Construcción de un fatoma antropomórfico de pelvis para el control de calidad en los tratamientos de IMRT con compensadores. / Construction of an anthropomorphic pelvis phatom for quality control of IMRT treatments with compesators.

Sierra, Natalia Magalí (2016) Construcción de un fatoma antropomórfico de pelvis para el control de calidad en los tratamientos de IMRT con compensadores. / Construction of an anthropomorphic pelvis phatom for quality control of IMRT treatments with compesators. Maestría en Física Médica, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
64Mb

Resumen en español

En el transcurso de este trabajo, se diseñó, construyó y evalúo un fantoma antropomórfi- co de pelvis para el control de calidad en los tratamientos de IMRT con compensadores. Sus medidas son valores promedios calculados a partir de una muestra compuesta por igual cantidad de pacientes de IMRT de sexo femenino y masculino, del servicio de Radioterapia de la FUESMEN. Para su construcción se eligió el poliestireno de alto impacto, cuya densidad electró- nica es similar a la del agua, y se consideró un plástico adecuado para la sustitución de tejido blando en la construcción de fantomas para control de calidad en esta disciplina. Además, el fantoma incorpora a los materiales Delrin y Polietileno para simular a las cabezas femorales y tejido graso humanos, respectivamente. El diseño de sus cortes componentes fue realizado en el programa CorelDRAW 9 versión 9.337 y cortados por medio de una máquina láser GCC LaserPro X252. Una vez ensamblado, su evaluación incluyó: la caracterización de sus materiales componentes con respecto a materiales y tejidos de referencia, su uso en el control de calidad de tratamientos de pelvis con Radioterapia conformacional 3D y su empleo en controles de calidad de IMRT con compensadores. Fue puesto a prueba mediante mediciones dosimétricas llevadas a cabo con placas Gafchromic modelo EBT2, cámara de ionización NE 2571 y MapCHECK2. Sus resultados se compararon con aquellos obtenidos en condiciones idénticas de medición, en fantomas comerciales de materiales diferentes utilizados en dosimetría, como así también, con los valores entregados por el planificador de tratamientos, según correspondiera. Los análisis efectuados permiten concluir que el fantoma construido es adecuado para desempeñar la función que motivó su construcción.

Resumen en inglés

In the course of this work it was designed and built an anthropomorphic pelvis phantom for quality controls in IMRT treatments with compensators. Its use was evaluated in the quality control of pelvic treatments with 3D conformational radiotherapy and IMRT with compensators. Its measurements are average values calculated from a sample composed of equal numbers of female and male IMRT patients from Radiotherapy deparment of FUESMEN. High-impact polystyrene, whose electronic density was similar to that of water, was chosen for its construction and was considered an adequate plastic for the replacement of soft tissue in the construction of phantoms for quality control in this discipline. Besides, the phantom incorporates Delrin and Polyethylene materials to simulate femoral heads and human fat tissue, respectively. The design of its components was made in the CorelDRAW 9 versión 9.337 program and cut by a laser machine GCC LaserPro X252. Once assembled, its evaluation included: the characterization of its component materials with respect to reference materials and tissues, its use in the quality control of pelvic treatments with 3D conformational radiotherapy and its use in IMRT quality controls with compensators. It was tested by dosimetric measurements carried out with Gafchromic flms model EBT2, NE 2571 ionization chamber and MapCHECK2. Their results were compared with those obtained under identical conditions of measurement, in commercial phantoms of diferent materials used in dosimetry, as well as with the values provided by treatment planning system, as appropriate. The analyzes made allow to conclude that the phantom built is suitable to perform the function that motivated its construction.

Tipo de objeto:Tesis (Maestría en Física Médica)
Palabras Clave:Radiotherapy; Radioterapia; Quality Control; Control de calidad; Pelvis [IMRT; Intensity modulated radiation therapy; Radioterapia de intensidad modulada; Phantom; Fantoma; High impact polystyrene; Poliestireno de alto impacto]
Referencias:[1] Dewerd L.A, K. M., (ed.). The phantoms of medical and health physics. Madison: Springer, 2014. 1, 2, 3, 4, 5, 7, 14, 42 [2] Low, D. a., Moran, J. M., Dempsey, J. F., Dong, L., Oldham, M. Dosimetry tools and techniques for IMRT. Medical physics, 38 (3), 13131338, 2011. 2, 5, 8, 9, 10 [3] Kumar, R., Sharma, S. D., Despande, S., Ghadi, Y., Shaiju, V. S., Amols, H. I., et al. Acrylonitrile Butadiene Styrene (ABS) plastic-based low cost tissue equivalent phantom for verication dosimetry in IMRT. Journal of Applied Clinical Medical Physics, 11 (1), 2432, 2010. 2 [4] Khan, F. M., Gibbons, J. P. The Physics of Radiation Therapy. 5a edón. Philadelphia: LIPIPINCOTT WILLIAMS & WILKINS, a WOLTERS KLUWER business, 2014. 4, 5, 9, 10, 22, 38, 42, 58, 59 [5] Podgorsak, E. B., (ed.). Radiation Oncology Physics : A Handbook for Teachers and Students. ed. ii edón. Vienna: IAEA, 2005. 5, 7, 8, 9, 10, 59 [6] CIRS. IMRT Pelvic 3D Phantom. URL http://www.cirsinc.com/products/ solution/13/imrt-pelvic-3d-phantom/. 6 [7] Medical Expo. Radiation therapy test phantom / head / skull QUASARTM. URL http://www.medicalexpo.com/prod/modus-medical-devices/ product-101146-665975.html. 6 [8] Radiology Support Devices, I. The Alderson Radiation Therapy phantom (ART). URL http://www.rsdphantoms.com/rt{_}art.htm. 6 [9] PTW. Acrylic and RW3 Slab Phantoms. URL http://www.ptw.de/ acrylic{_}and{_}rw3{_}slab{_}phantoms0.html. 6 [10] Adrada, J. A. Análisis dosimétricos mediante Películas Radiocrómicas en Tratamientos de IMRT. Tesis(maestría en física médica), Bariloche,Instituto Balseiro- Universidad Nacional de Cuyo, 2011. 10, 11, 12 [11] ElGohary, M., Kamal, G., Galal, M., Hosini, M. Clinical evaluation of Direct Aperture Optimization in Head&Neck and Prostate IMRT treatment. Nature and Science, 13 (9), 19, 2015. 10 [12] Ezzell, G. a., Galvin, J. M., Low, D., Palta, J. R., Rosen, I., Sharpe, M. B., et al. Guidance document on delivery, treatment planning, and clinical implementation of IMRT: report of the IMRT Subcommittee of the AAPM Radiation Therapy Committee. Medical physics, 30 (8), 20892115, 2003. 11, 12, 15 [13] Medicalphysicsweb. Compensator-based IMRT, 2009. URL http:// medicalphysicsweb.org/cws/product/P000010761. 11 [14] Salari, E. Mathematical Optimization in Radiotherapy Treatment Planning, 2013. URL https://gray.mgh.harvard.edu/attachments/article/166/ TreatmentPlanning2.pdf. 11 [15] Centro de Información Técnica (CIT). Poliestireno características y ventajas al medio ambiente. Revista Ecoplas, 38, 116, 2011. 21 [16] PTW. Octavius II: IMRT Pre-treatment QA. URL http://www.ptw.de/1995. html. 22 [17] Louwe, R. J. W., Wendling, M., van Herk, M. B., Mijnheer, B. J. Threedimensional heart dose reconstruction to estimate normal tissue complication probability after breast irradiation using portal dosimetry. Medical physics, 34 (4), 13541363, 2007. 22 [18] Gonzalez, A., Roselló, J., Ruiz, J. C., Núñez, L., Calatayud, J. P., Doblado, F. S., et al. Diseño de un maniquí para vericaciones dosimétrico-geométricas de tratamientos con intensidad modulada. Revista de Física Médica, 2 (1), 58, 2001. 22 [19] Sharma, S. D., Kumar, R., Akhilesh, P., Pendse, A. M., Deshpande, S., Misra, B. K. Dose verication to cochlea during gamma knife radiosurgery of acoustic schwannoma using MOSFET dosimeter. Journal of cancer research and therapeutics, 8 (4), 528531, 2012. 22 [20] IAEA (International Atomic Energy Agency). IAEA-TECDOC-398 Determinaci ón de la dosis absorbida en radioterapia con haces externos. pág. 261, 2005. 22, 39 [21] Jeong, H., Han, Y., Kum, O., Kim, C. H., Park, J. H. MULTI-PURPOSE DOSIMETRY IN INTENSITY-MODULATED RADIATION THERAPY. NUCLEAR ENGINEERING AND TECHNOLOGY, 43 (4), 399404, 2011. 25, 26 [22] Orfali, A. Verication of a 3D External Photon Beam Treatment Planning System. Tesis (master of science in medical radiation physics), Montreal, McGiII University, 1996. 25 [23] DuPont. DELRIN R ACETAL RESIN. URL http://www.dupont.com/ products-and-services/plastics-polymers-resins/thermoplastics/ brands/delrin-acetal-resin.html. 25 [24] THE PHANTOM LABORATORY INCORPORATED. C a t p h a n R 604 M a n u a l CTP604, 2015. 25 [25] Behari, J. Biophisical bone behavoir. Principles and applications. 2009. URL https://books.google.com/books?id= ASxcIyQtnYsC{&}pgis=1$\delimiter"026E30F$nhttp://www.evernote. com/l/AFnSiqW9CexCLrfrgzy0Ciy{_}Y28cig3lb9M/. 25 [26] Modus Medical Devices Inc. Multi-Purpose Body Phantom User ' s Guide, 2010. 26 [27] Habasit. Polietileno (PE). URL http://www.habasit.com/es/polietileno. htm. 26 [28] Kanematsu, N., Matsufuji, N., Kohno, R. A CT calibration method based on the polybinary tissue model for radiotherapy treatment planning. Phys. Med. Biol., 48, 10531064, 2003. 37 [29] Ramaseshan, R., Kohli, K., Cao, F., Heaton, R. Dosimetric Evaluation of Plastic Water Diagnostic Therapy. Journal of Applied Clinical Medical Physics, 9, 2008. 38 [30] Sage J, Cullingford A, Dagless M, Kilby W, Hutchings R, &., E, T. A Complete Program of CT Quality Assurance for Radiotherapy Treatment Planning. Brighton, 1998. 39, 57 [31] Thomas, S. J. Relative electron density calibration of CT scanners for radiotherapy treatment planning. British Journal of Radiology, 72 (1999), 781786, 1999. 39, 59, 60 [32] Stern, R. L., Heaton, R., Fraser, M. W., Goddu, S. M., Kirby, T. H., Lam, K. L., et al. Verication of monitor unit calculations for non-IMRT clinical radiotherapy: report of AAPM Task Group 114. Medical physics, 38 (1), 504530, 2011. 45, 65 [33] Holley, G. M. Control de Calidad para ltros compensadores discretos para IMRT. Tesis(maestría en física médica), Bariloche, Instituto Balseiro- Universidad Nacional de Cuyo, 2009. 46 [34] Gibbons, J. P., Antolak, J. A., Followill, D. S., Klein, E. E., Reid, M. Monitor unit calculations for external photon and electron beams : Report of the AAPM Therapy Physics Committee Task Group No . 71. 41 (71), 134, 2014. 60 [35] Alber, M., Broggi, S., De Wagter, C., Eichwurzel, I., Engstrom, P., Fiorino, C., et al. Guidelines for the verication of IMRT. 1a edón. Bruselas, 2008. 71
Materias:Medicina > Radioterapia
Medicina
Divisiones:FUESMEN
Código ID:581
Depositado Por:Tamara Cárcamo
Depositado En:24 Abr 2017 16:59
Última Modificación:24 Abr 2017 16:59

Personal del repositorio solamente: página de control del documento