Implementación de técnicas de control de calidad de IMRF paciente-específico. / Implementation of patient specific quality assurance techniques for IMRT.

Solari, Esteban Lucas (2016) Implementación de técnicas de control de calidad de IMRF paciente-específico. / Implementation of patient specific quality assurance techniques for IMRT. Maestría en Física Médica, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
3486Kb

Resumen en español

En este trabajo se buscó comparar técnicas de aseguramiento de la calidad paciente específico (PSQA) para IMRT, poner a punto las tecnologías disponibles y proponer técnicas para controles rutinarios. Primero se discutió la necesidad de un sistema de PSQA para IMRT y se compararon distintas técnicas. Se realizó la puesta a punto del sistema de dosimetría por películas mediante el comisionamiento de un escáner, un protocolo de manipulación y la calibración del lote. Se desarrollaron los tests propuestos por el TG 119. Se estudiaron distintos criterios de aprobación y se determinó que el arreglo ArcCheck"TM y el criterio gamma de 2mm/2% eran adecuados para QA de rutina en la institución. Se probó el sistema elegido sobre un fantoma CIRS mediante un protocolo end-to-end con heterogeneidades, semejante a un caso clínico. Se verificaron y se entregaron sobre el fantoma planes de IMRT y VMAT, obteniendo buenos resultados dosimétricos. Luego se probó una técnica de verificación de objetivos clínicos, con resultados alentadores. Finalmente se discutieron los alcances del protocolo TG 119, los resultados de la implementación de controles por paciente y las limitaciones y alternativas al criterio gamma utilizado. Puede concluirse que se implementaron con éxito técnicas de PSQA para uso rutinario en la institución, y se plantearon futuras mejoras para mantener altos los estándares de tratamiento.

Resumen en inglés

In this work, it was intended to compare PSQA techniques, to set up available equipment and to propose techniques for routine QA at the institution. First, the need for a PSQA program for IMRT was brought up, and different techniques were compared. A system for the dosimetry with radiochromic films was set up. A film scanner was commissioned, a protocol was developed and the films were calibrated. The tests proposed by TG 119 were carried out. Different passing criteria were studied and it was concluded that the detector array ArcCheck"TM along with a 2mm/2% gamma criterion were adequate for the institution’s routine QA. The selected technique was tried on a CIRS phantom through an end to end protocol that mimicked a clinical situation. IMRT and VMAT plans were created, verified and correctly delivered to the phantom. A clinically relevant verification technique was tested, with encouraging results. Finally, the scope of the TG 119 protocol was discussed along with the results of the implementation of PSQA and the limitations and alternatives to the gamma passing criterion. It was concluded that routine PSQA techniques were successfully implemented and future improvements were stated in order to attain high treatment quality standards.

Tipo de objeto:Tesis (Maestría en Física Médica)
Palabras Clave:Patients; Pacientes; Quality control; Control de calidad; [Intensity modulated radiation therapy; Radioterapia de intensidad modulada; Treatment verification; Verificación de tratamientos]
Referencias:(1) Ezzell GA, Galvin JM, Low D, Palta JR, Rosen I, Sharpe MB et al. Guidance document on delivery, treatment planning, and clinical implementation of IMRT: Report of the IMRT subcommittee of the AAPM radiation therapy committee. Med. Phys. 2003, vol. 30 (8), 2089-2115. DOI: 10.1118/1.1591194. (2) Bogdanich W, Rebelo K. A Pinpoint Beam Strays Invisibly, Harming Instead of Healing. The New York Times. 28 de diciembre de 2010. Disponible en: http://www.nytimes.com/ 2010/12/29/health/29radiation.html (3) IAEA. Safety Reports Series No. 17. Lessons learned from accidental exposures in radiotherapy. Vienna: IAEA, 2000. ISBN92-0-100200-9. (4) ICRP. Preventing accidental exposures from new external beam radiation therapy technologies. Draft 8. ICRP, 2009. (5) IAEA. Technical Reports Series No. 430. Commissioning and Quality Assurance of Computerized Planning Systems for Radiation Treatment of Cancer. Vienna: IAEA, 2004. ISBN 92–0–105304–5. (6) ICRU. Determination of Absorbed Dose in a Patient Irradiated by Beams of X or Gamma Rays in Radiotherapy Procedures. Washington: ICRU, 1976. (7) Dutreix A. When and how can we improve precision in radiotherapy? Radiotherapy and Oncology. 1984, vol. 2, 275-292. DOI: 10.1016/S0167-8140(84)80070-5. (8) ESTRO. Booklet No. 9. Guidelines for the verification of IMRT. Bruselas: ESTRO, 2008. ISBN 90-804532-9. (9) Nelms BE, Simon JA. A survey on planar IMRT QA analysis. J Appl Clin Med Phys. 2007, vol. 8 (3), 2448. DOI: 10.1120/jacmp.v8i3.2448. (10) AAPM. TG-119 IMRT Commissioning Tests Instructions for Planning, Measurement, and Analysis. AAPM, 2009. Disponible en: https://aapm.org/pubs/tg119/TG119_Instructions_ 102109.pdf (11) Ezzell GA, Burmeister JW, Dogan N, LoSasso TJ, Mechalakos JG, Mihailidis D et al. IMRT commissioning: Multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119. Med Phys. 2009, vol. 36 (11), 5359-5373. DOI: 10.1118/1.3238104. (12) Kruse JJ. On the insensitivity of single field planar dosimetry to IMRT inaccuracies. Med Phys. 2010, vol. 37, 2516. DOI: 10.1118/1.3425781. (13) Nelms BE, Zhen H, Tomé WA. Per-beam, planar IMRT QA passing rates do not predict clinically relevant patient dose errors. Med. Phys. 2011, 38 (2), 1037-1044. DOI: 10.1118/1.3544657. (14) Stasi M, Bresciani S, Maggio A, Gabriele P. Pretreatment patient-specific IMRT quality assurance: A correlation study between gamma index and patient clinical dose volume histogram. Med. Phys. 2012, 39 (12), 7626-7634. DOI: 10.1118/1.4767763. (15) Mitchell AL. Evaluating Pre-Treatment IMRT & VMAT QA Techniques Using Receiver Operating Characteristic (ROC) Analysis. Tesis (Master of Science in the Graduate Program in Medical Physics). Durham, Duke University, 2013. 32 p. (16) Ibbott GS, Molineu A, Followill DS. Independent Evaluations of IMRT Through the use of an Anthropomorphic Phantom. Technology in Cancer Research and Treatment. 2006, vol. 5 (5), 481-485. PMID: 16981790. (17) Palta JR, Liu C, Li JG. Quality assurance of intensity-modulated radiation therapy. Int. J. Radiation Oncology Biol. Phys. 2008, vol. 71 (1) 108–S112. DOI: 10.1016/j.ijrobp.2007.05.092. (18) Low DA, Moran JM, Dempsey JF, Dong L, Oldham M. Dosimetry tools and techniques for IMRT. Med. Phys. 2011, vol. 38 (3), 1313-1338. DOI: 10.1118/1.3514120. (19) Niroomand-Rad A, Blackwell CR, Gall KP, Galvin JM, McLaughlin WL, Meigooni AS et al. Report No. 63. Radiochromic Film Dosimetry. Recommendations of AAPM Radiation Therapy Committee Task Group No. 55. Med. Phys. 1998, vol. 25, 2093. DOI: 10.1118/1.598407. (20) Buston MJ, Cheung T, Yu PKN. Weak energy dependence of EBT Gafchromic film dose response in the 50kVp–10MVp X-ray range. Applied Radiation and Isotopes. 2006, vol. 64, 60-62. DOI: 10.1016/j.apradiso.2005.07.002. (21) Carrasco MA, Perucha M, Luis FJ, Baeza M, Herrador M. A comparison between radiochromic EBT2 film model and its predecessor EBT film model. Physica Medica. 2013, vol. 29, 412-422. DOI: 10.1016/j.ejmp.2012.05.008. (22) Micke A, Lewis DF, Yu X. Multichannel film dosimetry with nonuniformity correction. Med. Phys. 2011, 38 (5), 2523-2534. DOI: 10.1118/1.3576105. (23) Dreindl R, Georg D, Stock M. Radiochromic film dosimetry: Considerations on precision and accuracy for EBT2 and EBT3 type films. Z. Med. Phys. 2014, vol. 24, 153-163. DOI: 10.1016/j.zemedi.2013.08.002. (24) GAFCHROMIC. Gafchromic EBT3 [online]. International Specialty Products, 2011 [visitado el 10.09.2016]. Disponible en: http://www.nuklex.se/PDF/GAFCHROMIC%20 EBT3.pdf (25) ASHLAND. Efficient Protocols for Accurate Radiochromic Film Calibration and Dosimetry [online]. 2016 [visitado el 9.09.2016]. Disponible en: http://www.gafchromic.com/ documents/Efficient%20Protocols%20for%20Calibration%20and%20Dosimetry.pdf (26) Klassen NV, Van der Zwan L, Cygler J. GafChromic MD-55: Investigated as a precision dosimeter. Med. Phys. 1997, vol. 24 (12), 1924-1934. DOI: 10.1118/1.598106. (27) PTW. 4D in motion: OCTAVIUS® 4D [online]. [visitado el 10.09.2016] Disponible en: http://www.ptw.de/2403.html (28) McCullough EC, Krueger AM. Performance evaluation of computerized treatment planning systems for radiotherapy: external photon beams. Int J Radiat Oncol Biol Phys. 1980, vol. 6 (11), 1599-1605. PMID: 6780495. (29) ICRU. Report 42. Use of Computers in External Beam Radiotherapy Procedures with High-Energy Photons and Electrons. Bethesda, Estados Unidos: ICRU, 1987. (30) Van Dyk J, Barnett RB, Cygler JE, Shragge PC. Commissioning and quality assurance of treatment planning computers. Int J Radiat Oncol Biol Phys. 1993, vol. 26 (2), 261-273. PMID: 8491684. (31) Harms WB, Low DA, Purdy JA. A quantitative software analysis tool for verifying 3-d dose calculation programs. En: Proceedings of the 36th Annual ASTRO Meeting (1994, San Francisco, California, Estados Unidos), pp. 87. DOI: 10.1016/0360-3016(94)90685-8. (32) Harms WB, Low DA, Wong JW, Purdy JA. A software tool for the quantitative evaluation of 3D dose calculation algorithms. Med. Phys. 1998, vol. 25 (10), 1830-1836. DOI: 10.1118/1.598363. (33) Low DA, Harms WB, Mutic S, Purdy JA. A technique for the quantitative evaluation of dose distributions. Med. Phys. 1998, vol. 25 (5), 656-661. DOI: DOI: 10.1118/1.598248. (34) GAFCHROMIC. Dosimetry media, type EBT-3 [hoja de datos]. [visitado el 09.08.2016] Disponible en: http://www.gafchromic.com/documents/EBT3_Specifications.pdf (35) Stevens MA, Turner JR, Hugtenburg RP, Butler PH. High-resolution dosimetry using radiochromic film and a document scanner. Phys. Med. Biol. 1996, vol. 41 (11), 2357-2365. DOI: 10.1088/0031-9155/41/11/008. (36) Devic S, Seuntjens J, Sham E, Podgorsak EB, Schmidtlein CR, Kirov AS, Soares CG. Precise radiochromic film dosimetry using a flatbed document scanner. Med Phys. 2005, vol. 32 (7), 2245-53. DOI: 10.1118/1.1929253. (37) Alva H, Mercado-Uribe H, Rodríguez-Villafuerte M, Brandan ME. The use of a reflective scanner to study radiochromic film response. Phys Med Biol. 2002, 47 (16), 2925-2933. DOI: 10.1088/0031-9155/47/16/308. (38) Méndez I, Hartman V, Hudej A, Strojnik A, Casar B. Gafchromic EBT2 film dosimetry in reflection mode with a novel plan-based calibration method. Med. Phys. 2013, vol. 40 (1), 017720-017728. DOI: 10.1118/1.4772075. (39) Papaconstadopoulos P, Hegyi G, Seuntjens J, Devic S. A protocol for EBT3 radiochromic film dosimetry using reflection scanning. Med Phys. 2014, 41 (12), 122101. DOI: 10.1118/1.4901308. (40) Pai S, Das IJ, Dempsey JF, Lam KL, LoSasso TJ, Olch AJ et al. TG-69: Radiographic film for megavoltage beam dosimetry. Med. Phys. 2007, vol. 34 (6), 2228-2258. DOI: 10.1118/1.2736779. (41) Davidson, MW. Fundamentals of xenon arc lamps [online]. ZEISS Education in Microscopy and Digital Imaging. [visitado el 20/08/2016] Disponible en: http://www.zeiss-campus.magnet.fsu.edu/articles/lightsources/xenonarc.html (42) Meeder RJJ, Jaffray DA, Munro P. Tests for evaluating laser film digitizers. Medical Physics, 1995, vol. 22, 635-642. DOI: 10.1118/1.597550. (43) AAPM. Report No. 63. Radiochromic Film Dosimetry. Recommendations of AAPM Radiation Therapy Committee Task Group No. 55. Med. Phys. 1998, vol. 25 (11), 2093-2115. DOI: 10.1118/1.598407. (44) Andrés C, Del Castillo A, Tortosa R, Alonso D, Barquero R. A comprehensive study of the Gafchromic EBT2 radiochromic film. A comparison with EBT. Med. Phys. 2010, vol. 37 (12), 6271-6278. DOI: 10.1118/1.3512792. (45) Lewis D, Micke A, Yu C, Chan MF. An efficient protocol for radiochromic film dosimetry combining calibration and measurement in a single scan. Med. Phys. 2012, vol. 39 (10), 6339-6350. DOI: 10.1118/1.4754797. (46) Méndez I, Peterlin P, Hudej R, Strojnik A, Casar B. On multichannel film dosimetry with channel-independent perturbations. Med Phys. 2014, vol. 41 (1). DOI: 10.1118/1.4845095. (47) Castillo Belmonte A, Rodríguez CA, De Blas RS, Barquero Sanz R. Análisis de la metodología para la obtención de una curva sensitométrica con película radiocrómica EBT. XVII Congreso Nacional de SEFM, Alicante, 2009. (48) Paelinck L, De Neve W, De Wagter C. Precautions and strategies in using a commercial flatbed scanner for radiochromic film dosimetry. Phys Med Biol. 2007, vol. 52 (1), 231-242. DOI: 10.1088/0031-9155/52/1/015. (49) Casanova Borca V, Pasquino M, Russo G, Grosso P, Cante D, Sciacero P et al. Dosimetric characterization and use of GAFCHROMIC EBT3 film for IMRT dose verification. J.Appl.Clin.Med.Phys. 2013, 14 (2), 4111. DOI: 10.1120/jacmp.v14i2.4111. (50) Crijns W, Maes F, Van der Heide UA, Van den Heuvel F. Calibrating page sized Gafchromic EBT3 films. Medical Physics 2013, vol. 40, 012102. DOI: 10.1118/1.4771960. (51) Méndez I, Sljivic Z, Hudej R, Jenko A, Casar B. Grid patterns, spatial inter-scan variations and scanning reading repeatability in radiochromic film dosimetry. Phys. Med. 2016. DOI: 10.1016/j.ejmp.2016.08.003. (52) Chan M, Lewis D, Yu X. Is It Possible to Publish a Calibration Function for Radiochromic Film? Int J Med Phys Clin Eng Radiat Oncol. 2014, vol. 3 (1), 25-30. DOI: 10.4236/ ijmpcero.2014.31005. (53) Lewis D; Devic S. Correcting scan-to-scan response variability for a radiochromic film-based reference dosimetry system. Med. Phys. 2015, vol. 42 (10). DOI: 10.1118/1.4929563. (54) Clark CH, Hansen VN, Chantler H, Edwards C, James HV, Webster G et al. Dosimetry audit for a multi-centre IMRT head and neck trial. Radiotherapy and Oncology. 2009, vol. 93, 102-108. DOI: 10.1016/j.radonc.2009.04.025 (55) Kim JI, Chung JB, Choi CH, Kim SJ. A multi-institutional study for tolerance and action levels of IMRT dose quality assurance measurements in Korea. Journal of Applied Clinical Medical Physics. 2013, vol. 14 (2), 24-37. PMID: 23470928. (56) SUN NUCLEAR Corporation. MapCheck® 2 & 3DVH® [online]. [visitado el 08 de agosto de 2016] Disponible en: http://www.sunnuclear.com/solutions/patientqa/mapcheck. (57) SUN NUCLEAR Corporation. MapCheck® 2. Reference guide. 2014. (58) Mynampati DK, Yapaypalvi R, Kuo HC, Mah D. Application of AAPM TG 119 to volumetric arc therapy (VMAT). Journal Of Applied Clinical Medical Physics. 2012, vol. 13 (5), 108-116. PMID: 22955639. (59) Wen N, Zhao B, Kim J, Chin-Snyder K, Bellos Maria, Glide-Hurst C et al. IMRT and RapidArc commissioning of a TrueBeam linear accelerator using TG-119 protocol cases. Journal Of Applied Clinical Medical Physics, 2014, vol. 15 (5), 74-88. PMID: 25207569. (60) Knill C, Synder M. An analysis of confidence limit calculations used in AAPM Task Group No. 119. Med. Phys. 2011, vol. 38 (4), 1779-1784. DOI: 10.1118/1.3560876. (61) Fraass B, Doppke K, Hunt M, Kutcher G, Starkschall G, Stern R, Van Dyke J. American Association of Physicists in Medicine Radiation Therapy Committee Task Group 53: Quality assurance for clinical radiotherapy treatment planning. Med. Phys. 1998, vol. 25 (10), 1773-1829. DOI: 10.1118/1.598373. (62) Venselaar J, Welleweerd H, Mijnheer B. Tolerances for the accuracy of photon beam dose calculations of treatment planning systems. Radiotherapy and Oncology. 2001, vol. 60, 191-201. PMID: 11439214. (63) Stojadinovich S, Ouyang L, Gu X, Pompos A, Bao Q, Solberg TD. Breaking bad IMRT QA practice. Journal Of Applied Clinical Medical Physics. 2015, vol. 16 (3), 154-165. DOI: 10.1120/jacmp.v16i3.5242. (64) IAEA. Technical Reports Series No. 398. Absorbed Dose Determination in External Beam Radiotherapy. An International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water. Vienna, Austria: IAEA, 2000. (65) IAEA. Absorbed Dose Determination in External Beam Radiotherapy: Worksheet for high-energy photon beams. Versión 1.06. IAEA, 2004. [visitado el 08/08/2016] Disponible en: http://www-naweb.iaea.org/nahu/DMRP/codeofpractice.html. (66) IAEA. TECDOC 1583. Commissioning of Radiotherapy Treatment Planning Systems: Testing for Typical External Beam Treatment Techniques. Viena, Austria: IAEA, 2008. (67) Robinson D. Inhomogeneity correction and the analytic anisotropic algorithm. Journal of Applied Clinical Medical Physics. 2008, vol. 9 (2). (68) Lu L, Yembi-Goma G, Wang JZ, Gupta N, Huang Z, Lo SS, Martin D, Mayr N. A Practical Method to Evaluate and Verify Dose Calculation Algorithms in the Treatment Planning System of Radiation Therapy. International Journal of Medical Physics, Clinical Engineering and Radiation Oncology. 2013, vol. 2, 76-87. DOI: 10.4236/ijmpcero.2013.23011. (69) Lopez GDLM, Bregains F, Larragueta NO. Comisionamiento de acelerador Varian TrueBeam en modalidad Fotones y Electrones. Tesis (Maestría en Física Médica). Bariloche, Universidad Nacional de Cuyo, Instituto Balseiro, 2016 [en proceso]. (70) CIRS. IMRT Thorax Phantom. Model 002LFC [hoja de datos]. CIRS, 2013 [visitado el 3/09/2016] Disponible en: www.cirsinc.com/file/Products/002LFC/002LFC%20DS%20 090116.pdf (71) Gillis S, De Wagter C, Bohsung J, Perrin B, Williams P, Mijnheer BJ. An inter-centre quality assurance network for IMRT verification: Results of the ESTRO QUASIMODO project. Radiotherapy and Oncology. 2005, vol. 76, 340-353. DOI: 10.1016/j.radonc.2005.06.021. (72) Bohsung J, Gillis S, Arrans R, Bakai A, De Wagter C, Knöös T et al. IMRT treatment planning. A comparative inter-system and inter-centre planning exercise of the ESTRO QUASIMODO group. Radiotherapy and Oncology. 2005, vol. 76 (3), 354-361. DOI: 10.1016/j.radonc.2005.08.003. (73) Spretz T, Haye ML, Larragueta NO, Bregains F. Dosimetría de campos pequeños de fotones en radioterapia. Intercomparación entre diferentes detectores. Tesis (Maestría en Física Médica). Bariloche, Universidad Nacional de Cuyo, Instituto Balseiro, 2016 [en proceso]. (74) Méndez I, Hartman V, Hudej R, Strojnik A, Casar B. Gafchromic EBT2 film dosimetry in reflection mode with a novel plan-based calibration method. Med. Phys. 2013, vol. 40 (1), 011720 1-9. DOI: 10.1118/1.4772075. (75) Cadman PF. Comment on “IMRT commissioning: Some causes for concern”. Med. Phys. 2011, vol. 38 (7), 4464-4465. DOI: 10.1118/1.3602464. (76) Zhen H, Nelms BE, Tomé WA. Moving from gamma passing rates to patient DVH-based QA metrics in pretreatment dose QA. Medical Physics. 2011, vol. 38, 5477-5489. DOI: 10.1118/1.3633904. (77) Nelms BE, Chan MF, Jarry G, Lemire M, Lowden J, Hampton C, Feygelman V. Evaluating IMRT and VMAT dose accuracy: Practical examples of failure to detect systematic errors when applying a commonly used metric and action levels. Medical Physics. 2013, vol. 40, 111722 1-15. DOI: 10.1118/1.4826166. (78) Budgell G. Comment on “On the insensitivity of single field planar dosimetry to IMRT inaccuracies” [Med. Phys.37, 2516–2524 (2010)]. Medical Physics. 2010, vol. 37, 6497-6498. DOI: 10.1118/1.3514142. (79) Yan G, Liu C, Simon TA, Peng LC, Fox C, Li JG. On the sensitivity of patient-specific IMRT QA to MLC positioning errors. Journal Of Applied Clinical Medical Physics. 2009, vol. 10 (1), 120-128. PMID: 19223841. (80) Templeton AK, Chu JCH, Turian JV. The sensitivity of ArcCHECK-based gamma analysis to manufactured errors in helical Tomotherapy radiation delivery. Journal of Applied Clinical Medical Physics. 2013, vol. 16 (1). DOI: 10.1120/jacmp.v16i1.4814. (81) Ezzell G. Response to “Comment on ‘IMRT commissioning: Some causes for concern’”. Medical Physics. 2011, vol. 38, 4466. DOI: 10.1118/1.3602506.
Materias:Medicina > Radioterapia
Divisiones:Fundación Centro de Medicina Nuclear y Molecular de Entre Ríos
Código ID:576
Depositado Por:Tamara Cárcamo
Depositado En:18 Abr 2017 14:31
Última Modificación:24 Abr 2017 17:10

Personal del repositorio solamente: página de control del documento