Efecto Casimir dinámico para medios semitransparentes. / Dynamical Casimir effect for semitransparent mirrors.

Giraldo Zuluaga, Alberto L. (2016) Efecto Casimir dinámico para medios semitransparentes. / Dynamical Casimir effect for semitransparent mirrors. Maestría en Ciencias Físicas, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Disponible bajo licencia Creative Commons: Reconocimiento - No comercial - Compartir igual.

Español
704Kb

Resumen en español

La imposición de condiciones de borde no estacionarias a campos cuánticos puede llevar a la aparición de fenómenos disipativos. En este trabajo estudiaremos aquellos asociados a condiciones de borde en movimiento implementadas por espejos semitransparentes, en los casos de movimiento normal oscilatorio y movimiento lateral con velocidad constante. Encontraremos en cada caso la acción efectiva para un campo escalar real sujeto a las condiciones de borde mencionadas, y encontraremos la parte imaginaría de dicha acción efectiva. Mostraremos que para que esta sea no nula, cierto tipo de condiciones deben ser satisfechas. Estas van a estar relacionadas con la producción de partículas reales en el caso oscilatorio, o con la respuesta de los grados de libertad microscópicos de los espejos en el caso del movimiento lateral. Por lo tanto la aparición de una parte imaginaria en la acción efectiva puede relacionarse con la aparición de fenómenos disipativos.

Resumen en inglés

Imposing non-stationary boundary conditions on quantum fields will generate disipative effects. In this work, we study those associated with moving boundary conditions corresponding to semitransparent mirrors in two different situations: Normal oscillatory motion and sidewise motion at constant velocity. In both cases we construct the effective action for a real scalar field, and evaluate the conditions for a non-vanishing imaginary part of the effective action. This will be an indicator of the creation of real particles in the case of normal oscillatory motion, and of the response of microscopic degrees of freedom of the mirror, in the case of lateral motion. Both mechanisms are responsible of the ocurrence of dissipative effects.

Tipo de objeto:Tesis (Maestría en Ciencias Físicas)
Información Adicional:Área Temática: Teoría cuántica de campos.
Palabras Clave:Casimir effect; Efecto casimir; [Dynamical Casimir effect; Efecto Casimir dinámico; Zero point energy; Energía de vacío; Effective action; Integral funcional; Geldfand-Yaglon theorem; Teorema de Gelfand-Yaglom; Quantum friction; Fricción cuántica]
Referencias:[1] Casimir, H. B. G. On the Attraction Between Two Perfectly Conducting Plates. Indag. Math., 10, 261{263, 1948. [Kon. Ned. Akad. Wetensch. Proc.100N3- 4,61(1997)]. 2 [2] Moore, G. T. Quantum theory of the electromagnetic eld in a variable-length one-dimensional cavity. Journal of Mathematical Physics, 11 (9), 2679{2691, 1970. 2 [3] Fulling, S. A., Davies, P. C. W. Radiation from a moving mirror in two dimensional space-time: Conformal anomaly. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 348 (1654), 393{414, 1976. URL http://rspa.royalsocietypublishing.org/content/348/1654/393. 2 [4] Unruh, W. G. Notes on black-hole evaporation. Phys. Rev. D, 14, 870{892, Aug 1976. URL http://link.aps.org/doi/10.1103/PhysRevD.14.870. 3 [5] Wilson, C., Johansson, G., Pourkabirian, A., Simoen, M., Johansson, J., Duty, T., et al. Observation of the dynamical casimir eect in a superconducting circuit. Nature, 479 (7373), 376{379, 2011. 3 [6] Ford, L. H., Vilenkin, A. Quantum radiation by moving mirrors. Phys. Rev. D, 25, 2569{2575, May 1982. URL http://link.aps.org/doi/10.1103/PhysRevD. 25.2569. 3 [7] Bordag, M., Klimchitskaya, G., Mostepanenko, V. Corrections to the casimir force between plates with stochastic surfaces. Physics Letters A, 200 (2), 95 { 102, 1995. URL http://www.sciencedirect.com/science/article/pii/ 037596019500139T. 3 [8] Dodonov, V. Photon creation and excitation of a detector in a cavity with a resonantly vibrating wall. Physics Letters A, 207 (3), 126 { 132, 1995. URL http://www.sciencedirect.com/science/article/pii/037596019500691U. 3 [9] Golestanian, R., Kardar, M. Path-integral approach to the dynamic casimir eect with uctuating boundaries. Phys. Rev. A, 58, 1713{1722, Sep 1998. URL http: //link.aps.org/doi/10.1103/PhysRevA.58.1713. 3 [10] Fosco, C. D., Lombardo, F. C., Mazzitelli, F. D. Quantum dissipative eects in moving mirrors: A functional approach. Phys. Rev. D, 76, 085007, Oct 2007. URL http://link.aps.org/doi/10.1103/PhysRevD.76.085007. 3, 7, 17 [11] Einstein, A. Zur quantentheorie der strahlung. Physikalische Zeitschrift, 18, 1917. 3 [12] Maghrebi, M. F., Golestanian, R., Kardar, M. Quantum cherenkov radiation and noncontact friction. Phys. Rev. A, 88, 042509, Oct 2013. URL http://link. aps.org/doi/10.1103/PhysRevA.88.042509. 4, 28, 41 [13] Philbin, T. G., Leonhardt, U. No quantum friction between uniformly moving plates. New Journal of Physics, 11 (3), 033035, 2009. URL http://stacks.iop. org/1367-2630/11/i=3/a=033035. 4 [14] Pendry, J. B. Quantum frictionfact or ction? New Journal of Physics, 12 (3), 033028, 2010. URL http://stacks.iop.org/1367-2630/12/i=3/a=033028. [15] Leonhardt, U. Comment on 'quantum frictionfact or ction?'. New Journal of Physics, 12 (6), 068001, 2010. URL http://stacks.iop.org/1367-2630/12/i= 6/a=068001. [16] Pendry, J. B. Reply to comment on 'quantum frictionfact or ction?'. New Journal of Physics, 12 (6), 068002, 2010. URL http://stacks.iop.org/1367-2630/12/ i=6/a=068002. 4 [17] Kleinert, H. Path integrals in quantum mechanics, statistics, polymer physics, and nancial markets; 3rd ed. River Edge, NJ: World Scientic, 2004. 8 [18] Itzykson, C., B., Z. J. Quantum Field Theory. McGraw-Hill, 1980. 14 [19] Zinn-Justin, J. Quantum Field Theory and Critical Phenomena; 4th ed. Internat. Ser. Mono. Phys. Oxford: Clarendon Press, 2002. 15, 31, 35 [20] Hye, J. S., Brevik, I. Casimir friction force and energy dissipation for moving harmonic oscillators. EPL (Europhysics Letters), 91 (6), 60003, 2010. URL http: //stacks.iop.org/0295-5075/91/i=6/a=60003. 29 [21] Gel'fand, I. M., Yaglom, A. M. Integration in functional spaces and its applications in quantum physics. Journal of Mathematical Physics, 1 (1), 48{69, 1960 URL http://scitation.aip.org/content/aip/journal/jmp/1/1/10.1063/1. 1703636. 36 [22] Belen Faras, M., Fosco, C. D., Lombardo, F. C., Mazzitelli, F. D., Rubio Lopez, A. E. Functional approach to quantum friction: Eective action and dissipative force. Phys. Rev. D, 91, 105020, May 2015. URL http://link.aps.org/doi/ 10.1103/PhysRevD.91.105020. 38, 42 [23] Dunne, G. V. Functional determinants in quantum eld theory. Journal of Physics A: Mathematical and Theoretical, 41 (30), 304006, 2008. URL http://stacks. iop.org/1751-8121/41/i=30/a=304006. 43 [24] Ttira, C. C., Fosco, C. D., Mazzitelli, F. D. Lifshitz formula for the casimir force and the gelfandyaglom theorem. Journal of Physics A: Mathematical and Theoretical, 44 (46), 465403, 2011. URL http://stacks.iop.org/1751-8121/ 44/i=46/a=465403. 43
Materias:Física
Divisiones:Investigación y aplicaciones no nucleares > Física > Partículas y campos
Código ID:596
Depositado Por:Tamara Cárcamo
Depositado En:02 May 2017 16:45
Última Modificación:02 May 2017 16:45

Personal del repositorio solamente: página de control del documento