Almaraz, David M. E, (2016) Correlación de volúmenes de órganos a riesgo entre imágenes tomográficas de un mismo paciente, adquiridas en diferentes momentos. / Correlation of volumes of organs at risk between tomographic images of the same patient, acquired at different times. Maestría en Física Médica, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Español 2490Kb |
Resumen en español
Se trabaja con una herramienta computacional de libre accesibilidad, conocida como 3D-Slicer. Este software es capaz de realizar los co-registros por diferentes métodos: por ejemplo, Mutual Information, Co-registro basado en estructuras delineadas por el médico, o auto-segmentación, Registro Fiducial, Landmarks, etc. De esta forma, se obtiene un análisis de las imágenes registradas y de sus estructuras delineadas. Mediante el método de cálculo de EV% (error porcentual de volumen de las estructuras de órganos a riesgo), se puede cuantificar el error que se comete en la delineación de las estructuras de interés entre ambas imágenes sin registrar. En este caso las definimos como imagen de referencia a CT_1 y la imagen a registrar como CT_2. Además se logra medir el cambio de volumen de los ROIs generados por las transformaciones lineales después de aplicado el registro. Como también al aplicar el Registro Fiducial, no se registran cambios en dichos volúmenes mencionados. El análisis que se realiza está bajo el marco de la mejor elección del tipo de registro, su transformación y la deformación inducida a las estructuras delineadas sin cambios en sus volúmenes. Luego la presentación de resultados a partir del análisis observacional y cuantitativo, nos permite ampliar la búsqueda de un posible protocolo de estudio de nuestro Registro de imágenes.
Resumen en inglés
It works with a computer tool of free accessibility, known as 3D-Slicer. This software is able to perform co-registrations by different methods: for example, Mutual Information, Co-registration based on structures delineated by the physician, or self-segmentation, Fiducial Record, Landmarks, etc. In this way, an analysis of the recorded images and their delineated structures is obtained. By means of the EV% calculation method (percentage error of volume of the structures of organs at risk), it is possible to quantify the error that is committed in the delineation of the structures of interest between both unregistered images. In this case we define them as reference image to CT_1 and the image to register as CT_2. In addition, it is possible to measure the volume change of the ROIs generated by the linear transformations after the registration has been applied. As well as in applying the Fiducial Register, no changes are recorded in said mentioned volumes. The analysis that is carried out is under the frame of the best choice of the type of record, its transformation and the induced deformation to the delineated structures without changes in their volumes. Then the presentation of results from the observational and quantitative analysis, allows us to expand the search for a possible study protocol from our Image Registry.
Tipo de objeto: | Tesis (Maestría en Física Médica) |
---|---|
Información Adicional: | Área Temática: Procesamiento de Imágenes Médicas para Radioterapia. Materia: Introducción al Procesamiento de Imágenes Médicas, Radioterapia. |
Palabras Clave: | Images; Imágenes; Tomography; Tomografía; Tumors; Tumores; [Deformation; Deformación; 3D-Slicer] |
Referencias: | [1] Ing. Miguel Mario Malamud. Apuntes de cátedra Bioingeniería II, Diagnóstico por imágenes- Equipamiento. [2] Derek L G Hill, Philipp G Batchelor, Mark Holden, and David J Hawkes. Medical image registration. Physics in Medicine and Biology, 46(3):R1, 2001 [3] Tracy L. Faber, Ernest M. Stokely. Orientation of 3-D Structures in Medical Images. IEEE Transactions on pattern analysis and machine intelligence. vol. 10. No. 5. September 1988. [4] Milan Sonka and J. Michael Fitzpatrick. Handbook of medical imaging - processing and analysis. IEEE Trans. Med. Imaging, 20(3):249–250. 2009 [5] Oscar Andrés Vélez Martínez -Director: Álvaro Ángel Orozco Gutiérrez. Metodología para el Registro multimodal de imágenes 3D utilizando información mutual. Tesis de Maestría en Ingeniería Eléctrica, 2014. [6] Barbara Zitová and Jan Flusser. Image registration methods: a survey. Image and Vision Computing, 21(11):977 – 1000, 2003 [7] Josien P. W. Pluim and J. Michael Fitzpatrick. Image registration. IEEE Trans. Med. Imaging, 22(11):1341–1343, 2003. [8] Josein. P. W. Pluim, J.B.A. Maintz, and M.A. Viergever. Mutual-information-based registration of medical images: a survey. Medical Imaging, IEEE Transactions on, 22(8):986–1004, 2003 [9] Jianhua Xuan, YueWang, Matthew T. Freedman, Tülay Adali, and Peter G. Shields. Nonrigid medical image registration by finite-element deformable sheet-curve models. Int. J. Biomedical Imaging, 2006, 2006. [10] D. Rueckert and P. Aljabar. Nonrigid registration of medical images: Theory, methods, and applications [applications corner]. Signal Processing Magazine, IEEE, 27(4):113–119, 2010. [11] Rizzo G, Pasquali P, Gilardi M (1991) Multimodal biomedical image integration: Use of a cross-correlation technique. Proceedings IEEE EMBS 13:219-220. [12] Pascal Cachier and Nicholas Ayache. Regularization in Image Non-Rigid Registration: I. Trade-off between Smoothness and Intensity Similarity. Technical Report RR-4188, INRIA, May 2001 [13] Paul J, Besl and Neil D. McKay. A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell., 14(2):239–256, February 1992. [14] M. Holden, D. L G Hill, E.R.E. Denton, J.M. Jarosz, T. C S Cox, T. Rohlfing, J. Goodey, and D.J. Hawkes. Voxel similarity measures for 3-d serial mr brain image registration. Medical Imaging, IEEE Transactions on, 19(2):94–102, 2000. [15] Análisis de imágenes médicas. Fernando Arámbula 2008 [16] Arun KS, Huang TS, Bostein SD (1987). Least squares fitting of two 3D point sets. IEEE Trans Pattern Anal Machine Intell. 9:698–700 [17] Hajnal JV, Hill DLG, Hawkes DJ (2001) Medical Image Registration. CRC, Boca Raton, London, New York [18] Seginer, A. (2011) Rigid–body point-based registration: the distribution of the target registration error when the fiducial registration errors are given. Med Image Anal 15(4):397-413 [19] Jiang, M. Robb, R. A, Molton K. J. (1992) A new approach to 3-D registration of multimodality medical image by surface matching. Proc SPIE 1808:196-213 [20] Huang, C. T. and Mitchell, O. R. (1994) A Euclidean distance transform using gray scale morphology decomposition. IEEE Trans Pattern Anal Mach Intell 16:443-448 [21] Besl, P. J. and McKay, N. D. (1992). A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell. 14:239–256 [22] Pietrzyk, U. Herholz, K. Heiss, W. D. (1990) Three-dimensional alignment of functional and morphological tomograms. J Comput Assist Tomogr 14:51-59 [23] Sonia Pujol (2016) Registration tutorial_3Dslicer4.5. Alliance For Medical Image Computing ARR 2012-2016. [24] Petra A. van de Elsen, Evert Jan D. Pol, Max A. Viergever (1993) Medical Image Matching. A Review with classification. IEEE Engineering in Medicine and Biology 0739-5175/93 [25] George C. Nikiforidis, William R. Hendee. Emerging technologies for image guidance and device navigation in interventional radiology. (Received 10 April 2012; revised 7 August 2012; accepted for publication 7 August 2012; Published 4 September 2012. 5768 Med. Phys. 39 (9), September 2012 0094-2405/2012/39(9)/5768/14. [26] M. V. Sruthi, Dr V.Usha Shree, Dr. K. Soundararajan. Enhanced Multimodality Image Registration Based On Mutual Information. IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 6, Issue 1, Ver. I (Jan. -Feb. 2016), PP 09-12 e-ISSN: 2319 – 4200, p-ISSN No. : 2319 – 4197 [27] Gemma Piella' and Heni Heijmans. A NEW QUALITY METRIC FOR IMAGE FUSION. CWI, Kruislaan 413, 1098 SJ Amsterdam. The Netherlands. 0-7803-7750-8103R17.00 - 2003 IEEE [28] J. B. Antoine Maintz and Max A. Viergever. A survey of medical image registration. Image Sciences Institute, Utrecht University Hospital, Utrecht, The Netherlands. Medical Image Analysis (1998) volume 2, number 1, pp 1–36 Oxford University Press [29] Hava Lester and Simon R. Arridge. A survey of hierarchical non-linear medical image registration. Department of Computer Science, University College London, London, WC1E 6BT, U.K. Received 28 May 1998. Pattern Recognition 32 (1999) 129Ð149 [30] McInerney, T. y Terzopoulos, D. 1996 Deformable models in medical image analysis: a survey. Department of Computer Science, University of Toronto, Toronto, ON, Canada M5S 3H5. Medical Image Analysis (1996) volume 1, number 2, pp 91–108 Oxford University Press [31] Ismael Sancho. Imagen para planificación en radioterapia externa (II). Curso Imagen en Radioterapia SEFM 23-26 de Octubre 2013 Hospital de Navarra. [32] Frederik Maes, Dirk Vandermeulen, and Paul Suetens. Medical Image Registration Using Mutual Information. PROCEEDINGS OF THE IEEE, VOL. 91, NO. 10, OCTOBER 2003. |
Materias: | Medicina > Radioterapia |
Divisiones: | Hospital Oncológico de Córdoba |
Código ID: | 604 |
Depositado Por: | Tamara Cárcamo |
Depositado En: | 18 May 2017 11:46 |
Última Modificación: | 22 May 2017 10:53 |
Personal del repositorio solamente: página de control del documento