Mojica Pisciotti, Mary L. (2015) Desarrollo de nanopartículas magnéticas para su utilización en el tratamiento médico: Hipertermia. / Development of magnetic nanoparticles for the hyperthermia medical treatment. Tesis Doctoral en Física, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Español 189Mb |
Resumen en español
En nanomedicina, la hipertermia es una de los procedimientos más prometedores en el área de tratamiento del cáncer, consiste en promover la muerte celular como consecuencia del incremento de la temperatura local en un tejido tumoral. Este calentamiento puede ser mediado por el uso de nanopartículas magnéticas (MNPs) que son previamente absorbidas por la células cancerígenas. De esta manera al interactuar con un campo magnético alterno (AMF) las MNPs reciben energía magnética del campo y la transforman en energía térmica alcanzando un aumento mensurable de la temperatura local. Este calentamiento agresivo puede causar muerte celular principalmente a través de estrés o daño en las membranas de las organelas celulares. Luego, considerando que por muchos años los tratamientos médicos contra el cáncer han consistido básicamente en cirugía, radioterapia y quimioterapia solos o en cualquier combinación posible, la hipertermia parece ser un método esperanzador para ayudar en el tratamiento de esta enfermedad. Las terapias comunes son invasivas y pueden producir efectos adversos no deseados en el organismo, contrariamente a lo esperado con hipertermia. Por lo tanto, es de gran interés diseñar y producir MNPs que puedan ser confiables para la terapia propuesta. En este trabajo, estudiamos nanopartículas superparamagnéticas de óxidos de hierro (SPIONs) debido a su biocompatibilidad y propiedades magnéticas relevantes que son fundamentales para la efectividad de la técnica. SPIONs de Fe_3O_4 fueron sintetizadas a través del método de descomposición térmica a alta temperatura de acetilacetonato de hierro (Fe(acac)3) que ofrece un control óptimo sobre el tamaño y la dispersión. Obtuvimos SPIONs cristalinas de distintos tamaños de acuerdo con microscopía de transmisión de electrones y una caracterización exhaustiva de sus propiedades morfológicas y magnéticas se llevó a cabo. Distintas técnicas experimentales fueron usadas con este propósito. Una vez que las SPIONs fueron sintetizadas pueden ser suspendidas en solventes orgánicos. Las SPIONs exhibieron alta magnetización de saturación y comportamiento supeparamagnético a temperatura ambiente. Luego, a través de algunos procesos químicos de intercambio de ligandos y encapsulación con diferentes moléculas orgánicas tales como DEXTRAN, derivativos de polietilenglicol y fosfolípidos, modificamos el recubrimiento de las nanopartículas para suspenderlas en medio acuoso, una característica deseable para algunas aplicaciones, especialmente hipertermia. Usando ambos conjuntos de SPIONs, hicimos mediciones de la absorción específica de potencia (SPA) en un dispositivo comercial con un AMF de 200 Oe (15.9 kA/m) con frecuencias entre 200 y 900 kHz. Las mediciones mostraron altos valores de SPA, del orden de cientos de W/g. La dependencia del SPA con la viscosidad del medio así como también con los aspectos morfológicos de las nanopartículas fue también estudiada. Estos resultados fueron explicados a través de una teoría simple y bien conocida. Reformulamos conceptualmente la misma para explicar con un diagrama el comportamiento del SPA a través de la identificación de los mecanismos de calentamiento para una muestra de nanopartículas de acuerdo con sus propiedades. Este diagrama permitió además estimar los valores de SPA usando la teoría correcta en cada caso. Finalmente, algunos experimentos biológicos in vitro e in vivo fueron diseñados para estudiar el efecto de las SPIONs en distintas líneas celulares. La viabilidad celular relacionada con la toxicidad de las nanopartículas con diferentes recubrimientos fue profundamente analizada. Usando algunas técnicas experimentales de última tecnología tales como microscopía Dual-Beam FIB/SEM se pudo observar y presentar en este trabajo imágenes sobre la capacidad celular para incorporar SPIONs. También, la biodistribución de SPIONs en un sistema in vivo (ratones Balb/c) fue examinada y se presentan varias conclusiones acerca de la influencia de los parámetros de las nanopartículas en su localización dentro del organismo.
Resumen en inglés
In nanomedicine, the hyperthermia is one of the most promising procedures in the field of cancer treatment, it consists in promoting cell death by increasing the local temperature in a tumoral tissue. This heating can be mediated by using magnetic nanoparticles (MNPs) that are previously absorbed by cancer cells. Thus they interact with an alternating magnetic field (AMF) in such way that they receive energy from the field and then transform it into thermal energy achieving a measurable rise in the local temperature. This aggressive heating could cause cellular death mainly through stress or damage in the cell organelles’ membranes. Thus, considering that for some years the medical cancer treatments have consisted basically of surgery, radiotherapy and chemotherapy alone or in any possible combination, the hyperthermia seems to be a hopeful way to help dealing with this illness. The common therapies are invasive and can produce some undesirable adverse effects in the organism, contrary to what is expected from hyperthermia. Then, it is of great interest to design and produce MNPs that can be reliable for the proposed therapy. In this work, we studied superparamagnetic iron oxide nanoparticles (SPIONs) due to its biocompatibility and relevant magnetic properties that are fundamental for the effectiveness of the technique. Fe_3O_4 SPIONs were synthesized through the method of high temperature decomposition of iron acetylacetonate (Fe(acac)3) which offers an optimal control over size and dispersion. We obtained well-crystalline SPIONs of different sizes according to electron transmission microscopy and an exhaustive characterization of their morphological and magnetic properties was performed. Different experimental techniques were used for this purpose. Once the SPIONs were synthesized they could be suspended in organic solvents. The SPIONs exhibited high saturation magnetization and superparamagnetic behavior at room temperature. Then, through some chemical procedures of ligand exchange and encapsulation with different organic molecules such as DEXTRAN, polyethlylene glycol derivatives and phospholipids, we modified the nanoparticles’ covering in order to suspend them in aqueous media, a desirable feature for some applications, specially hyperthermia. Using both sets of SPIONs, we performed specific power absorption (SPA)measurements on a commercial device with an AMF of 200 Oe (15.9 kA/m) with frequencies between 200 and 900 kHz. The measurements showed high SPA values, the order of hundreds of W/g. The SPA dependence on the viscosity of the media as well as on the morphological aspects of the nanoparticles was also studied. These results were explained through a simple and well-known theory. We conceptually reformulate it in order to explain the SPA behaviour through the identification in a diagram of the heating mechanisms for a nanoparticles sample according to its properties. This diagram allowed us to estimate the SPA values using the proper theory in each studied case. Finally, some in vitro and in vivo biological experiments were designed for studying the effect of SPIONs in different cell lineages. The cell viability related to the nanoparticles toxicity with different coverings was deeply analyzed. Using some up-to-date experimental techniques, such as Dual-Beam FIB/SEM microscopy, the cells capacity to uptake SPIONs was observed and presented in this work. Also, the biodistribution of SPIONs in an in vivo system (Balb/c mice) was examined and fair conclusions about the influence of the nanoparticles’ parameters in their location inside the organism were reached.
Tipo de objeto: | Tesis (Tesis Doctoral en Física) |
---|---|
Palabras Clave: | Nanoparticles; Nanopartículas; Hyperthermia; Hipertermia; Neoplasms; Neoplasmas; Magnetism; Magnetismo; Superparamagnetism; Superparamagnetismo; Therapy; Terapia [Nanomedicine; Nanomedicina; MNPs; Magnetic nanoparticles; Nanoparticulas magnéticas] |
Referencias: | [1] Ito, A., H., H., T., K. Cancer immunotherapy based on intracellular hyperthermia using magnetite nanoparticles: a novel concept of “heat-controlled necrosis”with heat shock protein expression. Cancer Immunol. Immunother., 55 (3), 320– 328, 2006. 3 [2] Muckle, D. The selective effect of heat in cancer. Annals of the Royal College of Surgeons of England, 54, 72–77, 1974. 4 [3] Gas, P. Essential facts on the history of hyperthermia and their connections with electromedicine. Przeglad Elektrotechniczny (Electrical Review), 87 (12B), 37–40, 2011. 4 [4] Gilchrist, R., Medal, R., Shorey, W., Hanselman, R., Parrot, J., Taylor, B. Selective inductive heating of lymph nodes. Ann. Surgery, 146, 596–606, 1957. 4 [5] Mornet, S., Portier, J., E., D. A method for synthesis and functionalization of ultrasmall superparamagnetic covalent carriers based on maghemite and dextran. J. Magn. Magn. Mater., 293 (1), 127–134, 2005. 6 [6] Hildebrandt, B.,Wust, P., Ahlers, O., Dieing, A., Sreenivasa, G., Kerner, T., et al. The cellular and molecular basis of hyperthermia. Crit. Rev. Oncol. Hematol., 43 (1), 33–56, 2002. 6, 136 [7] Cullity, B., Graham, C. Introduction to magnetic materials. United States of America: Wiley & Sons, Inc., 2009. 7, 54 [8] Kittel, C. Introduction to solid state physics. Canada: Wiley & Sons, Inc., 1986. 8, 9 [9] Blundell, S. Magnetism in Condensed Matter. New York: Oxford University Press Inc., 2001. 8, 10 [10] Stoner, E., Wohlfarth, E. A mechanism of magnetic hysteresis in heterogenous alloys. Philosophical Transactions of the Royal Society of London. Series A, mathematical and physical sciences, 240 (826), 599–642, 1948. 10 [11] Curiale, C. Nanohilos y nanotubos magnéticos: Preparación, caracterización microestructural y estudio de las propiedades eléctricas y magnéticas. Tesis Doctoral, Instituto Balseiro, San Carlos de Bariloche, 11 2008. 10 [12] Néel, L. Théorie du trainage magnétique des ferromagnétiques en grains fins avec application aux terres cuites. Ann. Géophys., 5, 99–136, 1949. 13 [13] Brown, W. Micromagnetics, domains, and resonance. J. Appl. Phys., 30 (S62), 1959. 14 [14] Brown, W. Thermal fluctuations of a single-domain particle. Phys. Rev., 130 (5), 1677–1686, 1963. 14, 79 [15] Coffey, W., Crothers, D., Kalmykov, Y., Massawe, E., Waldron, J. Exact analytic formula for the correlation time of a single-domain ferromagnetic particle. Phys. Rev. E, 49 (3), 1994. 15 [16] Bean, C., Livingstone, J. Superparamagnetism. J. Appl. Phys., Supplement to vol. 30 (4), 1959. 15, 16 [17] Dormann, J., Fiorani, D., Tronc, E. Magnetic relaxation in Fine-Particle Systems. En: Advances in Chemical Physics, volume 98, ch. 4. Hoboken, NJ, USA: John Wiley & Sons, Inc., 1997. 15, 16, 18, 20, 52, 63, 65 [18] Mojica Pisciotti, M. Estudio del proceso de calentamiento de nanopartículas magnéticas con campos magnéticos AC para su utilización en tratamiento de tumores por hipertermia. Tesis de Maestría, Instituto Balseiro, Centro Atómico Bariloche, dic. 2009. 18, 22, 80 [19] Elsaesser, A., Howard, V. Toxicology of nanoparticles. Adv. Drug Delivery Rev., 64, 129–137, 2012. 30, 117 [20] Goya, G., Berquó, T., Fonseca, F., Morales, M. Static and dynamic magnetic properties of spherical magnetite nanoparticles. J. Appl. Phys., 94 (5), 3520– 3528, 2003. 31, 69 [21] Srivastava, C. The Verwey transition. Bull. Mater. Sci., 5, 247–256, 1983. 31 [22] Wang, J., Chen, Q., Li, X., Shi, L., Peng, Z., Zeng, C. Disappearing of the Verwey transition in magnetite nanoparticles synthesized under a magnetic field: implications for the origin of charge ordering. Chem. Phys. Lett., 390, 55–58, 2004. 31 [23] Markides, H., Rotherdam, M., El Haj, A. Biocompatibility and toxicity of magnetic nanoparticles in regenerative medicine. J. Nanomater., 2012, 614094, 2012. 31 [24] Tartaj, P. Nanomagnets for biomedical applications. En: H. Nalwa (ed.) Encyclopedia of Nanoscience and Nanotechnology Volume 6, págs. 823–842. American Scientific Publishers, 2004. ISBN: 1-58883-062-4. 31 [25] Shivang, D., Xiaohu, G. Monodisperse magnetic nanoparticles for biodetection, imaging, and drug delivery: a versatile and evolving technology. WIREs Nanomed. Nanobiotechnol., 1 (6), 583–609, 2009. 31, 36 [26] Fang, M., Ström, V., Olsson, R., Belova, L., Rao, K. Particle size and magnetic properties dependence on growth temperature for rapid mixed co-precipitated magnetite nanoparticles. Nanotecnology, 23, 145601, 2012. 31 [27] Drmota, A., Drofenik, M., Koselj, J., ˇ Znidarsic, A. Microemulsion method for synthesis of magnetic oxide nanoparticles. En: R. Najjar (ed.) Microemulsions - An Introduction to Properties and Applications, págs. 191–214. InTech, 2012. ISBN: 978-953-51-0247-2, available at http://cdn.intechopen.com/pdfs/32557. 32 [28] López Quintela, M., Rivas, J., Blanco, M., Tojo, C. Synthesis of nanoparticles in microemulsions. En: L.-M. L.M., K. P.V. (eds.) Nanoscale Materials, págs. 135–155. New York: Kluwer Academic Publishers, 2004. 32 [29] Lu, A.-H., Salabas, E., Schuth, F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed., 46, 1222–1244, 2007. 32, 78, 79, 85 [30] Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Elst, L., et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev., 108, 2064–2110, 2008. 32, 49 [31] Marchegiani, G., Imperatori, P., Mari, A., Pilloni, L., Chiolerio, A., Allia, P., et al. Sonochemical synthesis of versatile hydrophilic magnetite nanoparticles. Ultrasonics Sonochemistry, 19, 877–882, 2012. 32 [32] Vijaya Kumar, R., Y., D., A., G. Sonochemical synthesis and characterization of nanometer-size transition metal oxides from metal acetates. Chem. Mater., 12, 2301–2305, 2000. 32 [33] Sun, S., Zeng, H. Size-controlled synthesis of magnetite nanoparticles. J. Am. Chem. Soc., 124, 8204–8205, 2002. 33, 34 [34] Vargas, J., Zysler, R. Tailoring the size in colloidal iron oxide magnetic nanoparticles. Nanotechnology, 16, 1474–1476, 2005. 33, 34 [35] García-Cerda, L., Rodríguez-Fernández, O., Betancourt-Galindo, R., Saldívar- Guerrero, R. Síntesis y propiedades de ferrofluidos de magnetita. Sup. y Vac., 16 (1), 28–31, 2003. 35 [36] Sun, S., Zeng, H., Robinson, D., Simone, R., Rice, P., Wang, S., et al. Monodisperse MFe_2º_4 (M=Fe,Co,Mn) Nanoparticles. J. Am. Chem. Soc., 126, 273–279, 2004. 37, 50 [37] Mojica Pisciotti, M., Lima-Jr., E., Vasquez Mansilla, M., Tognoli, V., Troiani, H., Pasa, A., et al. In vitro and in vivo experiments with iron oxide nanoparticles functionalized with DEXTRAN or polyethylene glycol for medical applications: magnetic targeting. J. Biomed. Mater. Res. Part B: Appl. Biomater., 102 (4), 860–868, 2014. 37, 41, 44 [38] Knop, K., Hoogenboom, R., Fischer, D., Schubert, U. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew. Chem. Int. Ed., 49 (36), 6288– 6308, 2010. 38 [39] Hinds, K. Protein conjugation, cross-linking, and PEGylation. En: R. Mahato (ed.) Biomaterials for delivery and targeting of proteins and nucleic acids, págs. 144–210. USA: C.R.C. Press, 2005. 38 [40] Hermanson, G. Bioconjugate techniques. USA: Elsevier, 2008. 39, 40, 41 [41] Pasut, G., Veronese, F. State of the art in PEGylation: the great versatility achieved after forty years of research. J. Control. Release, 161, 461–472, 2012. 39 [42] Lundberg, B. Isolation and characterization of egg lecithin. Acta Chem. Scand., 27, 3545–3549, 1973. 40 [43] Stuart, B. Infrared spectroscopy: fundamentals and applications. Wiley & Sons, Inc., 2004. 42 [44] Salgado, J., Villalaín, J., Gómez Fernández, J. Metastability of dimiristoylphosphatidylethanolamine as studied by FT-IR and the effect of α−tocoperol. Biochim. et Biophys. Acta, 1239, 213–225, 1995. 43 [45] Khoee, S., Kavand, A. A new procedure for preparation of polyethylene glycolgrafted magnetic iron oxide nanoparticles. J. Nanostruct. Chem., 4, 111, 2014. 44 [46] Bragg, W. Bakerian lecture: X-rays and crystal structure. Philosophical Transactions of the Royal Society of London, 215, 253– 274, 1915. 44 [47] Williams, D., C.B., C. Transmission electron microscopy: a textbook for materials science. New York: Springer, 2009. 44, 45 [48] De Graef, M. Introduction to conventional transmission electron microscopy. Cambridge Univ. Press, 2003. 45, 47, 48 [49] Rietveld, H. Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Cryst., 22, 151–152, 1967. 45 [50] Rodríguez-Carvajal, J. Recent Advances in Magnetic Structure Determination by Neutron Powder Diffraction. Physica B, 192, 55–69, 1993. 45 [51] Scherrer, P. Bestimmung der Gröbe und der inneren Struktur von Kolloidteilchen mittels Rontgenstrahlen (Determining the size and the internal structure of colloidal particles by means of X-rays). Gottinger Nachrichten Gesell., 2, 98– 100, 1918. 45 [52] López, J., González, F., Bonilla, F., Zambrano, G., Gómez, M. Synthesis and characterization of Fe3O4 magnetic nanofluid. Rev. Lat. Met. Mat., 30 (1), 60–66, 2010. 45 [53] Holzwarth, U., Gibson, N. The Scherrer equation versus the ’Debye-Scherrer equation’. Nature Nanotechnology, 6, 2011. 45 [54] Mason, B. Mineralogical aspects of the system Fe_3O_4-Mn_3O_4-ZnMn_2O_4-ZnFe_2O_4. Am. Mineralogist, 32, 1947. 46 [55] Wang, Z. Transmission electron microscopy and spectroscopy of nanoparticles. En: Z. L. Wang (ed.) Characterization of nanophase materials, págs. 37–80. Wiley-VCH Verlag GmbH, 2000. 48 [56] Swanson, H., McMurdie, H., Morris, M., Evans, E. Standard X-ray diffraction powder patterns. Inf. téc., National Bureau of Standards Monograph 25 - Section 5, 08 1967. 48 [57] Lacroix, L., Lachaize, S., Falqui, A., Respaud, M., Chaudret, B. Iron nanoparticle growth in organic superstructures. J. Am. Chem. Soc., 131, 549–557, 2009. 49 [58] De Graef, M., McHenry, M. Structure of Materials: an introduction to crystallography, diffraction and symmetry. Cambridge Univ. Press, 2007. 49 [59] Pabst, W., Greagorová, E. Characterization of particles and particle systems. Prague, 2007. 50 [60] Wernsdorfer, W. Classical and quantum magnetization reversal studied in nanometer-sized particles and clusters. En: Y. Liu, D. Sellmyer, D. Shindo (eds.) Handbook of advanced magnetic materials Volume 1: nanostructural effects, págs. 77–127. Springer Science+Business Media, Inc., 2006. ISBN: 978-1402-07983-2. 54 [61] Guardia, P., Batlle-Brugal, B., Roca, A., Iglesias, O., Morales, M., Serna, C., et al. Surfactant effects in monodisperse magnetite nanoparticles of controlled size. J. Magn. Magn. Mater., 316, e756, 2007. 58, 68 [62] Smit, J., Wijn, H. Ferrites: physical properties of ferrimagnetic oxides in relation to their technical applications. Holland: Philips’ Technical Library, 1959. 59 [63] Knobel, M., Socolovsky, L., Vargas, J. Propiedades magnéticas y de transporte de sistemas nanocristalinos: conceptos básicos y aplicaciones a sistemas reales. Rev. Mex. Fís. E, 50 (1), 8–28, 2004. 63 [64] Knobel, M., Nunes, W., Winnischofer, H., Rocha, T., Socolovsky, L., Mayorga, C., et al. Effects of magnetic interparticle coupling on the blocking temperature of ferromagnetic nanoparticle arrays. J. Non-Crystal. Sol., 15, 743–747, 2007. 66 [65] Joy, P., Anil Kumar, P., Date, S. The relationship between field-cooled and zerofield- cooled susceptibilities of some ordered magnetic systems. J. Phys.: Condens. Matter, 10, 11049–11054, 1998. 67 [66] Rhee, I. Superparamagnetic transition in ultrasmall superparamagnetic iron oxide nanoparticles. J. Kor. Phys. Soc., 54 (4), 1721–1724, 2009. 67, 68 [67] Pérez, N., Guardia, P., Roca, A., Morales, M., Serna, C., Iglesias, O., et al. Surface anisotropy broadening of the energy barrier distribution in magnetic nanoparticles. Nanotech., 19, 475704, 2008. 69 [68] Rosensweig, R. Heating magnetic fluid with alternating magnetic field. J. Magn. Magn. Mater., 252, 370–374, 2002. 72, 75, 76, 77, 79, 80, 81, 83, 135, 145, 188 [69] Chikazumi, S. Physics of magnetism. New York: John Wiley & Sons, Inc., 1964. 76, 81 [70] Heider, F., Dunlop, D., Sugiura, N. Magnetic properties of hydrothermally recrystallized magnetite crystals. Science, 236 (4806), 1287–1290, 1987. 76 [71] Hergt, W., R. Andrä, d’Ambly, C., Hilger, I., Kaiser, W., Richter, U., Schmidt, H. Physical limits of hyperthermia using magnetite fine particles. IEEE Trans. Magn., 34 (5), 3745–3754, 1998. 76 [72] Usov, N., Liubimov, B. Dynamics of magnetic nanoparticle in a viscous liquid: Application to magnetic nanoparticle hyperthermia. J. Appl. Phys., 112, 023901, 2012. 76, 146 [73] Mamiya, H., Jeyadevan, B. Hyperthermic effects of dissipative structures of magnetic nanoparticles in large alternating magnetic fields. Sci. Rep., 1, 157, 2011. 76, 146 [74] Debye, P. Polar molecules. New York, USA: The Chemical Catalog Company, Inc., 1929. 77 [75] Hergt, R., Dutz, S., Müller, R., Zeisberger, M. Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J. Magn. Magn. Mater., 18, S2919–S2934, 2006. 77, 82, 87 [76] Shliomis, M. Magnetic fluids. Sov. Phys. Usp., 17 (2), 153, 1974. 77, 79 [77] Delaunay, L., Neveu, S., Noyel, G., Monin, J. A new spectrometric method, using a magneto-optical effect, to study magnetic liquids. J. Magn. Magn. Mater., 149, L239–L245, 1995. 79 [78] Etheridge, M., Manuchehrabadi, N., Franklin, R., Bischof, J. Superparamagnetic Iron Oxide Nanoparticle Heating: A Basic Tutorial. Advances in numerical heat transfer, volume 4. Holland: CRC Press - Taylor & Francis Group, 2013. 81 [79] Fortin, J., Gazeau, F., Wilhelm, C. Intracellular heating of living cells through Néel relaxation of magnetic nanoparticles. Eur. Biophys. J., 37, 223–228, 2008. 81 [80] Brezovich, I. Low frequency hyperthermia: capacitive and ferromagnetic thermoseed methods. Med. Phys. Monograph., 82, 82–111, 1988. 82, 87 [81] Dutz, S., Hergt, R. Magnetic nanoparticle heating and heat transfer on a microscale: Basic principles, realities and physical limitations of hyperthermia for tumour therapy. Int. J. Hyperthermia, 29 (8), 790–800, 2013. 82, 84, 148 [82] Lima Jr., E., De Biasi, E., Vasquez Mansilla, M., Saleta, M., Granada, M., Troiani, H., et al. Heat generation in agglomerated ferrite nanoparticles in an alternating magnetic field. J. Phys. D.: Appl. Phys., 46, 045002, 2013. 84, 149, 151, 156, 157 [83] Lima Jr., Torres, T., Rossi, L. E., Rechenberg, H., Berquo, T., Ibarra, A., et al. Size dependence of the magnetic relaxation and specific power absorption in iron oxide nanoparticles. J. Nanopart. Res., 15, 1654, 2013. 84, 86, 149 [84] Lima Jr., E., De Biasi, E., Zysler, R., Vasquez Mansilla, M., Mojica Pisciotti, M., Torres, T., et al. Relaxation time diagram for identifying heat generation mechanisms in magnetic fluid hyperthermia. J. Nanopart. Res., 16, 2791, 2014. 85, 86, 146, 147, 148, 149, 151, 153, 155, 156 [85] Lacroix, L., Bel Malaki, R., Carrey, J., Lachaize, S., Respaud, M., Goya, G. Magnetic hyperthermia in single-domain monodisperse FeCo nanoparticles: Evidences for Stoner-Wohlfarth behavior and large losses. J. Appl. Phys., 105, 023911, 2009. 85 [86] Hergt, R., Dutz, S., Zeisberger, M. Validity limits of the N´eel relaxation model of magnetic nanoparticles for hyperthermia. Nanotech., 21, 015706, 2010. 85 [87] Huang, S., Wang, S.-Y., Gupta, A., Borca-Tasciuc, D.-A., Salon, S. On the measurement technique for specific absorption rate of nanoparticles in an alternating electromagnetic field. Meas. Sci. Technol., 23, 035701, 2012. 86 [88] Reece, J., Urry, L., Cain, M., Wasserman, S., Minorsky, P., Jackson, R. Campbell Biology. Tenth edición. Pearson Education Inc., 2014. 98, 100, 135, 136 [89] Panariti, A., Miserocchi, G., Rivolta, I. The effect of nanoparticle uptake on cellular behavior: disrupting or enabling functions? Nanotechnol. Sci. Appl., 5, 87–100, 2012. 101, 176, 177 [90] Freshney, I. Basic principles of cell culture. En: G. Vunjak-Novakovic, I. Freshney (eds.) Culture of cells for tissue engineering, págs. 3– 22. Wiley & Sons, Inc., 2006. ISBN: 978-0-471-62935-1, available at http://http://histologia.ugr.es/pdf/0471629359.pdf. 101 [91] GIBCO, Invitrogen. Cell Culture Basics Companion Handbook. http://www. invitrogen.com/cellculturebasics. 101 [92] Henn, A., Lund, S., Hedtjärn, M., Schrattenholz, A., Pörzgen, P., Leist, M. The suitability of BV2 cells as alternative model system for primary microglia cultures or for animal experiments examining brain inflammation. ALTEX, 26 (2), 83–94, 2009. 102 [93] Sheet, R. History and Characterization of the Vero Cell Line. Inf. téc., CBER/OVRR/DVRPA/VVB, 05 2000. 102 [94] Madin, S. H., Darby, N. B. Established kidney cell lines of normal adult bovine and ovine origin. Proc. Soc. Exp. Biol. Med., 98 (3), 574–576, 1958. 102 [95] Singh, N., Jenkins, G., Asadi, R., Doak, S. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Reviews, 1, 5358, 2010. 103 [96] Luque-García, J., Sanchez-Díaz, R., Lopez-Heras, I., P., M., C., C. Bioanalytical strategies for in-vitro and in-vivo evaluation of the toxicity induced by metallic nanoparticles. Trac-trend Anal. Chem., 43, 254–268, 2013. 103, 117, 119, 136 [97] Wu, X., Tan, Y., Mao, H., Zhang, M. Toxic effects of iron oxide nanoparticles on human umbilical vein endothelial cells. Int. J. Nanomedicine, 5, 385– 399, 2010. 109 [98] Costa, K. Single-cell elastography: probing for disease with the atomic force microscope. Dis. Markers, 19 (2–3), 139–154, 2003–2004. 115, 116 [99] Kuznetsova, T., Starodubtseva, M., Yegorenkov, N., Chizhik, S., Zhdanov, R. Atomic force microscopy probing of cell elasticity. Micron, 38 (8), 824–833, 2007. 116 [100] Rai, V., Dey, N. The Basics of Confocal Microscopy. En: C.-C. Wang (ed.) Laser Scanning, Theory and Applications, págs. 75–96. InTech, 2011. ISBN: 978- 953-307-205-0, available at http://cdn.intechopen.com/pdfs-wm/15801.pdf. 119 [101] Semwogerere, D., Weeks, E. Confocal Microscopy, cap. 66, págs. 705–714. 120 [102] Volkert, C., Minor, A. Focused ion beam microscopy and micromachining. MRS Bulletin, 32 (05), 389–399, 2007. 123, 125 [103] Yao, N. Introduction to the Focused Ion Beam System. United Kingdom: Cambridge University Press, 2007. 123 [104] Zhou, W., Apkarian, R., Wang, Z., Joy, D. Fundamentals of Scanning Electron Microscopy (SEM). En: W. Zhou, Z. Wang (eds.) Scanning microscopy for nanotechnology: techniques and applications, págs. 1–40. Springer, 2006. ISBN: 978-0-387-33325-0. 124 [105] Goldstein, J., Newbury, D., Echlin, P., Joy, D., Lyman, C., Lifshin, E., et al. Scanning Electron Microscopy and X-ray Microanalysis. USA: Kluwer Academic/Plenum Publishers, 2003. 124 [106] Lyman, C. Scanning Transmission Electron Microscopy. USA: Butterworth- Heninemann, 1992. 130 [107] Riemer, J., Hoepken, H., Czerwinska, H., Robinson, S., Dringen, R. Colorimetric ferrozine-based assay for the quantitation of iron in cultured cells. Anal. Biochem., 331, 370–375, 2004. 136 [108] Chertok, B., Cole, A., David, A., Yang, V. Comparison of Electron Spin Resonance Spectrosopy and Inductively-coupled Plasma Optical Emission Spectroscopy for biodistribution analysis of iron-oxide nanoparticles. Mol. Pharm., 7 (2), 375–385, 2010. 136 [109] Zysler, R., Lima Jr., E., Vasquez Mansilla, M., Troiani, H., Mojica Pisciotti, M., Gurman, P., et al. A new quantitative method to determine the uptake of SPIONs in animal tissue and its application to determine the quantity of nanoparticles in the liver and lung of Balb-c mice exposed to the SPIONs. J. Biomed. Nanotech., 9 (1), 142–145, 2013. 136, 137, 139 [110] Stroh, A., Faber, C., Neuberger, T., Lorenz, P., Sieland, K., Jakob, P., et al. In vivo detection limits of magnetically labeled embryonic stem cells in the rat brain using high-field (17.6 T) magnetic resonance imaging. NeuroImage, 24, 635–645, 2005. 136 [111] Urtreger, A., Laeda, V., Puricelli, L., Rivelli, A., Vidal, M., Sacerdote de Lustig, E., et al. Modulation of fibronectin expression and proteolytic activity associated with the invasive and metastatic phenotype in two murine mammary tumor cell lines. Int. J. Oncol., 11 (3), 489–496, 1997. 138 [112] Ankamwar, B., Lai, T., Huang, J., Liu, R., Hsiao, M., Chen, C., et al. Biocompatibility of Fe_3O_4 nanoparticles evaluated by in vitro citotoxicity assays using normal, glia and breast cancer cells. Nanotechnology, 21, 075102, 2010. 139 [113] Cole, A., David, A., Wang, J., Galb´an, C., Yang, V. Magnetic brain tumor targeting and biodistribution of long-circulating PEG-modified, cross-linked starch-coated iron oxide nanoparticles. Biomat., 32, 6291–6301, 2011. 140 [114] Wang, Y., Fu, C., Chuang, M., Cham, T., Chung, M. Magnetically directed targeting aggregation of radiolabelled ferrite nanoparticles. J. Nanomater., 1, 851520, 2011. 141 [115] Lima Jr., E., Brandl, A., Arelaro, A., Goya, G. Spin disorder and magnetic anisotropy in Fe_3O_4 nanoparticles. J. Appl. Phys., 99, 083908, 2005. 141 [116] Kim, K. Nanotechnology platforms and physiological challenges for cancer therapeutics. Nanomed.: Nanotech., Biol., and Med., 3, 103–110, 2007. 142 [117] Deatsch, A., B.A., E. Heating efficiency in magnetic nanoparticle hyperthermia. J. Magn. Magn. Mater., 354, 163–172, 2014. 145, 156 [118] Usov, N. Low frequency hysteresis loops of superparamagnetic nanoparticles with uniaxial anisotropy. J. Appl. Phys., 107, 123909, 2010. 146 [119] Carrey, J., Mehdaoui, B., Respaud, M. Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: application to matnetic hyperthermia optimization. J. Appl. Phys., 109, 083921, 2011. 146 [120] Mamiya, H. Review Article: Recent advances in understanding magnetic nanoparticles in AC magnetic fields and optimal design for targeted hyperthermia. J. Nanomater., 2013, 752973, 2013. 146, 149 [121] Arelaro, A., Lima Jr., Rossi, L., Kiyohara, P., Rechenberg, H. Ion dependence of magnetic anisotropy in MFe_2O_4 (M=Fe, Co, Mn) nanoparticles synthesized by high-temperature reaction. J. Magn. Magn. Mater., 320, e335–e338, 2008. 148, 149 [122] Brabers, V. Ferrimagnetic insulators. En: H. Kronmüller, P. Stuart (eds.) Handbook of magnetism and advanced magnetic materials. Volume 4: Novel materials., págs. 2022–2040. New York, USA: John Wiley & Sons, 2007. [123] Lima Jr., E., DeBiasi, E., Vasquez-Mansilla, M., Saleta, M., Effenberg, F., Rossi, L., et al. Surface effects in the magnetic properties of crystalline 3 nm ferrite nanoparticles chemically synthesized. J. Appl. Phys., 108, 103919, 2010. 148 [124] Branquinho, L., Carriao, M., Costa, A., Zufelato, N., Sousa, M., Miotto, R., et al. Effect of magnetic dipolar interactions on nanoparticle heating efficiency: Implications for cancer hyperthermia. Sci. Rep., 3, 2887, 2013. 149 [125] Moros, M., Pelaz, B., López Larrubia, P., García Martin, M., Grazú, V., de la Fuente, J. Engineering biofunctional magnetic nanoparticles for biotechnological applications. Nanoscale, 2, 1746–1755, 2010. 150 [126] Hilger, I., Kaiser, W. Iron oxide-based nanostructures for MRI and magnetic hyperthermia. Nanomedicine, 7 (9), 1443–1459, 2012. 176, 177 [127] Adams, P. Determining iron content in foods by spectrophotometry. J. Chem. Educ., 72 (7), 649–651, 1995. 179 [128] De Biasi, E., Zysler, R. D., Ramos, C. A., Knobel, M. A new model to describe the crossover from superparamagnetic to blocked magnetic nanoparticles. J. Magn. Magn. Mater., 320 (14), e312–e315, 2008. 190 |
Materias: | Física Medicina > Oncología Medicina |
Divisiones: | Investigación y aplicaciones no nucleares > Física > Resonancias magnéticas |
Código ID: | 525 |
Depositado Por: | USUARIO INVÁLIDO |
Depositado En: | 23 Mar 2016 11:30 |
Última Modificación: | 23 Mar 2016 11:30 |
Personal del repositorio solamente: página de control del documento