Potencial exacto de Kohn-Sham para sistemas finitos fuertemente correlacionados. / Exact Kohn-Sham potential for strongly correlated finite systems.

Benítez Moreno, Luis A. (2015) Potencial exacto de Kohn-Sham para sistemas finitos fuertemente correlacionados. / Exact Kohn-Sham potential for strongly correlated finite systems. Maestría en Ciencias Físicas, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
4Mb

Resumen en español

Se estudian las características esenciales del potencial exacto de Kohn-Sham (KS) en sistemas finitos fuertemente correlacionados. Se presenta el potencial de Kohn-Sahm (KS) en el límite de disociación para moléculas homodiatómicas descriptas mediante un modelo simplificado unidimensional de electrones interactuantes en presencia de un potencial externo, que sin embargo captura las propiedades físicas esenciales del sistema original. Se presenta el potencial exacto de KS para un sistema con número fraccionario de partículas y se estudia su comportamiento en el límite de disociación. En este esquema también se presenta el potencial exacto de intercambio y correlación y se discuten sus propiedades, particularmente el salto discontinuo al pasar por un número de partículas igual a la unidad. Además, se presenta un esquema de cálculo que permite separar todas las contribuciones del potencial de KS. Finalmente se analiza el potencial exacto de KS para moléculas heterodiatómicas descriptas mediante el mismo modelo unidimensional en el cual se permiten ocupaciones fraccionarias 0 ≤N ≤ 2 y se discute sus propiedades en el límite de disociación. Se discute cómo obtener generalizar los correspondientes resultados en el caso tridimensional, en el límite de disociación.

Resumen en inglés

We study exact features of the Kohn-Sham (KS) potential of strongly correlated finite systems. We present the exact KS potential in the dissociation limit of homodiatomic molecules. The molecules are described with a one dimensional model of two equal one-electron atoms. This model still contains all the essential physical ingredients of the original problem. We present the exact KS potential for a system with a non-integer particle number and we study the main features of it in the dissociation limit. We also show the exact exchange-correlation potential and we discuss the features of this potential as the particle number crosses one. We present a scheme for the spliting of contributions to the KS potential. Finally, we analize the exact KS potential of heterodiatomic molecules which are describe with the same one dimensional model as before, with a non-integer particle number 0 ≤ N ≤ 2 . We show how to generalize these results to the realistic threedimensional case, in the dissociating limit.

Tipo de objeto:Tesis (Maestría en Ciencias Físicas)
Información Adicional:Área temática: Teoría de la densidad funcional.
Palabras Clave:Density functional method; Método de densidad funcional; Molecules; Moleculas; Dissociation; Disociación; Electrons; Electrones; [Density functional theory; Teoría funcional de la densidad; Kohn-Sham Systems; Potencial Kohn-Sham; Finite Systems; Sistemas finitos; Dissociation limit; Límite de disociación; Fractional occupations; Ocupaciones fraccionarias]
Referencias:[1] Parr, R. G., Yang, W. Density-functional theory of atoms and molecules, tomo 16. Oxford university press, 1989. [2] Hohenberg, P., Kohn, W. Inhomogeneous electron gas. Phys. Rev., 136, B864– B871, Nov 1964. [3] Kohn, W., Sham, L. J. Self-consistent equations including exchange and correlation e↵ects. Phys. Rev., 140, A1133–A1138, Nov 1965. URL http://link.aps. org/doi/10.1103/PhysRev.140.A1133. [4] Cohen, A. J., Mori-S´anchez, P., Yang, W. Insights into current limitations of density functional theory. Science, 321 (5890), 792–794, 2008. URL http://www. sciencemag.org/content/321/5890/792.abstract. [5] Cáceres, M. O. Elementos de estadistica de no equilibrio y sus aplicaciones al transporte en medios desordenados. Revert´e, 2003. [6] Ashcroft, N. W., Mermin, N. D. Solid State Physics, tomo 2. 1976. URL http: //www.amazon.com/Solid-State-Physics-Neil-Ashcroft/dp/0030839939. [7] Kohn, W. Nobel lecture: Electronic structure of matter¯wave functions and density functionals. Rev. Mod. Phys., 71, 1253–1266, Oct 1999. URL http://link.aps. org/doi/10.1103/RevModPhys.71.1253. [8] Perdew, J. P., Parr, R. G., Levy, M., Balduz, J. L. Density-functional theory for fractional particle number: Derivative discontinuities of the energy. Phys. Rev. Lett., 49, 1691–1694, Dec 1982. URL http://link.aps.org/doi/10.1103/ PhysRevLett.49.1691. [9] Perdew, J. P., Kurth, S. Density functionals for non-relativistic coulomb systems. En: Density functionals: Theory and applications, p´ags. 8–59. Springer, 1998. [10] Helbig, N., Tokatly, I. V., Rubio, A. Exact kohn–sham potential of strongly correlated finite systems. J. Chem. Phys., 131 (22), 224105, 2009. URL http:// scitation.aip.org/content/aip/journal/jcp/131/22/10.1063/1.3271392. [11] Becke, A. D. Densityfunctional thermochemistry. iii. the role of exact exchange. J. Chem. Phys., 98 (7), 5648, 1993. URL http://scitation.aip.org/content/ aip/journal/jcp/98/7/10.1063/1.464913. [12] Lee, C., Yang, W., Parr, R. G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 37, 785–789, Jan 1988. URL http://link.aps.org/doi/10.1103/PhysRevB.37.785. [13] Perdew, J. P., Burke, K., Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett., 77, 3865–3868, Oct 1996. URL http://link.aps.org/ doi/10.1103/PhysRevLett.77.3865. [14] Fuchs, M., Niquet, Y.-M., Gonze, X., Burke, K. Describing static correlation in bond dissociation by kohn–sham density functional theory. J. Chem. Phys., 122 (9), 094116, 2005. URL http://scitation.aip.org/content/aip/ journal/jcp/122/9/10.1063/1.1858371. [15] Tempel, D. G., Mart´ınez, T. J., Maitra, N. T. Revisiting molecular dissociation in density functional theory: A simple model. J. Chem. Theory and Comput., 5 (4), 770–780, 2009. URL http://dx.doi.org/10.1021/ct800535c. [16] Pauling, L., Wilson, E. B. Introduction to quantum mechanics: with applications to chemistry. Courier Corporation, 1985. [17] Girardeau, M. Relationship between systems of impenetrable bosons and fermions in one dimension. J Math. Phys., 1 (6), 1960. [18] Buijse, M. A., Baerends, E. J., Snijders, J. G. Analysis of correlation in terms of exact local potentials: Applications to two-electron systems. Phys. Rev. A, 40, 4190–4202, Oct 1989. URL http://link.aps.org/doi/10.1103/PhysRevA.40. 4190. [19] van Leeuwen, R., Baerends, E. J. Exchange-correlation potential with correct asymptotic behavior. Phys. Rev. A, 49, 2421–2431, Apr 1994. URL http:// link.aps.org/doi/10.1103/PhysRevA.49.2421. [20] Gritsenko, O. V., Leeuwen, R. v., Baerends, E. J. Molecular exchange-correlation kohn-sham potential and energy density from abinitio first- and second-order density matrices: Examples for xh (x=li, b, f). The Journal of Chemical Physics, 104 (21), 1996. [21] Ke, S.-H., Baranger, H. U., Yang, W. Role of the exchange-correlation potential in ab initio electron transport calculations. The Journal of Chemical Physics, 126 (20), 201102, 2007. URL http://scitation.aip.org/content/aip/ journal/jcp/126/20/10.1063/1.2743004. [22] Perdew, J. P., Levy, M. Physical content of the exact kohn-sham orbital energies: Band gaps and derivative discontinuities. Phys. Rev. Lett., 51, 1884–1887, Nov 1983. URL http://link.aps.org/doi/10.1103/PhysRevLett.51.1884. [23] Zahariev, F. E., Wang, Y. A. Functional derivative of the universal density functional in fock space. Phys. Rev. A, 70, 042503, Oct 2004. URL http: //link.aps.org/doi/10.1103/PhysRevA.70.042503. [24] Sagvolden, E., Perdew, J. P. Discontinuity of the exchange-correlation potential: Support for assumptions used to find it. Phys. Rev. A, 77, 012517, Jan 2008. URL http://link.aps.org/doi/10.1103/PhysRevA.77.012517. [25] Gori-Giorgi, P., Savin, A. Study of the discontinuity of the exchange-correlation potential in an exactly soluble case. Int. J. Quantum Chem., 109 (11), 2410–2415, 2009. URL http://dx.doi.org/10.1002/qua.22021. [26] Hunter, G. The exact one-electron model of molecular structure. International Journal of Quantum Chemistry, 29 (2), 197–204, 1986. URL http://dx.doi. org/10.1002/qua.560290209.
Materias:Física
Física > Física del estado sólido
Divisiones:Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Materia condensada > Teoría de sólidos
Código ID:519
Depositado Por:USUARIO INVÁLIDO
Depositado En:15 Mar 2016 11:44
Última Modificación:15 Mar 2016 11:44

Personal del repositorio solamente: página de control del documento