rods and, secondly, another one with control fuel elements and follower absorbers. The main advantage of the rst core is that it results in a very high fuel element extraction burnup. The second core, on the other hand, gave place higher neutronic safety margins that those attained with the rst one. In addition, it made possible the use of an irradiation facility with which a neutron ux of 1E15 n/cm2s was obtained, which is critical to the production of certain radioisotopes that are frequently used in medicine. This second core conguration, however, has a higher operation cost than that of the rst core.

Tipo de objeto:Tesis (Proyecto Integrador Ingeniería Nuclear)
Información Adicional:Área temática: Diseño de reactores.
Palabras Clave:Research reactors; Reactores de investigación; [High perfomance; Alto rendimiento; UMo fuels; Combustible UMo; High uranium density; Alta densidad de uranio]
Referencias:[1] Rertr.anl.gov, (n.d.). Reduced Enrichment for Research and Test Reactors (RERTR) [Nonproliferation]. [online] Available at: http://www.rertr.anl.gov/ [Accessed 7 Apr. 2015]. [2] VAN DEN BERGHE, S. and LEMOINE, P. (2014). REVIEW OF 15 YEARS OF HIGHDENSITY LOW-ENRICHED UMo DISPERSION FUEL DEVELOPMENT FOR RESEARCH REACTORS IN EUROPE. Nuclear Engineering and Technology, 46(2), pp.125-146. [3] Van Den Berghe, S., Leenaers, A., Koonen, E., Moons, F. and Sannen, L. (2010). From High- Enriched to Low-Enriched Uranium Fuel in Research Reactors. Revue Generale Nucleaire, (6), pp.82-89. [4] Glaser A. (2004) Monolithic Fuel and High- ux Reactor Conversion. 26th International Meeting on Reduced Enrichment for Research and Test Reactors. [5] Stevens, J. (2010). Technical Challanges for Conversion of U.S High-Performance Research Reactors (USHPRR). [6] Villarino E. (2013) Core performance imporvements using high density fuel in research reactors. Europe Research Reactor Conference. [7] Cheverton, R. D. Reactor Desing and Feasibility Problem: High Flux Research Reactor. Inf. tec., OAK Ridge School of Reactor Technology, 1956 [8] Villarino, E. and Doval, A. (2011). INVAP's Research Reactor Designs. Science and Technology of Nuclear Installations, 2011, pp.1-6. [9] IAEA, (2015). RRDB Search. [online] Nucleus.iaea.org. Available at: http://nucleus.iaea.org/RRDB/RR/ReactorSearch.aspx?rf=1 [Accessed 2 Jun. 2015]. [10] Mochi, I. (2011). INVAP's Nuclear Calculation System. Science and Technology of Nuclear Installations, 2011, pp.1-7. [11] Doval, A. (2012) Criterios de dise~no termohidraulico. Inf. tec. [12] Autoridad regulatoria nuclear. Diseño de reactores de investigacion. Norma AR 4.2.2. 2002. [13] Autoridad regulatoria nuclear. Diseño de reactores de investigacion. Gua AR 4.2003. [14] Hilal R. (2012) Analisis determinista de seguridad de reactores de investigacon. Tesis de maestra en ingeniera. [15] MEYER, M., GAN, J., JUE, J., KEISER, D., PEREZ, E., ROBINSON, A., WACHS, D., WOOLSTENHULME, N., HOFMAN, G. and KIM, Y. (2014). IRRADIATION PERFORMANCE OF U-Mo MONOLITHIC FUEL. Nuclear Engineering and Technology, 46(2), pp.169-182. [16] Burkes D. E., Mickum G. S., Wachs D. M. Thermophysical properties of U-10Mo Alloy.Inf. tec. Idaho National Laboratory. [17] Lemoine P., Wachs D. (2007) High Density Fuel Development for Research Reactors. IAEA International Conference on Research Reactors. [18] Kim, Y., Hofman, G., Robinson, A., Snelgrove, J. and Hanan, N. (2008). Oxidation of aluminum alloy cladding for research and test reactor fuel. Journal of Nuclear Materials, 378(2), pp.220-228. [19] Amzon, (2015). Zircaloy-4(Alloy Zr4) (UNS R60804). [online] Azom.com. Available at: http://www.azom.com/article.aspx?ArticleID=7644 [Accessed 5 Jun. 2015]. [20] Tomberlin T.A. (2004) Beryllium - A Unique Material In Nuclear Applications. 36th International SAMPE Technical Conference. Idaho National Engineering and Envitomental Laboratory. [21] Miller, D. (1960). Critical Flow Velocities for Collapse of Reactor Parallel-Plate Fuel Assemblies. Journal of Engineering for Power, 82(2), p.83. [22] Beliera J. I. (2014) Dise~no Conceptual de un Reactor de Investigacion con Combustibles de UMo Monoltico. Proyecto integrador de la carrera Ingeniera Nuclear. [23] Pasqualini, E. (2006). ADVANCES AND PERSPECTIVES IN U-MO MONOLITHIC AND DISPERSED FUELS. [24] Glasstone, S. and Sesonske, A. (1994). Nuclear reactor engineering. New York, NY: Chapman & Hall. [25] Villarino E. Usage of Burnable Poison On Research Reactors. [26] Hosoya T., Kata T., Murayama Y. Investigation of JRR-3 Control Rod Worth Change with Burn-up of Follower Fuel Elements. [27] Ponsard, B., Hiltunen, J. and Penttilla, P. (2003). The tungsten-188/rhenium-188 generator. Eective coordination of tungsten-188 production between the HFIR and BR2 reactors. [online] Inis.iaea.org. Available at: https://inis.iaea.org/search/search.aspx?origq=RN:34079168 [Accessed 1 Jun. 2015]. [28] Binder J. L. (2009) Isotope Production at Oak Ridge National Laboratory. 2nd International Symposium on Material Test Reactor. [29] Argyrou, M., Valassi, A., Andreou, M. and Lyra, M. (2013). Rhenium-188 Production in Hospitals, by W-188/Re-188 Generator, for Easy Use in Radionuclide Therapy. International Journal of Molecular Imaging, 2013, pp.1-7.
Materias:Ingeniería nuclear > Ingeniería de reactores
Divisiones:INVAP
Código ID:511
Depositado Por:Marisa G. Velazco Aldao
Depositado En:27 Oct 2015 11:35
Última Modificación:27 Oct 2015 14:17

Personal del repositorio solamente: página de control del documento