Cova, Federico H. (2014) Desarrollo y modelado del hidruro 50M_gH_2-Ni y su utilización en sistemas desestabilizados de alta capacidad para almacenamiento de hidrógeno. / Development and modeling of 50M_gH_2-Ni hydride and its application in high capacity destabilized systems for hydrogen storage. Tesis Doctoral en Ciencias de la Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis.) Español 33Mb |
Resumen en español
Cuando se analiza el marco energético global actual y las proyecciones a futuro, surge la necesidad de encontrar nuevas tecnologías que permitan el empleo de vectores energéticos ecológicos y renovables. Entre los potenciales vectores energéticos se destaca el hidrógeno. Sin embargo, para poder situar al hidrógeno como una alternativa energética viable frente a los combustibles actuales es necesario resolver el problema que presenta su transporte y almacenamiento. En el presente trabajo de tesis se investigaron materiales formadores de hidruros para almacenamiento de hidrógeno en estado sólido. Este método permite almacenar mayores cantidades de hidrógeno por cantidad de volumen y es más seguro que el almacenamiento en estado líquido o gaseoso. En particular se estudiaron sistemas basados en el M_gH_2 catalizado con Ni y su posible utilización como componente del sistema desestabilizado 2LiBH_4:MgH_2. En la primera parte de esta tesis se estudio el sistema 50M_gH_2-Ni sintetizado por molienda mecánica. También se evaluó el efecto del agregado de diversos aditivos con Li sobre la capacidad de almacenamiento del sistema. Por último se desarrollo un modelo que permite simular la absorción de hidrógeno en el sistema en función de la presión, la temperatura y el grado de avance. Este modelo es capaz de reproducir con muy buena fidelidad los datos obtenidos experimentalmente en un amplio rango de presión y temperatura. En la segunda parte de esta tesis se estudio el sistema desestabilizado 2LiBH_4:M_gH_2+5%Ni. Este sistema presenta una mayor capacidad de almacenamiento de hidrógeno y propiedades termodinámicas mas favorables que el estudiado en la primera parte. Se puso especial énfasis en el estudio de la termodinámica del sistema a altas temperaturas. Por último se evaluaron los efectos del agregado de nanotubos de carbono al sistema y se realizó un análisis en mayor profundidad de los caminos de reacción que presenta la absorción de hidrógeno a diferentes temperaturas. El estudio de ambos sistemas representa un aporte al conocimiento de sus características microestructurales y entendimiento de su termodinámica y la cinética de sus interacciones con el hidrógeno. El modelo desarrollado para el 50M_gH_2-Ni permite asimismo el modelado y simulación de tanques almacenadores como una etapa previa a su construcción.
Resumen en inglés
When the current global energy framework and future projections are considered, the need of new technologies for the use of ecological and renewable energy sources becomes a critical factor. Among the potential energy carriers, hydrogen highlights as one of the most promising. However, in order to consider the hydrogen as a viable alternative energy compared to current fuels is necessary to solve the problem presented by its transportation and storage. In this thesis hydride forming materials for hydrogen storage in solid state were investigated. This method allows storing larger amounts of hydrogen per amount of volume and is more secure than storage in liquid or gaseous state. Particularly systems based on Ni-catalyzed M_gH_2 and its possible use as a component of the 2LiBH_4:M_gH_2 destabilized system is studied. In the first part of this thesis the 50M_gH_2-Ni system synthesized by mechanical milling was studied. The effect of adding various additives with Li on the hydrogen storage capacity of the system was also evaluated. Finally a model that simulates the absorption of hydrogen in the system as a function of pressure, temperature and reacted fraction was developed. The resulting model can reproduce with good fidelity data obtained experimentally in a wide range of pressure and temperature. In the second part of this thesis the 2LiBH_4:M_gH_2+5% Ni destabilized system was studied. This system has a higher hydrogen storage capacity and more favorable thermodynamic properties than the one studied in the first part. Special emphasis was placed on the study of the thermodynamics of the system at high temperatures. Finally the effects of adding carbon nanotubes to the system were evaluated and a deeper analysis of reaction pathways that hydrogen absorption presents at different temperatures was conducted. The study of both systems represents a contribution to the knowledge of the microstructural characteristics and understanding the thermodynamics and kinetics of their interactions with hydrogen. The model developed for the 50M_gH_2-Ni also allows the modeling and simulation of bulk storage tanks as a previous step of its construction.
Tipo de objeto: | Tesis (Tesis Doctoral en Ciencias de la Ingeniería) |
---|---|
Palabras Clave: | Hydrogen; Hidrógeno; Hydrides; Hidrudros; Storage; Almacenamiento; Magnesium; Magnesio; Energy; Energía; [Destabilized systems; Sistemas desestabilizados] |
Referencias: | [1] IEA. WORLD ENERGY OUTLOOK. Paris: IEA; 2012. [2] IEA. Key world energy statistics. 2013. [3] EIA-DOE. Annual Energy Outlook 2013. n.d. [4] Raspopov OM, Dergachev VA, Esper J, Kozyreva OV, Frank D, Ogurtsov M, et al. The influence of the de Vries (∼ 200-year) solar cycle on climate variations: Results from the Central Asian Mountains and their global link. Palaeogeogr Palaeoclimatol Palaeoecol 2008;259:6–16. [5] Scafetta N, West BJ. Phenomenological reconstructions of the solar signature in the Northern Hemisphere surface temperature records since 1600. J Geophys Res Atmos 2007;112. [6] West BJ, Grigolini P. Sun-Climate Complexity Linking. Phys Rev Lett 2008;100:88501. [7] Xu H, Liu X, Hou Z. Temperature variations at Lake Qinghai on decadal scales and the possible relation to solar activities. J Atmos Solar-Terrestrial Phys 2008;70:138–44. [8] Zuttel A, Borgschulte A, Schlapbach L. Hydrogen as a future energy carrier. Wiley-VHC; 2011. [9] Chorkendorff I, Niemantsverdriet JW. Concepts of Modern Catalysis and Kinetics. Wiley-VHC; 2003. [10] Fukai Y. Site Occupancy and Phase Stability of some Metal Hydrides. Zeitschrift Für Phys Chemie 1989;163:165–74. [11] Meyer G, Rodriguez DS, Castro F, Fernandez G. Automatic device for precise characterization of hydride forming materials. Proc 11th World Energy Conf 1996:1293–8. [12] Puszkiel J. Preparación, estudio y optimización de hidruros complejos para almacenamiento de hidrogeno. Tesis Doctoral Instituto Balseiro, Universidad Nacional de Cuyo. 2012. [13] Cova F, Arneodo Larochette P, Gennari F. Hydrogen sorption in MgH2- based composites: The role of Ni and LiBH_4 additives. Int J Hydrogen Energy 2012;37:15210–9. [14] Bogdanović B, Spliethoff B. Active MgH_2-Mg systems for hydrogen storage. Int J Hydrogen Energy 1987;12:863–73. [15] Zaluska A, Zaluski L, Strom-Olsen JO. Synergy of hydrogen sorption in ball-milled hydrides of Mg and Mg_2Ni. J Alloys Compd 1999;289:197–206. [16] Hanada N, Ichikawa T, Fujii H. Catalytic effect of nanoparticle 3dtransition metals on hydrogen storage properties in magnesium hydride MgH_2 prepared by mechanical milling. J Phys Chem B 2005;109:7188–94. [17] Puszkiel J, Arneodo Larochette P, Gennari F. Hydrogen storage properties of Mg_xFe (x: 2, 3 and 15) compounds produced by reactive ball milling. J Power Sources 2009;186:185–93. [18] Yang WN, Shang CX, Guo ZX. Site density effect of Ni particles on hydrogen desorption of MgH_2. Int J Hydrogen Energy 2010;35:4534–42. [19] Wronski ZS, Carpenter GJC, Czujko T, Varin RA. A new nanonickel catalyst for hydrogen storage in solid-state magnesium hydrides. Int J Hydrogen Energy 2011;36:1159–66. [20] Johnson SR, Anderson PA, Edwards PP, Gameson I, Prendergast JW, Al- Mamouri M, et al. Chemical activation of MgH_2; a new route to superior hydrogen storage materials. Chem Commun 2005;22:2823–5. [21] Puszkiel J, Gennari F. Reversible hydrogen storage in metal-doped Mg– LiBH_4 composites. Scr Mater 2009;60:667–70. [22] Gennari F, Puszkiel J. Enhanced hydrogen sorption kinetics of Mg_50Ni– LiBH_4 composite by CeCl_3 addition. J Power Sources 2010;195:3266–74. [23] Mao J, Guo Z, Yu X, Liu H. Enhanced hydrogen sorption properties in the LiBH_4–MgH_2 system catalysed by Ru nanoparticles supported on multiwalled carbon nanotubes. J Alloys Compd 2011;509:5012–6. [24] Weng BC, Yu X, Wu Z, Li ZL, Huang TS, Xu NX, et al. Improved dehydrogenation performance of LiBH_4/MgH_2 composite with Pd nanoparticles addition. J Alloys Compd 2010;503:345–9. [25] Veron MG, Gennari F. Formation and hydrogen reactivity of MgCo compound. J Alloys Compd 2010;495:659–62. [26] Gennari F, Castro FJF., Urretavizcaya G. Hydrogen desorption behavior from magnesium hydrides synthesized by reactive mechanical alloying. J Alloys Compd 2001;321:46–53. [27] Guinebretiere R. X-ray Diffraction by Policrystalline Materials. ISTE Ltd; 2002. [28] Codon JB. Surface Area and Porosimetry Determinations by Physisorption. Elsevier B.V.; 2006. [29] Bogdanović B. Magnesium hydride: A homogeneous-catalysed synthesis and its use in hydrogen storage. Int J Hydrogen Energy 1984;9:937–41. [30] Honig RE, Kramer DA. Vapor Pressure Data for the Solid and Liquid Elements. RCA Rev 1969;30:285–305. [31] Cermak J, David B. Catalytic effect of Ni, Mg_2Ni and Mg_2NiH_4 upon hydrogen desorption from MgH2. Int J Hydrogen Energy 2011;36:13614–20. [32] Cermak J, Král L. Hydrogen diffusion in Mg–H and Mg–Ni–H alloys. Acta Mater 2008;56:2677–86. [33] Cermak J, David B. Influence of phase composition of Mg_2NiH_4 upon the hydrogen desorption kinetics. Scr Mater 2008;59:432–5. [34] Denys R V, Poletaev A, Maehlen JP, Solberg JK, Tarasov BP, Yartys VA, et al. Nanostructured rapidly solidified LaMg11Ni alloy. II. In situ synchrotron X-ray diffraction studies of hydrogen absorption-desorption behaviours. Int J Hydrogen Energy 2011;37:5710–22. [35] Varin RA, Czujko T, Wronski ZS. Particle size, grain size and γ-MgH_2 effects on the desorption properties of nanocrystalline commercial magnesium hydride processed by controlled mechanical milling. Nanotechnology 2006;17:3856–65. [36] Veron MG, Troiani H, Gennari F. Synergetic effect of Co and carbon nanotubes on MgH_2 sorption properties. Carbon N Y 2011;49:2413–23. [37] Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem 1957;29:1702–6. [38] Kapischke J, Hapke J. Measurement of the e ective thermal conductivity of a Mg – MgH_2 packed bed with oscillating heating. Exp Therm Fluid Sci 1998;17:347–55. [39] Perry RH, Green DW. Perry’s Chemical Engineers' Handbook. 8th ed. McGraw-Hill; 2007. [40] Baker H. ASM METALS HANDBOOK VOLUME 3 Alloy Phase Diagrams. 1992. [41] Khawam A, Flanagan DR. Solid-state kinetic models: basics and mathematical fundamentals. J Phys Chem B 2006;110:17315–28. [42] Lozano GA, Ranong CN, Bellosta von Colbe JM, Bormann R, Fieg G, Hapke J, et al. Empirical kinetic model of sodium alanate reacting system (I). Hydrogen absorption. Int J Hydrogen Energy 2010;35:6763–72. [43] Khawam A, Flanagan DR. Role of isoconversional methods in varying activation energies of solid-state kinetics. Thermochim Acta 2005;436:101– 12. [44] Chou K-C, Xu K-D. A new model for hydriding and dehydriding reactions in intermetallics. Intermetallics 2007;15:767–77. [45] Martin M, Gommel C, Borkhart C, Fromm E. Absorption and desorption kinetics of hydrogen storage alloys. J Alloys Compd 1996;238:193–201. [46] Forde T, Maehlen JP, Yartys VA, Lototsky M, Uchida H. Influence of intrinsic hydrogenation/dehydrogenation kinetics on the dynamic behaviour of metal hydrides: A semi-empirical model and its verification. Int J Hydrogen Energy 2007;32:1041–9. [47] Ron M. The normalized pressure dependence method for the evaluation of kinetic rates of metal hydride formation/decomposition. J Alloys Compd 1999;283:178–91. [48] Lozano G a., Ranong CN, Bellosta von Colbe JM, Bormann R, Fieg G, Hapke J, et al. Empirical kinetic model of sodium alanate reacting system (II). Hydrogen desorption. Int J Hydrogen Energy 2010;35:7539–46. [49] Cabo M, Garroni S, Pellicer E, Milanese C, Girella A, Marini A, et al. Hydrogen sorption performance of MgH_2 doped with mesoporous nickeland cobalt-based oxides. Int J Hydrogen Energy 2011;36:5400–10. 207 [50] Varin RA, Czujko T, Wronski ZS. Nanomaterials for Solid State Hydrogen Storage Fuel Cells and Hydrogen Energy. Springer; 2009. [51] Mao J, Guo Z, Yu X, Liu H, Wu Z, Ni J. Enhanced hydrogen sorption properties of Ni and Co-catalyzed MgH_2. Int J Hydrogen Energy 2010;35:4569–75. [52] Kojima Y, Kawai Y, Haga T. Magnesium-based nano-composite materials for hydrogen storage. J Alloys Compd 2006;424:294–8. [53] Bamford CH, Tipper CFH. Chemical Kinetics vol. 2: The theory of kinetics. vol. 1. Elsevier Scientific Publishing Company; 1969. [54] Segal E. Rate equations of solid state reactions. Euclidean and fractal models. Rev Roum Chim 2012;57:491–3. [55] Moretto P, Zlotea C, Dolci F, Amieiro A, Bobet J-L, Borgschulte A, et al. A Round Robin Test exercise on hydrogen absorption/desorption properties of a magnesium hydride based material. Int J Hydrogen Energy 2013;38:6704–17. [56] Vajo JJ, Skeith SL, Mertens F. Reversible storage of hydrogen in destabilized LiBH4. J Phys Chem B 2005;109:3719–22. [57] Bosenberg U, Doppiu S, Mosegaard L, Barkhordarian G, Eigen N, Borgschulte A, et al. Hydrogen sorption properties of MgH_2 – LiBH_4 composites. Acta Mater 2007;55:3951–8. [58] Price TEC, Grant DM, Legrand V, Walker GS. Enhanced kinetics for the LiBH_4:MgH_2 multi-component hydrogen storage system – The effects of stoichiometry and decomposition environment on cycling behaviour. Int J Hydrogen Energy 2010;35:4154–61. [59] Nakagawa T, Ichikawa T, Hanada N, Kojima Y, Fujii H. Thermal analysis on the Li–Mg–B–H systems. J Alloys Compd 2007;446-447:306–9. [60] Yang J, Sudik A, Wolverton C. Destabilizing LiBH_4 with a Metal ( M = Mg , Al , Ti , V , Cr , or Sc ) or Metal Hydride ( MH_2=MgH_2, TiH_2 or CaH_2 ). J Phys Chem C 2007;111:19134–40. [61] Yan Y, Li H-W, Maekawa H, Miwa K, Towata S, Orimo S-I. Formation of Intermediate Compound Li2B12H12 during the Dehydrogenation Process of the LiBH_4-MgH_2 System. J Phys Chem C 2011;115:19419–23. 208 [62] Walker GS, Grant DM, Price TC, Yu X, Legrand V. High capacity multicomponent hydrogen storage materials: Investigation of the effect of stoichiometry and decomposition conditions on the cycling behaviour of LiBH_4–MgH_2. J Power Sources 2009;194:1128–34. [63] DOE-USDT. Hydrogen Posture Plan. An Integrated Research, Development and Demonstration Plan. http://www.hydrogen.energy.gov/pdfs/hydrogen_posture_plan_dec06.pdf 2006. [64] Kim J-H, Jin S-A, Shim J-H, Cho YW. Reversible hydrogen storage in calcium borohydride Ca(BH_4)_2. Scr Mater 2008;58:481–3. [65] Lim J, Shim J, Lee Y, Cho YW, Lee J. Dehydrogenation behavior of LiBH_4/CaH_2omposite with NbF_5. Scr Mater 2008;59:1251–4. [66] Bösenberg U, Ravnsbak DB, Hagemann H, D’Anna V, Minella CB, Pistidda C, et al. Pressure and Temperature Influence on the Desorption Pathway of the LiBH_4 – MgH_2. J Phys Chem C 2010;114:15212–7. [67] Gennari FC. Destabilization of LiBH_4 by MH_2 (M = Ce, La) for hydrogen storage: Nanostructural effects on the hydrogen sorption kinetics. Int J Hydrogen Energy 2011;36:15231–8. [68] Au M, Jurgensen A. Modified Lithium Borohydrides for Reversible Hydrogen Storage. J Phys Chem B 2006;110:7062–7. [69] Purewal J, Hwang S-J, Bowman RC, Rönnebro ECE, Fultz B, Ahn C. Hydrogen Sorption Behavior of the ScH_2−LiBH_4 System: Experimental Assesment of Chemical Destabilization Effects. J Phys Chem C 2008;112:8481–5. [70] Graetz J, Chaudhuri S, Salguero TT, Vajo JJ, Meyer MS, Pinkerton FE. Local bonding and atomic environments in Ni-catalized complex hydrides. Nanotechnology 2009;20:204007–15. [71] Nielsen TK, Bösenberg U, Gosalawit-Utke R, Dornheim M, Cerenius Y, Besenbacher F, et al. A Reversible Nanoconfined Chemical Reaction. ACS Nano 2010;4:3903–8. [72] Miwa K, Aoki M, Noritake T, Ohba N, Nakamori Y, Towata S, et al. Thermodynamical stability of calcium borohydride Ca(BH_4)_2. Phys Rev B 2006;74:155122. [73] Pendolino F, Mauron P, Borgschulte A, Zuttel A. Effect of Boron on the Activation Energy of the Decomposition of LiBH_4. J Phys Chem C 2009;113:17231–4. [74] Ozolins V, Majzoub EH, Wolverton C. First-principles Prediction of Thermodynamically Reversible Hydrogen Storage Reactions in the Li-Mg- Ca-B-H system. J Am Chem Soc 2009;131:230–7. [75] Velazquez G, Herrera-Gómez A, Martín-Polo MO. Identification of bound water through infrared spectroscopy in methylcellulose. J Food Eng 2003;59:79–84. [76] Walker GS. Solid-state hydrogen storage. Woodhead Publishing Limited; 2008. [77] Gosalawit-Utke R, Milanese C, Javadian P, Jepsen J, Laipple D, Karmi F, et al. Nanoconfined 2LiBH_4–MgH_2–TiCl_3 in carbon aerogel scaffold for reversible hydrogen storage. Int J Hydrogen Energy 2013;38:3275–82. [78] Nielsen TK, Polanski M, Zasada D, Javadian P, Besenbacher F, Bystrzycki J, et al. Improved Hydrogen Storage Kinetics of Nanoconfined NaAlH4 Catalyzed with TiCl3 Nanoparticles. ACS Nano 2011;5:4056–64. [79] Gosalawit-Utke R, Milanese C, Nielsen TK, Karimi F, Saldan I, Pranzas K, et al. Nanoconfined 2LiBH_4–MgH_2 for reversible hydrogen storages: Reaction mechanisms, kinetics and thermodynamics. Int J Hydrogen Energy 2013;38:1932–42. [80] Mosegaard L, Moller B, Jorgensen J-E, Bösenberg U, Dornheim M, Hanson JC, et al. Intermediate phases observed during decomposition of LiBH4. J Alloys Compd 2007;446-447:301–5. |
Materias: | Energía Química Química > Materiales Energía > Demanda energética |
Divisiones: | Gcia. de área de Aplicaciones de la tecnología nuclear > Gcia. de Investigación aplicada > Fisicoquímica de materiales |
Código ID: | 526 |
Depositado Por: | USUARIO INVÁLIDO |
Depositado En: | 23 Mar 2016 10:39 |
Última Modificación: | 23 Mar 2016 10:41 |
Personal del repositorio solamente: página de control del documento