Nanopartículas magnéticas multicomponentes : diseño, fabricación y propiedades. / Multicomponent magnetic nanoparticles : desing, fabrication an properties.

Lavorato, Gabriel C. (2016) Nanopartículas magnéticas multicomponentes : diseño, fabricación y propiedades. / Multicomponent magnetic nanoparticles : desing, fabrication an properties. Tesis Doctoral en Ciencias de la Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
33Mb

Resumen en español

Las propiedades de las nanopartículas magnéticas están definidas por la elevada relación superficie/volumen y se manifiestan en fenómenos como superparamagnetismo, anisotropía de superficie, desorden magnético superficial y exchange-bias. La síntesis de nanoestructuras multicomponentes con un grado creciente de complejidad permite un mayor control sobre sus propiedades que, guiadas por el impulso de la miniaturización de dispositivos electrónicos y el avance de las energías limpias y la nanomedicina, pueden optimizar el rendimiento de materiales para almacenamiento magnético de datos, imanes permanentes, aplicaciones biomédicas o catálisis. El superparamagnetismo impone un límite a la reducción del tamaño debido a la uctuación térmica del momento magnético cuando su energía de anisotropía resulta comparable a la energía térmica. Frente a ello, estudios previos demostraron que el acoplamiento en la interfaz de nanopartículas bimagnéticas antiferromagneto/ferrimagneto de estructura core/shell permite incrementar la anisotropía efectiva y manipular el exchange-bias, de acuerdo a la relación entre la energía de anisotropía del antiferromagneto y la intensidad de la interacción de intercambio en la interfaz. Esta tesis se enfoca en el diseño, la fabricación y el estudio de nuevos materiales nanoestructurados basados en nanopartículas core/shell, orientados a sintonizar las propiedades físicas gracias a la comprensión de los mecanismos microscópicos que los gobiernan. Se emplearon óxidos de metales de transición, materiales abundantes y relativamente económicos que ofrecen una variedad de propiedades, incluyendo ferrimagnetos como ferritas de elevada anisotropía magnetocristalina (CoFe_2O_4), ferritas de anisotropía ajustable según su composición (ferritas mixtas de Zn-Co o Ni-Co) o biocompatibles (Fe_3O_4), monóxidos antiferromagnéticos de elevada anisotropía (CoO) y semiconductores diamagnéticos fotoluminiscentes (ZnO). Distintas familias de nanopartículas multicomponentes se sintentizaron mediante métodos químicos basados en la descomposición de organometálicos en solventes orgánicos, asistida por surfactantes. Los materiales desarrollados se estudiaron mediante técnicas de caracterización estructural (microscopía electrónica de transmisión, difracción y reectometría de rayos X, termogravimetría), magnética (distintos magnetómetros DC y AC) y óptica (espectrometría UV-visible y de fotoluminiscencia). En primer lugar se diseñaron distintos sistemas de nanopartículas core/shell de composición CoO/CoFe_2O_4 y se estudiaron los efectos de tamaño con el objetivo de controlar la anisotropía efectiva. A diferencia de lo que se observa en nanopartículas monofásicas, al reducir el tamaño se registró un notable incremento de la anisotropía, a expensas de una menor estabilidad térmica por el menor volumen total. En nanopartículas de 5 nm de diámetro, se demostró que el campo coercitivo medido a 5 K puede incrementarse hasta 30.8 kOe, valor un 50% mayor que el máximo reportado para nanopartículas monofásicas de CoFe_2O_4. A su vez, la estabilidad del momento magnético puede aumentarse hasta la temperatura de Néel del CoO, cerca de temperatura ambiente. Se encontró que la cristalinidad del núcleo de CoO y la eficacia de la interacción de intercambio en la interfaz se pueden controlar mediante un tratamiento térmico gracias al recubrimiento que protege al núcleo. Además, la comparación con un sistema de tamaño y morfología análogos pero formado por un núcleo diamagnético (ZnO/CoFe_2O_4) permitió identificar los diferentes roles de los efectos de superficie, de interacciones y de interfaz, los últimos responsables de un mayor campo coercitivo, mayor temperatura de bloqueo y menor volumen de activación en nanopartículas bimagnéticas. Luego, se propuso manipular el campo de exchange-bias y la anisotropía efectiva introduciendo Zn"2+ y Ni"2+ en la ferrita de Co, para lo que se diseñaron nuevos sistemas de nanopartículas core/shell CoO/ferrita. Se encontró que al incorporar Zn"2+, un ión 3d10 no magnético, se debilita el acoplamiento en la interfaz lo que lleva a maximizar el exchange-bias para concentraciones intermedias de Zn en la ferrita mixta. Los resultados se interpretaron de acuerdo a la competencia entre la energía de anisotropía del CoO y la energía de acoplamiento en la interfaz, considerando la densidad de espines magnéticos acoplados en la interfaz. En cambio, la introducción de Ni"2+ en la ferrita de Co demostró, además de la presencia de exchange-bias, importantes efectos de superficie y desorden magnético. Las dificultades para controlar con precisión los tamaños de las fases en las estructuras core/shell y la necesidad de un estudio sistemático de los efectos de los tamaños relativos sobre el acoplamiento en la interfaz motivó la fabricación y estudio de películas delgadas ferrita/ferrita. En bicapas de Fe_3O_4/CoFe_2O_4 fabricadas mediante depósito por láser pulsado donde el espesor de Fe_3O_4 se varío entre 0 y 25 nm, se identificó un espesor crítico de ~ 8 nm para la magnetita, por debajo del cual se observa un acople rígido entre ambas fases, mientras que mayores espesores promueven un comportamiento de tipo exchange-spring. Tales estudios pueden servir como sistema modelo para el diseño de nanopartículas bimagnéticas con propiedades óptimas. Por último, se diseñó y fabricó un sistema de nanopartículas core/shell bifuncionales de composición CoFe_2O_4/ZnO. La caracterización preliminar reveló que el material es capaz de generar calor frente a la aplicación de un campo magnético de radiofrecuencia y, al mismo tiempo, presenta una respuesta óptica fotoluminiscente. Los progresos registrados en los últimos años en el campo de la nanomedicina sugieren que las nanopartículas magnéticas pueden aportar soluciones a problemas biomédicos específicos. La combinación de ambas funcionalidades en un mismo material permitiría abordar nuevos estudios en el campo de la hipertermia de uido magnético donde la marcación óptica es fundamental, por ejemplo, para la evaluación de una aplicación sistémica de las nanopartículas en el organismo. La nanotecnología ofrece actualmente poderosas herramientas para el desarrollo de materiales magneticos avanzados, incluyendo nuevos metodos químicos de fabricación y la consolidación de técnicas de caracterización sensibles a la interfaz. El principal aporte de este trabajo es el diseño de nanoestructuras multicomponentes y el estudio de la compleja relación entre su estructura y propiedades físicas, que las distinguen de las nanopartículas monofasicas, con el fin de desarrollar nuevos materiales con propiedades sintonizables.

Resumen en inglés

The properties of magnetic nanoparticles are governed by the high surface-to-volume ratio and are manifested in dierent phenomena such as superparamangetism, exchangebias, surface magnetic disorder and surface anisotropy. The fabrication of complex multicomponent nanostructures enables a better control of their physical properties and, driven by the current needs for miniaturized devices and the growth of clean energy and nanomedicine, can improve the performance of materials for magnetic recording media, permanent magnets, biomedical applications or catalysis. Since the magnetic moments uctuates when its anisotropy energy is comparable to the thermal energy, the superparamagnetism imposes a limit to the size reduction. In this context, previous studies showed that the eective anisotropy and the exchange-bias eld can be increased as a result of the relationship between the antiferromagnetic anisotropy energy and the interface coupling energy in antiferromagnetic/ferrimagnetic core/shell bimagnetic nanoparticles. This thesis is focused on the design, fabrication and study of new nanostructured materials based on core/shell nanoparticles aiming at tuning the physical properties and understanding the microscopic mechanisms that rule them. Due to their abundance and relatively low costs, transition metal-oxides were employed. Such materials oer a variety of properties, including ferrimagnets with high magnetocrystalline anisotropy (CoFe_2O_4), with composition-dependent anisotropy (mixed Zn-Co or Ni-Co ferrites) or biocompatible (Fe_3O_4), antiferromagnetic monoxides with high anisotropy (CoO) and diamagnetic fotoluminiscent semiconductors (ZnO). Dierent families of multicomponent nanoparticles were synthesized by chemical methods based on the high temperature decomposition of organometallics assisted by surfactants. The materials were studied by means of structural (transmission electron microscopy, X-ray diraction and refl ectivity, thermogravimetry), magnetic (multiple DC and AC magnetometry) and optical (UV-visible and photoluminescence spectroscopy) characterization techniques. Firstly, dierent CoO/CoFe_2O_4 core/shell nanoparticle systems were designed and their size eects were analyzed with the aim of controlling the eective magnetic anisotropy. A remarkable increase of the anisotropy was found when the size is reduced, at the expense of a lower thermal stability for the magnetic moment. It was shown that the coercive eld of 5 nm nanoparticles can be increased up to 30.8 kOe at 5 K, 50 % larger than the maximum value reported up to now for single-phase CoFe_2O_4 nanoparticles; while the thermal stability of the magnetic moment can be increased up to the Neel temperature of CoO, close to room temperature. It was found that, since the CoO core is protected by the ferrite shell, its structural quality, and therefore the eciency of the interface exchange interaction, can be improved by a thermal treatment. In addition, the dierent roles played by surface eects, magnetic interactions and interface eects were identied by the comparison with ZnO/CoFe_2O_4 core/shell nanoparticles, synthesized with anologous size and morphology but a diamagnetic core. The results indicate that the interface interaction is responsible for the larger coercive eld and blocking temperature and the lower activation volume observed for bimagnetic nanoparticles. Next, the introduction of Zn"2+ or Ni"2+ into the ferrite was proposed in order to manipulate the exchange-bias eld and the eective anisotropy. To this extent, novel core/shell CoO/mixed-ferrite bimagnetic nanoparticles were designed and synthesized. It was found that the introduction of Zn"2+, a 3d"10 non-magnetic ion, reduces the interface exchange-coupling leading to a non-monotonic variation of the exchange-bias that results maximum for intermediate Zn concentrations. Such behavior was interpreted by taking into account the competition between the anisotropy energy of the CoO and the interface coupling energy, and by considering the density of coupled-spins a the interface. On the other hand, the introduction of Ni"2+ into the Co-ferrite revealed, in addition to the presence of exchange-bias, important surface and magnetic disorder eects. The diculties to adjust precisely the size of each phase in core/shell structures and the requierements of a systematic study of the size eects on the interface exchangecoupling motivated the fabrication and study of ferrite/ferrite thin lm bilayers. Therefore, high-quality Fe_3O_4/CoFe_2O_4 bilayers with a Fe_3O_4-thickness varying between 0 and 25 nm were produced by pulsed laser deposition and an 8 nm critical Fe_3O_4 thickness was identied: while thicknesses below such value lead to a rigid-coupling regime, larger values promote an exchange-spring behavior. The present study can be useful as a model system for the design of novel bimagnetic nanoparticles with improved properties. Finally, core/shell bifunctional CoFe_2O_4/ZnO nanoparticles were designed, fabricated and its preliminary characterization is reported. Such material is able to generate heat upon the application of a radiofrequency magnetic eld and shows, at the same time, a photoluminescent optical response. In the last years, the continuous progress of nanomedicine has suggested that magnetic nanoparticles can provide solutions to specic biomedical issues. The combination of both functionalities in a nanoparticle system could initiate new studies in the eld of magnetic uid hyperthermia where optical labeling is a key factor, for example, to the evaluation of a systemic delivery of nanoparticles into the body. Current nanotechnology oers powerful tools for the development of advanced magnetic materials, including new chemical synthesis methods and the consolidation of interface-sensitive characterization techniques. The main contribution of this thesis is the design of multicomponent nanoparticles, their study and the interpretation of the complex relationship between their structure and physical properties, which are clearly dierent than single-phase and bulk materials.

Tipo de objeto:Tesis (Tesis Doctoral en Ciencias de la Ingeniería)
Palabras Clave:Anisotropy; Anisotropía; Nanoparticles; Nanopartículas; [Magnetic nanoparticles; Nanopartículas magnéticas; Superparamagnetism; Superparamagnetismo; Nanomedicine; Nanomedicina; Chemical systhesis; Síntesis química ]
Referencias:[1] Zeng, H., Li, J., Liu, J., Wang, Z., Sun, S. Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature, 420, 395-398, 2002. [2] Balamurugan, B., Sellmyer, D., Hadjipanayis, G., Skomski, R. Prospects for nanoparticle-based permanent magnets. Scr. Mater., 67 (6), 542-547, 2012. [3] Pankhurst, Q. A., Connolly, J., Jones, S., Dobson, J. Applications of magnetic nanoparticles in biomedicine. J. Phys. D. Appl. Phys., 36 (13), R167, 2003. [4] Lu, A.-H., Salabas, E. L., Schuth, F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. Engl., 46 (8), 1222-44, 2007. [5] Haun, J. B., Yoon, T.-J., Lee, H., Weissleder, R. Magnetic nanoparticle biosensors. Wiley. Interdiscip. Rev. Nanomed. Nanobiotechnol., 2 (3), 291-304, 2010. [6] Safark, I., Safarkova, M. Magnetic nanoparticles and biosciences. En: Nanostructured Materials, pags. 1-23. Springer, 2002. [7] Niederberger, M., Pinna, N. Metal Oxide Nanoparticles in Organic Solvents. London: Springer, 2009. [8] Meiklejohn, W. H., Bean, C. P. New magnetic anisotropy. Phys. Rev., 102 (5), 1413, 1956. [9] Bertero, G., Guo, G., Dahandeh, S., Krishnan, A. Hard disk drives: Fundamentals and perspectives, cap. 2. CRC Press, 2016. [10] Unal, A., Valencia, S., Radu, F., Marchenko, D., Merazzo, K., Vazquez, M., et al. Ferrimagnetic DyCo5 Nanostructures for Bits in Heat-Assisted Magnetic Recording. Phys. Rev. Appl., 5 (6), 064007, 2016. [11] Moser, A., Takano, K., Margulies, D. T., Albrecht, M., Sonobe, Y., Ikeda, Y., et al. Magnetic recording: advancing into the future. J. Phys. D. Appl. Phys., 35 (19), R157, 2002. [12] Sun, S., Murray, C., Weller, D., Folks, L., Moser, A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science, 287 (5460), 1989-92, 2000. [13] Terris, B., Thomson, T. Nanofabricated and self-assembled magnetic structures as data storage media. J. Phys. D. Appl. Phys., 38 (12), R199, 2005. [14] Kryder, M. H., Gage, E. C., McDaniel, T. W., Challener, W. A., Rottmayer, R. E., Ju, G., et al. Heat assisted magnetic recording. Proc. IEEE, 96 (11), 1810-1835, 2008. [15] Weller, D., Mosendz, O., Parker, G., Pisana, S., Santos, T. S. L10-FePtX{Y media for heatassisted magnetic recording. Phys. Stat. Sol. (a), 210 (7), 1245-1260, 2013. [16] Skumryev, V., Stoyanov, S., Zhang, Y. Beating the superparamagnetic limit with exchange bias. Nature, 423, 19-22, 2003. [17] Dai, Q., Berman, D., Virwani, K., Frommer, J., Jubert, P.-O., Lam, M., et al. Self-assembled ferrimagnet- polymer composites for magnetic recording media. Nano Lett., 10 (8), 3216-3221, 2010. [18] Coey, J. Magnetism and Magnetic Materials. Cambridge University Press, 2010. [19] Kneller, E., Hawig, R. The exchange-spring magnet: a new material principle for permanent magnets. IEEE Trans. Magn., 27 (4), 3588-3600, 1991. [20] Bourzac, K. The rare-earth crisis. MIT Technology Review, 114 (3), 58-63, 2011. [21] Poudyal, N., Liu, J. P. Advances in nanostructured permanent magnets research. J. Phys. D. Appl. Phys., 46 (4), 043001, 2013. [22] Bauer, D., Diamond, D., Li, J., Sandalow, D., Telleen, P., Wanner, B. US Department of Energy Critical Materials Strategy, 2010. [23] iNEMI Rare Earth Metals Project Team. inemi white paper: Rare earth metals, current status & future outlook, 2014. International Electronics Manufacturing Initiative - www.inemi.org. [24] Bader, S. Colloquium: Opportunities in nanomagnetism. Rev. Mod. Phys., 78 (1), 1, 2006. [25] Balasubramanian, B., Mukherjee, P., Skomski, R., Manchanda, P., Das, B., Sellmyer, D. J. Magnetic nanostructuring and overcoming brown's paradox to realize extraordinary hightemperature energy products. Sci. Rep., 4, 2014. [26] Nie, Z., Petukhova, A., Kumacheva, E. Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat. Nanotechnol., 5 (1), 15-25, 2010. [27] Liu, F., Zhu, J., Yang, W., Dong, Y., Hou, Y., Zhang, C., et al. Building nanocomposite magnets by coating a hard magnetic core with a soft magnetic shell. Angew. Chem. Int. Ed. Engl., 53 (8), 2176-2180, 2014. [28] Gandha, K., Elkins, K., Poudyal, N., Liu, X., Liu, J. P. High energy product developed from cobalt nanowires. Sci. Rep., 4, 2014. [29] Lottini, E., Lopez-Ortega, A., Bertoni, G., Turner, S., Meledina, M., Tendeloo, G. V., et al. Strongly exchange coupled core-shell nanoparticles with high magnetic anisotropy: a strategy towards rare earth-free permanent magnets. Chem. Mater., 28, 4214-4222, 2016. [30] Pankhurst, Q., Thanh, N., Jones, S., Dobson, J. Progress in applications of magnetic nanoparticles in biomedicine. J. Phys. D. Appl. Phys., 42 (22), 224001, 2009. [31] Sharma, S., Yessayan, G., Nicoll, Z., Chahwan, G., Tarantino, J. Magnetic Bead Technology. History, applications and marketability. University of Massachusetts-Lowell, 2011. [32] Yadav, S. K. Nanoscale Materials in Targeted Drug Delivery, Theragnosis and Tissue Regeneration. Springer, 2016. [33] Jun, Y.-w., Huh, Y.-M., Choi, J.-s., Lee, J.-H., Song, H.-T., Kim, S., et al. Nanoscale size eect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J. Am. Chem. Soc., 127 (16), 5732{5733, 2005. [34] Sun, C., Lee, J. S., Zhang, M. Magnetic nanoparticles in mr imaging and drug delivery. Adv. Drug Deliv. Rev., 60 (11), 1252-1265, 2008. [35] Xu, C., Sun, S. New forms of superparamagnetic nanoparticles for biomedical applications. Adv. Drug Deliv. Rev., 65 (5), 732-743, 2013. [36] Etheridge, M. L., Campbell, S. a., Erdman, A. G., Haynes, C. L., Wolf, S. M., McCullough, J. The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine, 9 (1), 1-14, 2013. [37] Ivkov, R. Magnetic nanoparticle hyperthermia: a new frontier in biology and medicine? Int. J. Hyperther., 29 (8), 703-5, 2013. [38] MagForce. The nanomedicine company. Fighting cancer more eectively and with fewer side eects, 2016. Www.magforce.de/en/produkte/nanothermr-therapie.html. [39] Dennis, C. L., Ivkov, R. Physics of heat generation using magnetic nanoparticles for hyperthermia. Int. J. Hyperther., 29 (8), 715-729, 2013. [40] Lima Jr, E., De Biasi, E., Mansilla, M. V., Saleta, M., Granada, M., Troiani, H., et al. Heat generation in agglomerated ferrite nanoparticles in an alternating magnetic eld. J. Phys. D. Appl. Phys., 46 (4), 045002, 2012. [41] Lima Jr, E., Torres, T., Rossi, L., Rechenberg, H., Berquo, T., Ibarra, A., et al. Size dependence of the magnetic relaxation and specic power absorption in iron oxide nanoparticles. J. Nanopart. Res., 15 (5), 1-11, 2013. [42] Lee, J., Jang, J., Choi, J., Moon, S., Noh, S., Kim, J., et al. Exchange-coupled magnetic nanoparticles for ecient heat induction. Nat. Nanotechnol., 6 (7), 418-22, 2011. [43] Lopez-Ortega, A., Estrader, M., Salazar-Alvarez, G., Roca, A. G., Nogues, J. Applications of exchange coupled bi-magnetic hard/soft and soft/hard magnetic core/shell nanoparticles. Phys. Rep., 553, 1-32, 2015. [44] Lima, E., Winkler, E. L., Tobia, D., Troiani, H. E., Zysler, R. D., Agostinelli, E., et al. Bimagnetic CoO-Core/CoFe2O4-Shell Nanoparticles: Synthesis and Magnetic Properties. Chem. Mater., 24 (3), 512-516, 2012. [45] Winkler, E. L., Lima, E., Tobia, D., Saleta, M. E., Troiani, H. E., Agostinelli, E., et al. Origin of magnetic anisotropy in ZnO/CoFe2O4 and CoO/CoFe2O4 core/shell nanoparticle systems. Appl. Phys. Lett., 101 (25), 252405, 2012. [46] Hyeon, T. Chemical synthesis of magnetic nanoparticles. Chem. Commun., 8, 927-934, 2003. [47] Nogues, J., Sort, J., Langlais, V., Skumryev, V., Suri~nach, S., Muñoz, J., et al. Exchange bias in nanostructures. Phys. Rep., 422 (3), 65-117, 2005. [48] Kodama, R., Berkowitz, A., McNi, E., Foner, S. Surface spin disorder in NiFe2O4 nanoparticles. Phys. Rev. Lett., 77 (2), 394-397, 1996. [49] Winkler, E., Zysler, R. D., Mansilla, M. V., Fiorani, D. Surface anisotropy eects in NiO nanoparticles. Phys. Rev. B, 72 (13), 1-4, 2005. [50] Cullity, B. D., Graham, C. D. Introduction to magnetic materials. John Wiley & Sons, 2011. [51] O'Handley, R. Modern Magnetic Materials: Principles and Applications. New Jersey: John Wiley & Sons, 1999. [52] Chikazumi, S., Graham, C. D. Physics of Ferromagnetism. 94. Oxford University Press, 2009. [53] Blundell, S., Thouless, D. Magnetism in condensed matter, tomo 18. Oxford University Press New York, 2001. [54] Getzla, M. Fundamentals of magnetism. Springer Science & Business Media, 2007. [55] Kanamori, J. Theory of the magnetic properties of ferrous and cobaltous oxides, ii. Prog. Theor. Phys., 17 (2), 197-222, 1957. [56] Tracy, J. B., Weiss, D. N., Dinega, D. P., Bawendi, M. G. Exchange biasing and magnetic properties of partially and fully oxidized colloidal cobalt nanoparticles. Phys. Rev. B, 72 (6), 064404, 2005. [57] Neel, L. Proprietes magnetiques des ferrites - ferrimagnetisme et antiferromagnetisme. Annales de Physique, 3 (2), 137-198, 1948. [58] Mathew, D. S., Juang, R.-S. An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem. Eng. J., 129 (1), 51-65, 2007. [59] Carta, D., Casula, M., Falqui, A., Loche, D., Mountjoy, G., Sangregorio, C., et al. A structural and magnetic investigation of the inversion degree in ferrite nanocrystals MFe2O4 (M=Mn, Co, Ni). J. Phys. Chem. C, 113 (20), 8606-8615, 2009. [60] Bozorth, R., Tilden, E., Williams, A. Anisotropy and magnetostriction of some ferrites. Phys. Rev., 408 (1933), 1955. [61] Abo, G. S., Hong, Y. K., Park, J., Lee, J., Lee, W., Choi, B. C. Denition of magnetic exchange length. IEEE Trans. Magn., 49 (8), 4937-4939, 2013. [62] Majetich, S., Sachan, M. Magnetostatic interactions in magnetic nanoparticle assemblies: energy, time and length scales. J. Phys. D. Appl. Phys., 39 (21), R407, 2006. [63] Batlle, X., Labarta, A. Finite-size eects in ne particles: magnetic and transport properties. J. Phys. D. Appl. Phys., 35 (6), R15, 2002. [64] Knobel, M., Socolovsky, L., Vargas, J. Propiedades magneticas y de transporte de sistemas nanocristalinos: conceptos basicos y aplicaciones a sistemas reales. Rev. Mex. Fis. E, 50 (1), 8-28, 2004. [65] Stoner, E. C.,Wohlfarth, E. A mechanism of magnetic hysteresis in heterogeneous alloys. Philos. T. Roy. Soc. A, 240 (826), 599{642, 1948. [66] Otero, J., Porto, M., Rivas, J., Bunde, A. In uence of the cubic anisotropy constants on the hysteresis loops of single-domain particles: A Monte Carlo study. J. Appl. Phys., 85 (4), 2287- 2292, 1999. [67] Dormann, J., Fiorani, D., Tronc, E. Magnetic relaxation in ne-particle systems. Advances in Chemical Physics vol XCVIII. New York: Wiley, 1997. [68] Bdker, F., Mrup, S., Linderoth, S. Surface eects in metallic iron nanoparticles. Phys. Rev. Lett., 72 (2), 282, 1994. [69] Tobia, D., De Biasi, E., Granada, M., Troiani, H. E., Zampieri, G., Winkler, E., et al. Evolution of the magnetic anisotropy with particle size in antiferromagnetic Cr2O3 nanoparticles. J. Appl. Phys., 108 (10), 104303, 2010. [70] Salazar-Alvarez, G., Qin, J., Sepelak, V., Bergmann, I., Vasilakaki, M., Trohidou, K. N., et al. Cubic versus spherical magnetic nanoparticles: the role of surface anisotropy. J. Am. Chem. Soc., 130 (40), 13234-9, 2008. [71] Orna, J., Algarabel, P. A., Morellon, L., Pardo, J. A., de Teresa, J. M., Lopez Anton, R., et al. Origin of the giant magnetic moment in epitaxial Fe3O4 thin lms. Phys. Rev. B, 81 (14), 1-7, 2010. [72] Vazquez-Vazquez, C., Lopez-Quintela, M. a., Bujan-Nuñez, M. C., Rivas, J. Finite size and surface eects on the magnetic properties of cobalt ferrite nanoparticles. J. Nanoparticle Res., 13 (4), 1663-1676, 2010. [73] Mrup, S., Madsen, D. E., Frandsen, C., Bahl, C. R. H., Hansen, M. F. Experimental and theoretical studies of nanoparticles of antiferromagnetic materials. J. Phys. Condens. Matter, 19 (21), 213202, 2007. [74] Foerster, M., Rebled, J., Estrade, S., Sanchez, F., Peiro, F., Fontcuberta, J. Distinct magnetism in ultrathin epitaxial NiFe2O4 lms on MgAl2O4 and SrTiO3 single crystalline substrates. Phys. Rev. B, 84 (14), 1-7, 2011. [75] Rigato, F., Geshev, J., Skumryev, V., Fontcuberta, J. The magnetization of epitaxial nanometric CoFe2O4(001) layers. J. Appl. Phys., 106 (11), 113924, 2009. [76] Lis, A., Williams, C. M., Nguyen, L. T., Lodder, J. C., Coleman, A., Corcoran, H., et al. Reorientation of magnetic anisotropy in epitaxial cobalt ferrite thin lms. Phys. Rev. B, 76 (5), 1{6, 2007. [77] Prado, Y., Dae, N., Michel, A., Georgelin, T., Yaacoub, N., Greneche, J.-M., et al. Enhancing the magnetic anisotropy of maghemite nanoparticles via the surface coordination of molecular complexes. Nat. Commun., 6, 2015. [78] Radu, F., Zabel, H. Magnetic Heterostructures, tomo 227 de Springer Tracts in Modern Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. [79] Nogues, J., Schuller, I. K. Exchange bias. J. Magn. Magn. Mater., 192 (2), 203-232, 1999. [80] Stamps, R. Mechanisms for exchange bias. J. Phys. D. Appl. Phys., 33 (23), R247, 2000. [81] Kiwi, M. Exchange bias theory. J. Magn. Magn. Mater., 234 (3), 584-595, 2001. [82] Kohlhepp, J. T., de Jonge, W. J. M. Stabilization of metastable expanded face-centeredtetragonal manganese. Phys. Rev. Lett., 96, 237201, 2006. [83] Malozemo, A. Random-eld model of exchange anisotropy at rough ferromagneticantiferromagnetic interfaces. Phys. Rev. B, 35 (7), 3679, 1987. [84] Mauri, D., Siegmann, H., Bagus, P., Kay, E. Simple model for thin ferromagnetic lms exchange coupled to an antiferromagnetic substrate. J. Appl. Phys., 62 (7), 3047-3049, 1987. [85] Keller, J., Miltenyi, P., Beschoten, B., Guntherodt, G., Nowak, U., Usadel, K.-D. Domain state model for exchange bias. ii. experiments. Phys. Rev. B, 66 (1), 014431, 2002. [86] Nowak, U., Usadel, K.-D., Keller, J., Miltenyi, P., Beschoten, B., Guntherodt, G. Domain state model for exchange bias. i. theory. Phys. Rev. B, 66 (1), 014430, 2002. [87] Salazar-Alvarez, G., Sort, J., Suri~nach, S., Baro, M. D., Nogues, J. Synthesis and Size- Dependent Exchange Bias in Inverted Core/Shell MnO/Mn3O4 Nanoparticles. J. Am. Chem. Soc., 129 (29), 9102-9108, 2007. [88] Berkowitz, A., Rodriguez, G., Hong, J., An, K., Hyeon, T., Agarwal, N., et al. Antiferromagnetic MnO nanoparticles with ferrimagnetic Mn3O4 shells: Doubly inverted core-shell system. Phys. Rev. B, 77 (2), 024403, 2008. [89] Sun, X., Huls, N. F., Sigdel, A., Sun, S. Tuning exchange bias in core/shell FeO/Fe3O4 nanoparticles. Nano Lett., 12 (1), 246-51, 2012. [90] Kavich, D., Dickerson, J., Mahajan, S., Hasan, S., Park, J.-H. Exchange bias of singly inverted FeO/Fe3O4 core-shell nanocrystals. Phys. Rev. B, 78 (17), 174414, 2008. [91] Liu, X., Pichon, B. P., Ulhaq, C., Lefevre, C., Greneche, J.-M., Begin, D., et al. A Systematic Study of Exchange Coupling in Core-Shell Fe3O4/CoO Nanoparticles. Chem. Mater., 27 (11), 4073-4081, 2015. [92] Iglesias, O., Labarta, A., Batlle, X. Exchange bias phenomenology and models of core/shell nanoparticles. J. Nanosci. Nanotechnol., 8 (6), 2780, 2008. [93] Vasilakaki, M., Trohidou, K. N., Nogues, J. Enhanced Magnetic Properties in Antiferromagnetic- Core/Ferrimagnetic-Shell Nanoparticles. Sci. Rep., 5, 9609, 2015. [94] Lima, E., Vargas, J. M., Zysler, R. D., Rechenberg, H. R., Cohen, R., Arbiol, J., et al. Single-step chemical synthesis of ferrite hollow nanospheres. Nanotechnology, 20 (4), 045606, 2009. [95] De Biasi, E., Lima Jr, E., Vargas, J. M., Zysler, R. D., Arbiol, J., Ibarra, A., et al. Exchange bias in ferrite hollow nanoparticles originated by complex internal magnetic structure. Mater. Res. Express, 2 (10), 105001, 2015. [96] Khurshid, H., Lampen-Kelley, P., Iglesias, O., Alonso, J., Phan, M.-H., Sun, C.-J., et al. Spinglass- like freezing of inner and outer surface layers in hollow -Fe2O3 nanoparticles. Sci. Rep., 5, 15054, 2015. [97] Ali, M., Adie, P., Marrows, C. H., Greig, D., Hickey, B. J., Stamps, R. L. Exchange bias using a spin glass. Nat. Mater., 6 (1), 70-5, 2007. [98] Goto, E., Hayashi, N., Miyashita, T., Nakagawa, K. Magnetization and switching characteristics of composite thin magnetic lms. J. Appl. Phys., 36 (9), 2951-2958, 1965. [99] Fullerton, E. E., Jiang, J. S., Bader, S. D. Hard/soft magnetic heterostructures: model exchangespring magnets. J. Magn. Magn. Mater., 200 (1), 392{404, 1999. [100] Skomski, R., Coey, J. Giant energy product in nanostructured two-phase magnets. Phys. Rev. B, 48 (21), 15812, 1993. [101] Song, Q., Zhang, Z. J. Controlled synthesis and magnetic properties of bimagnetic spinel ferrite CoFe2O4 and MnFe2O4 nanocrystals with core-shell architecture. J. Am. Chem. Soc., 134 (24), 10182-90, 2012. [102] Soares, J., Cabral, F., de Araujo, J., Machado, F. Exchange-spring behavior in nanopowders of CoFe2O4-CoFe2. Appl. Phys. Lett., 98 (7), 072502, 2011. [103] Bedanta, S., Kleemann, W. Supermagnetism. J. Phys. D. Appl. Phys., 42 (1), 013001, 2009. [104] Binns, C. Nanomagnetism: Fundamentals and Applications. Frontiers of Nanoscience. Elsevier Science, 2014. [105] Dormann, J., Bessais, L., Fiorani, D. A dynamic study of small interacting particles: superparamagnetic model and spin-glass laws. J. Phys. C Solid State, 21 (10), 2015, 1988. [106] Lok, C. Nanotechnology: Small wonders. Nature, 467 (7311), 18-21, 2010. [107] Iijima, S. Helical microtubules of graphitic carbon. Nature, 354 (6348), 56{58, 1991. [108] Murray, C., Norris, D. J., Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc., 115 (19), 8706-8715, 1993. [109] Hyeon, T., Lee, S. S., Park, J., Chung, Y., Na, H. B. Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J. Am. Chem. Soc., 123 (51), 12798-801, 2001. [110] Sun, S., Zeng, H. Size-Controlled Synthesis of Magnetite Nanoparticles. J. Am. Chem. Soc., 124 (28), 8204-8205, 2002. [111] von Helmolt, R., Wecker, J., Holzapfel, B., Schultz, L., Samwer, K. Giant negative magnetoresistance in perovskitelike La2=3Ba1=3MnOx ferromagnetic lms. Phys. Rev. Lett., 71 (14), 2331-2333, 1993. [112] Pinna, N., Niederberger, M. Surfactant-Free Nonaqueous Synthesis of Metal Oxide Nanostructures. Angew. Chem. Int. Ed. Engl., 47 (29), 5292-5304, 2008. [113] LaMer, V. K., Dinegar, R. H. Theory, Production and Mechanism of Formation of Monodispersed Hydrosols. J. Am. Chem. Soc., 72 (11), 4847-4854, 1950. [114] Klabunde, K. J., Richards, R. M. Nanoscale materials in chemistry. John Wiley & Sons, 2009. [115] Mullin, J. W. Crystallization. Butterworth-Heinemann, 2001. [116] Kwon, S. G., Hyeon, T. Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods. Small, 7 (19), 2685-702, 2011. [117] Murray, C. B., Sun, S., Gaschler, W., Doyle, H., Betley, T. a., Kagan, C. R. Colloidal synthesis of nanocrystals and nanocrystal superlattices. IBM J. Res. Dev., 45 (1), 47-56, 2001. [118] Hyeon, T., Lee, S. S., Park, J., Chung, Y., Na, H. B. Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J. Am. Chem. Soc., 123 (51), 12798-801, 2001. [119] Soon, G. K., Hyeon, T. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides. Acc. Chem. Res., 41 (12), 1696-1709, 2008. [120] Park, J., An, K., Hwang, Y., Park, J.-G., Noh, H.-J., Kim, J.-Y., et al. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater., 3 (12), 891{5, 2004. [121] van Embden, J., Chesman, A. S. R., Jasieniak, J. J. The Heat-Up Synthesis of Colloidal Nanocrystals. Chem. Mater., 27 (7), 2246-2285, 2015. [122] Kwon, S. G., Piao, Y., Park, J., Angappane, S., Jo, Y., Hwang, N. M., et al. Kinetics of monodisperse iron oxide nanocrystal formation by heating-up process. J. Am. Chem. Soc., 129 (41), 12571-12584, 2007. [123] Park, J., Joo, J., Kwon, S. G., Jang, Y., Hyeon, T. Synthesis of monodisperse spherical nanocrystals. Angew. Chem. Int. Ed. Engl., 46 (25), 4630-60, 2007. [124] Nguyen, T.-d., Do, T.-o. Size- and Shape-Controlled Synthesis of Monodisperse Metal Oxide and Mixed Oxide Nanocrystals. En: Nanocrystal, cap. 2, pags. 55-84. InTech, 2011. [125] Zeng, H., Rice, P. M., Wang, S. X., Sun, S. Shape-Controlled Synthesis and Shape-Induced Texture of MnFe2O4 Nanoparticles. J. Am. Chem. Soc., 126 (37), 11458-11459, 2004. [126] Perales-Perez, O., Sasaki, H., Kasuya, a., Jeyadevan, B., Tohji, K., Hihara, T., et al. Production of monodispersed particles by using eective size selection. J. Appl. Phys., 91 (10 I), 6958-6960, 2002. [127] Gomez Roca, A. Preparacion de nanopartculas magneticas uniformes y de alta cristalinidad para biomedicina. Tesis Doctoral, Universidad Complutense de Madrid, 2009. [128] Vargas, J. M., Zysler, R. D. Tailoring the size in colloidal iron oxide magnetic nanoparticles. Nanotechnology, 16 (9), 1474-1476, 2005. [129] Jana, N. R., Chen, Y., Peng, X. Size- and Shape-Controlled Magnetic (Cr, Mn, Fe, Co, Ni) Oxide Nanocrystals via a Simple and General Approach. Chem. Mater., 16 (20), 3931-3935, 2004. [130] Guardia, P., Perez-Juste, J., Labarta, A., Batlle, X., Liz-Marzan, L. M. Heating rate in uence on the synthesis of iron oxide nanoparticles: the case of decanoic acid. Chem. Commun., 46 (33), 6108-10, 2010. [131] Peng, S., Sun, S. Synthesis and Characterization of Monodisperse Hollow Fe3O4 Nanoparticles. Angew. Chem. Int. Ed. Engl., 119 (22), 4233-4236, 2007. [132] Melinon, P., Begin-Colin, S., Duvail, J. L., Gaure, F., Boime, N. H., Ledoux, G., et al. Engineered inorganic core/shell nanoparticles. Phys. Rep., 2014. [133] Schmid, G. Nanoparticles: from theory to application. John Wiley & Sons, 2011. [134] Cozzoli, P. D., Pellegrino, T., Manna, L. Synthesis, properties and perspectives of hybrid nanocrystal structures. Chem. Soc. Rev., 35 (11), 1195-208, 2006. [135] Yu, H., Chen, M., Rice, P. M., Wang, S. X., White, R. L., Sun, S. Dumbbell-like Bifunctional Au-Fe3O4 Nanoparticles. Nano Lett., 5 (2), 379-382, 2005. [136] Bodnarchuk, M. I., Kovalenko, M. V., Groiss, H., Resel, R., Reissner, M., Hesser, G., et al. Exchange-coupled bimagnetic wustite/metal ferrite core/shell nanocrystals: size, shape, and compositional control. Small, 5 (20), 2247-52, 2009. [137] Klimov, V. I., Ivanov, S. A., Nanda, J., Achermann, M., Bezel, I., McGuire, J. A., et al. Singleexciton optical gain in semiconductor nanocrystals. Nature, 447 (7143), 441-446, 2007. [138] Hong, R., Zhang, S., Di, G., Li, H., Zheng, Y., Ding, J., et al. Preparation, characterization and application of Fe3O4/ZnO core/shell magnetic nanoparticles. Mater. Res. Bull., 43 (8-9), 2457-2468, 2008. [139] Efros, A. L. Nanocrystals: Almost always bright. Nat. Mater., 7 (8), 612-613, 2008. [140] Cho, N.-H., Cheong, T.-C., Min, J. H., Wu, J. H., Lee, S. J., Kim, D., et al. A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy. Nat. Nanotechnol., 6 (10), 675-82, 2011. [141] Zeng, H., Li, J., Wang, Z. L., Liu, J. P., Sun, S. Bimagnetic Core/Shell FePt/Fe3O4 Nanoparticles. Nano Lett., 4 (1), 187-190, 2004. [142] Wang, C., Xu, C., Zeng, H., Sun, S. Recent progress in syntheses and applications of dumbbelllike nanoparticles. Adv. Mater., 21 (30), 3045-3052, 2009. [143] Salazar-Alvarez, G., Lidbaum, H., Lopez-Ortega, A., Estrader, M., Leifer, K., Sort, J., et al. Two-, three-, and four-component magnetic multilayer onion nanoparticles based on iron oxides and manganese oxides. J. Am. Chem. Soc., 133 (42), 16738-41, 2011. [144] Casavola, M., Falqui, A., Garca, M. A., Garca-Hernandez, M., Giannini, C., Cingolani, R., et al. Exchange-Coupled Bimagnetic Cobalt/Iron Oxide Branched Nanocrystal Heterostructures. Nano Lett., 9 (1), 366-376, 2009. [145] Tolley, A., Condo, A. Apuntes del curso \Microscopa Electronica de Transmsion". Instituto Balseiro, 2014. [146] Williams, D. B., Carter, C. B. Transmission electron microscopy: a textbook for materials science. Springer, 2009. [147] Egerton, R. Physical principles of electron microscopy: an introduction to TEM, SEM, and AEM. Springer Science, 2006. [148] Schneider, C. A., Rasband, W. S., Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods, 9 (7), 671-675, 2012. [149] Rietveld, H. A prole renement method for nuclear and magnetic structures. J. Appl. Cryst., 2 (2), 65-71, 1969. [150] Rodrguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diraction. Phys. B Condens. Matter., 192, 55, 1993. [151] Klug, H. P., Alexander, L. E., et al. X-ray diraction procedures. Wiley New York, 1954. [152] Magnetic Property Measuring System. User's Manual, 2004. Quantum Design. [153] Josephson, B. D. Possible new eects in superconductive tunnelling. Phys. Lett., 1 (7), 251-253, 1962. [154] Fiorillo, F. Measurement and characterization of magnetic materials. North-Holland, 2004. [155] Dinesh, M. Introduction to AC susceptibility. Quantum Design, 2011. [156] Bailey, P., Bailey, C. Qumica organica: conceptos y aplicaciones. Pearson Educacion, 1998. [157] Kumar, C. S. UV-VIS and Photoluminescence Spectroscopy for Nanomaterials Characterization. Springer, 2013. [158] Estrader, M., Lopez-Ortega, A., Estrade, S., Golosovsky, I. V., Salazar-Alvarez, G., Vasilakaki, M., et al. Robust antiferromagnetic coupling in hard-soft bi-magnetic core/shell nanoparticles. Nat. Commun., 4, 2960, 2013. [159] Quesada, A., Granados-Miralles, C., Lopez-Ortega, A., Erokhin, S., Lottini, E., Pedrosa, J., et al. Energy Product Enhancement in Imperfectly Exchange-Coupled Nanocomposite Magnets. Adv. Electron. Mater., 2016. [160] Wang, H., Si, H., Zhao, H., Du, Z., Li, L. S. Shape-controlled synthesis of cobalt oxide nanocrystals using cobalt acetylacetonate. Mater. Lett., 64 (3), 408-410, 2010. [161] Chen, Z., Xu, A., Zhang, Y., Gu, N. Preparation of NiO and CoO nanoparticles using M2+-oleate (M=Ni, Co) as precursor. Curr. Appl. Phys., 10 (3), 967-970, 2010. [162] Moumen, N., Pileni, M. P. Control of the Size of Cobalt Ferrite Magnetic Fluid. J. Phys. Chem., 100 (5), 1867-1873, 1996. [163] Peddis, D., Orru, F., Ardu, A., Cannas, C., Musinu, A., Piccaluga, G. Interparticle Interactions and Magnetic Anisotropy in Cobalt Ferrite Nanoparticles: In uence of Molecular Coating. Chem. Mater., 24 (6), 1062-1071, 2012. [164] Sun, S., Zeng, H., Robinson, D. B., Raoux, S., Rice, P. M., Wang, S. X., et al. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc., 126 (1), 273-9, 2004. [165] Lopez-Ortega, A., Lottini, E., Fernandez, C., Sangregorio, C. Exploring the magnetic properties of cobalt-ferrite nanoparticles for the development of a rare-earth-free permanent magnet. Chem. Mater., 27 (11), 4048-4056, 2015. [166] Chinnasamy, C. N., Jeyadevan, B., Shinoda, K., Tohji, K., Djayaprawira, D. J., Takahashi, M., et al. Unusually high coercivity and critical single-domain size of nearly monodispersed CoFe2O4 nanoparticles. Appl. Phys. Lett., 83 (14), 2862, 2003. [167] Fulcomer, E., Charap, S. Thermal uctuation aftereect model for some systems with ferromagnetic-antiferromagnetic coupling. J. Appl. Phys., 43 (10), 4190{4199, 1972. [168] Seu, K., Huang, H., Lesoine, J. F., Showman, H. D., Egelho, W. F., Gan, L., et al. Co layer thickness dependence of exchange biasing for IrMn/Co and FeMn/Co. J. Appl. Phys., 93 (10), 6611, 2003. [169] Peddis, D., Cannas, C., Musinu, A., Ardu, A., Orru, F., Fiorani, D., et al. Beyond the Eect of Particle Size: In uence of CoFe2O4 Nanoparticle Arrangements on Magnetic Properties. Chem. Mater., 25 (10), 2005-2013, 2013. [170] Schre , T., Fidler, J., Kronmuller, H. Remanence and coercivity in isotropic nanocrystalline permanent magnets. Phys. Rev. B, 49 (9), 1994. [171] Sort, J., Nogues, J., Suri~nach, S., Muñoz, J. S., Baro, M. D., Chappel, E., et al. Coercivity and squareness enhancement in ball-milled hard magnetic{antiferromagnetic composites. Appl. Phys. Lett., 79 (8), 1142, 2001. [172] Du, H. F., Du, A. Eect of exchange and dipolar interactions on the hysteresis of magnetic nanoparticle systems. Phys. Status Solidi (b), 244 (4), 1401-1408, 2007. [173] Lavorato, G. C., Lima Jr, E., Tobia, D., Fiorani, D., Troiani, H. E., Zysler, R. D., et al. Size eects in bimagnetic CoO/CoFe2O4 core/shell nanoparticles. Nanotechnology, 25 (35), 355704, 2014. [174] Zhang, L., Xue, D. Preparation and magnetic properties of pure CoO nanoparticles. J. Mater. Sci. Lett., 21 (24), 1931-1933, 2002. [175] Verelst, M., Ely, T. O., Amiens, C., Snoeck, E., Lecante, P., Mosset, A., et al. Synthesis and Characterization of CoO, Co3O4, and Mixed Co/CoO Nanoparticules. Chem. Mater., 11 (10), 2702-2708, 1999. [176] Juhin, A., Lopez-Ortega, A., Sikora, M., Carvallo, C., Estrader, M., Estrade, S., et al. Direct evidence for an interdiused intermediate layer in bi-magnetic core-shell nanoparticles. Nanoscale, 6 (20), 11911{20, 2014. [177] Yalcin, A. O., de Nijs, B., Fan, Z., Tichelaar, F. D., Vanmaekelbergh, D., van Blaaderen, A., et al. Core-shell reconguration through thermal annealing in FexO/CoFe2O4 ordered 2D nanocrystal arrays. Nanotechnology, 25 (5), 055601, 2014. [178] Pichon, B. P., Gerber, O., Lefevre, C., Florea, I., Fleutot, S., Baaziz, W., et al. Microstructural and Magnetic Investigations of Wustite-Spinel Core-Shell Cubic-Shaped Nanoparticles. Chem. Mater., 23 (11), 2886-2900, 2011. [179] Vestal, C. R., Song, Q., Zhang, Z. J. Eects of Interparticle Interactions upon the Magnetic Properties of CoFe2O4 and MnFe2O4 Nanocrystals. J. Phys. Chem. B, 108 (47), 18222-18227, 2004. [180] Torres, T. E., Roca, A. G., Morales, M. P., Ibarra, A., Marquina, C., Ibarra, M. R., et al. Magnetic properties and energy absorption of CoFe2O4 nanoparticles for magnetic hyperthermia. J. Phys. Conf. Ser., 200 (7), 072101, 2010. [181] Pianciola, B. N., Lima, E., Troiani, H. E., Nagamine, L. C. C. M., Cohen, R., Zysler, R. D. Size and surface eects in the magnetic order of CoFe2O4 nanoparticles. J. Magn. Magn. Mater., 377, 44-51, 2015. [182] Nadeem, K., Shahid, M., Mumtaz, M. Competing crystallite size and zinc concentration in silica coated cobalt ferrite nanoparticles. Prog. Nat. Sci., 24 (3), 199-204, 2014. [183] Horng, L., Chern, G., Chen, M., Kang, P., Lee, D. Magnetic anisotropic properties in Fe3O4 and CoFe2O4 ferrite epitaxy thin lms. J. Magn. Magn. Mater., 270 (3), 389-396, 2004. [184] Chantrell, R. W., El-Hilo, M., O'Grady, K. Spin-glass behavior in a ne particle system. IEEE Trans. Magn., 27 (4), 3570-3578, 1991. [185] Nunes, W., Folly, W., Sinnecker, J., Novak, M. Temperature dependence of the coercive eld in single-domain particle systems. Phys. Rev. B, 70 (1), 014419, 2004. [186] Dormann, J., Fiorani, D., El Yamani, M. Field dependence of the blocking temperature in the superparamagnetic model: H2/3 coincidence. Phys. Lett. A, 120 (2), 95-99, 1987. [187] El-Hilo, M., O'Grady, K., Chantrell, R. Susceptibility phenomena in a ne particle system. I. Concentration dependence of the peak. J. Magn. Magn. Mater., 114, 295-306, 1992. [188] Peddis, D., Rinaldi, D., Ennas, G., Scano, a., Agostinelli, E., Fiorani, D. Superparamagnetic blocking and superspin-glass freezing in ultra small -(Fe0:67Mn0:33)OOH particles. Phys. Chem. Chem. Phys., 14 (9), 3162, 2012. [189] Chantrell, R., Popplewell, J., Charles, S. Measurements of particle size distribution parameters in ferro uids. IEEE Trans. Magn., 14 (5), 975-977, 1978. [190] Kodama, R. Magnetic nanoparticles. J. Magn. Magn. Mater., 200, 359-372, 1999. [191] Hendriksen, P. V., Linderoth, S., Lindgard, P. a. Magnetic properties of Heisenberg clusters. J. Phys. Condens. Matter, 5, 5675-5684, 1993. [192] McDannald, A., Staruch, M., Jain, M. Surface contributions to the alternating current and direct current magnetic properties of oleic acid coated CoFe2O4 nanoparticles. J. Appl. Phys., 112 (12), 123916, 2012. [193] Shenker, H. Magnetic Anisotropy of Cobalt Ferrite (Co1:01Fe2:00O3:62) and Nickel Cobalt Ferrite (Ni0:72Fe0:20Co0:08Fe2:00O4:00). Phys. Rev., 107 (5), 1246-1249, 1957. [194] Kneller, E. F., Luborsky, F. E. Particle size dependence of coercivity and remanence of singledomain particles. J. Appl. Phys., 34 (3), 656{658, 1963. [195] Curiale, J., Sanchez, R., Troiani, H., Ramos, C., Pastoriza, H., Leyva, A., et al. Magnetism of manganite nanotubes constituted by assembled nanoparticles. Phys. Rev. B, 75 (22), 224410, 2007. [196] O'Grady, K., El-Hilo, M., Chantrell, R. The characterisation of interaction eects in ne particle systems. IEEE Trans. Magn., 29 (6), 2608{2613, 1993. [197] Laureti, S., Varvaro, G., Testa, A. M., Fiorani, D., Agostinelli, E., Piccaluga, G., et al. Magnetic interactions in silica coated nanoporous assemblies of CoFe2O4 nanoparticles with cubic magnetic anisotropy. Nanotechnology, 21 (31), 315701, 2010. [198] Kelly, P., O'Grady, K., Mayo, P., Chantrell, R. Switching mechanisms in cobalt-phosphorus thin lms. IEEE Trans. Magn., 25 (5), 3881{3883, 1989. [199] Street, R., Woolley, J. C. A Study of Magnetic Viscosity. Proc. Phys. Soc. Sect. A, 62 (9), 562{572, 1949. [200] Chantrell, R. Magnetic viscosity of recording media. J. Magn. Magn. Mater., 95, 365{378, 1991. [201] Antonel, P., Negri, R., Leyva, A., Jorge, G. Anisotropy and relaxation processes of uniaxially oriented CoFe2O4 nanoparticles dispersed in PDMS. Phys. B Condens. Matter, 407 (16), 3165- 3167, 2012. [202] Butera, A.,Weston, J. L., Barnard, J. A. Activation volumes and interparticle interaction eects in nanostructured Fe networks. J. Appl. Phys., 81 (11), 7432, 1997. [203] Bertotti, G. Hysteresis in Magnetism: For Physicists, Materials Scientists, and Engineers. Academic Press, 1998. [204] Neel, L. Theorie du tra^nage magnetique des substances massives dans le domaine de Rayleigh. J. Phys. le Radium, 11 (2), 49-61, 1950. [205] O'Grady, K., Laidler, H. The limits to magnetic recording - media considerations. J. Magn. Magn. Mater., 200 (1), 616-633, 1999. [206] Patel, V., EL-Hilo, M., O'Grady, K., Chantrell, R. Nucleation elds in an exchange spring hard magnet. J. Phys. D. Appl. Phys., 26, 1453-1458, 1993. [207] Skomski, R. Nanomagnetics. J. Phys. Condens. Matter, 15 (20), R841-R896, 2003. [208] Skomski, R., Sellmyer, D. J. Cooperative magnetism and the Preisach model. J. Appl. Phys., 89 (11 II), 7263-7265, 2001. [209] Cannas, C., Musinu, A., Piccaluga, G., Fiorani, D., Peddis, D., Rasmussen, H. K., et al. Magnetic properties of cobalt ferrite{silica nanocomposites prepared by a sol-gel autocombustion technique. J. Chem. Phys., 125 (16), 164714, 2006. [210] Zeng, H., Skomski, R., Menon, L., Liu, Y., Bandyopadhyay, S., Sellmyer, D. Structure and magnetic properties of ferromagnetic nanowires in self-assembled arrays. Phys. Rev. B, 65 (13), 1-8, 2002. [211] Winkler, E., Zysler, R., Fiorani, D. Surface and magnetic interaction eects in Mn3O4 nanoparticles. Phys. Rev. B, 70 (17), 174406, 2004. [212] Kools, J. Exchange-biased spin-valves for magnetic storage. IEEE Trans. Magn., 32 (4), 3165- 3184, 1996. [213] Parkin, S., Jiang, X., Kaiser, C., Panchula, A., Roche, K., Samant, M. Magnetically engineered spintronic sensors and memory. Proc. IEEE, 91 (5), 661{680, 2003. [214] Winkler, E., Zysler, R. D., Vasquez Mansilla, M., Fiorani, D., Rinaldi, D., Vasilakaki, M., et al. Surface spin-glass freezing in interacting core-shell NiO nanoparticles. Nanotechnology, 19 (18), 185702, 2008. [215] Rodrguez Torres, C. E., Pasquevich, G. A., Zelis, P. M., Golmar, F., Heluani, S. P., Nayak, S. K., et al. Oxygen-vacancy-induced local ferromagnetism as a driving mechanism in enhancing the magnetic response of ferrites. Phys. Rev. B, 89 (10), 1{7, 2014. [216] Yao, C., Zeng, Q., Goya, G. F., Torres, T., Liu, J., Wu, H., et al. ZnFe2O4 Nanocrystals: Synthesis and Magnetic Properties. J. Phys. Chem. C, 111 (33), 12274-12278, 2007. [217] Lima, E., De Biasi, E., Mansilla, M. V., Saleta, M. E., Eenberg, F., Rossi, L. M., et al. Surface eects in the magnetic properties of crystalline 3 nm ferrite nanoparticles chemically synthesized. J. Appl. Phys., 108 (10), 103919, 2010. [218] Shtrikman, S., Wohlfarth, E. P. The theory of the Vogel-Fulcher law of spin glasses. Phys. Lett., 85 (8), 467, 1981. [219] Binder, K., Young, A. P. Spin glasses: Experimental facts, theoretical concepts, and open questions. Rev. Mod. Phys., 58, 801, 1986. [220] Hansen, M. F., Jönsson, P. E., Nordblad, P., Svedlindh, P. Critical dynamics of an interacting magnetic nanoparticle system. J. Phys.: Condens. Matter, 14 (19), 4901, 2002. [221] Kleemann, W., Petracic, O., Binek, C., Kakazei, G. N., Pogorelov, Y. G., Sousa, J. B., et al. Interacting ferromagnetic nanoparticles in discontinuous Co80Fe20/Al2O3 multilayers. Phys. Rev. B, 63 (13), 134423, 2001. [222] Djurberg, C., Svedlindh, P., Nordblad, P., Hansen, M. F., Bodker, F., Morup, S. Dynamics of an Interacting Particle System: Evidence of Critical Slowing Down. Phys. Rev. Lett., 79 (25), 5154-5157, 1997. [223] Chandra, S., Khurshid, H., Li, W., Hadjipanayis, G. C., Phan, M. H., Srikanth, H. Spin dynamics and criteria for onset of exchange bias in superspin glass Fe- -Fe2O3. Phys. Rev. B, 86 (1), 014426, 2012. [224] Rinaldi-Montes, N., Gorria, P., Martnez-Blanco, D., Fuertes, A., Barqun, L. F., Puente-Orench, I., et al. Scrutinizing the role of size reduction on the exchange bias and dynamic magnetic behavior in NiO nanoparticles. Nanotechnology, 26 (30), 305705, 2015. [225] Maaz, K., Karim, S., Kim, G.-H. Eect of particle size on the magnetic properties of NixCo1-xFe2O4 (x0.3) nanoparticles. Chem. Phys. Lett., 549, 67-71, 2012. [226] Orlando, T., Albino, M., Orsini, F., Innocenti, C., Basini, M., Arosio, P., et al. On the magnetic anisotropy and nuclear relaxivity eects of co and ni doping in iron oxide nanoparticles. J. Appl. Phys., 119 (13), 134301, 2016. [227] Kubickova, S., Vejpravova, J., Holec, P., Niznansky, D. Correlation of crystal structure and magnetic properties of Co1-xNixFe2O4/SiO2 nanocomposites. J. Magn. Magn. Mater., 334, 102-106, 2013. [228] Abdallah, H. M., Moyo, T., Ngema, N. The eect of temperature on the structure and magnetic properties of Co0:5Ni0:5Fe2O4 spinel nanoferrite . J. Magn. Magn. Mater., 394, 223, 2015. [229] Zysler, R. D., Fiorani, D., Testa, A. M. Investigation of magnetic properties of interacting Fe2O3 nanoparticles. J. Magn. Magn. Mater., 224 (1), 5-11, 2001. [230] Wang, L., Vu, K., Navrotsky, A., Stevens, R., Woodeld, B. F., Boerio-Goates, J. Calorimetric study: surface energetics and the magnetic transition in nanocrystalline CoO. Chem. Mater., 16 (25), 5394-5400, 2004. [231] Van der Zaag, P., Ijiri, Y., Borchers, J. A., Feiner, L., Wolf, R., Gaines, J., et al. Dierence between blocking and Neel temperatures in the exchange biased Fe3O4/CoO system. Phys. Rev. Lett., 84 (26), 6102, 2000. [232] Estrade, S., Yedra, L., Lopez-Ortega, A., Estrader, M., Salazar-Alvarez, G., Baro, M., et al. Distinguishing the core from the shell in MnOx/MnOy and FeOx/MnOx core/Shell nanoparticles through quantitative electron energy loss spectroscopy (EELS) analysis. Micron, 43 (1), 30-36, 2012. [233] Skoropata, E., Desautels, R., Chi, C.-C., Ouyang, H., Freeland, J., van Lierop, J. Magnetism of iron oxide based core-shell nanoparticles from interface mixing with enhanced spin-orbit coupling. Phys. Rev. B, 89 (2), 024410, 2014. [234] Hiroi, K., Komatsu, K., Sato, T. Superspin glass originating from dipolar interaction with controlled interparticle distance among -Fe2O3 nanoparticles with silica shells. Phys. Rev. B, 83 (22), 224423, 2011. [235] Arulmurugan, R., Vaidyanathan, G., Sendhilnathan, S., Jeyadevan, B. Thermomagnetic properties of Co1-xZnxFe2O4 (x=0.1-0.5) nanoparticles. J. Magn. Magn. Mater., 303, 131-137. 2006. [236] Kumar, S., Singh, V., Aggarwal, S., Mandal, U. K., Kotnala, R. Monodisperse Co, Zn-Ferrite nanocrystals: Controlled synthesis, characterization and magnetic properties. J. Magn. Magn. Mater., 324 (22), 3683-3689, 2012. [237] Huang, H., Zhang, Y., Huang, Z., Kou, Z., Yuan, X., Ren, Z., et al. Magnetic behaviors of Co1-xZnxFe2O4 nano-particles. J. Appl. Phys., 117 (17), 17E711, 2015. [238] Gözüak, F., Köseoglu, Y., Baykal, a., Kavas, H. Synthesis and characterization of CoxZn1-xFe2O4 magnetic nanoparticles via a PEG-assisted route. J. Magn. Magn. Mater., 321, 2170-2177, 2009. [239] Ohldag, H., Scholl, a., Nolting, F., Arenholz, E., Maat, S., Young, a. T., et al. Correlation between exchange bias and pinned interfacial spins. Phys. Rev. Lett., 91 (1), 017203, 2003. [240] Sellmyer, D. J., Balamurugan, B., Das, B., Mukherjee, P., Skomski, R., Hadjipanayis, G. Novel structures and physics of nanomagnets. J. Appl. Phys., 117 (17), 172609, 2015. [241] Lüders, U., Barthelemy, A., Bibes, M., Bouzehouane, K., Fusil, S., Jacquet, E., et al. NiFe2O4: A Versatile Spinel Material Brings New Opportunities for Spintronics. Adv. Mater., 18 (13), 1733-1736, 2006. [242] Ramos, A. V., Guittet, M.-J., Moussy, J.-B., Mattana, R., Deranlot, C., Petro, F., et al. Room temperature spin ltering in epitaxial cobalt-ferrite tunnel barriers. Appl. Phys. Lett., 91 (12), 122107, 2007. [243] Gu, J. Y., Burgess, J., You, C. Y. Temperature dependence of magnetization reversal processes in exchange-spring magnets. J. Appl. Phys., 107 (10), 0-5, 2010. [244] Suzuki, Y., van Dover, R. B., Gyorgy, E. M., Phillips, J. M., Felder, R. J. Exchange coupling in single-crystalline spinel-structure (Mn,Zn)Fe2O4/CoFe2O4 bilayers. Phys. Rev. B, 53 (21), 14016-14019, 1996. [245] Chapline, M. G., Wang, S. X. Pulsed laser deposition grown CoFe2O4/Fe3O4 bilayers and their tunneling characteristics. J. Appl. Phys., 97 (10), 123901, 2005. [246] Kleint, C. A., Krause, M. K., Höhne, R., Walter, T., Semmelhack, H. C., Lorenz, M., et al. Exchange anisotropy in epitaxial Fe3O4/CoO and Fe3O4/CoxFe3-xO4 bilayers grown by pulsed laser deposition. J. Appl. Phys., 84 (9), 5097, 1998. [247] Ramos, A. V., Matzen, S., Moussy, J. B., Ott, F., Viret, M. Articial antiphase boundary at the interface of ferrimagnetic spinel bilayers. Phys. Rev. B, 79 (1), 1-8, 2009. [248] Chrisey, D. B., Hubler, G. K. Pulsed laser deposition of thin lms. Wiley New York, 1994. [249] De Teresa, J. M., Fernandez-Pacheco, A., Morellon, L., Orna, J., Pardo, J. A., Serrate, D., et al. Magnetotransport properties of Fe3O4 thin lms for applications in spin electronics. Microelectron. Eng., 84 (5-8), 1660-1664, 2007. [250] Yasaka, M. X-ray thin lm measurement techniques. The Rigaku Journal, 26, 2, 2010. [251] Birkholz, M. Thin lm analysis by X-ray scattering. John Wiley & Sons, 2006. [252] Hu, G., Choi, J., Eom, C., Harris, V., Suzuki, Y. Structural tuning of the magnetic behavior in spinel-structure ferrite thin lms. Phys. Rev. B, 62 (2), R779, 2000. [253] Yin, J., Ding, J., Liu, B., Yi, J., Miao, X., Chen, J. Magnetic anisotropy and high coercivity of epitaxial Co-ferrite lms prepared by pulsed laser deposition. J. Appl. Phys., 101 (9), 2007. [254] Ma, J., Mazumdar, D., Kim, G., Sato, H., Bao, N., Gupta, A. A robust approach for the growth of epitaxial spinel ferrite lms. J. Appl. Phys., 118 (6), 063917, 2010. [255] Moyer, J. A., Gao, R., Schier, P., Martin, L. W. Epitaxial growth of highly-crystalline spinel ferrite thin lms on perovskite substrates for all-oxide devices. Sci. Rep., 5, 10363, 2015. [256] Liu, X. H., Rata, A. D., Chang, C. F., Komarek, A. C., Tjeng, L. H. Verwey transition in Fe3O4 thin lms: In uence of oxygen stoichiometry and substrate-induced microstructure. Phys. Rev. B, 90 (12), 125142, 2014. [257] Luysberg, M., Son, R. G. S., Arora, S. K., Shvets, I. V. Strain relaxation in Fe3O4/MgAl2O4 heterostructures: Mechanism for formation of antiphase boundaries in an epitaxial system with identical symmetries of lm and substrate. Phys. Rev. B, 80 (2), 1{6, 2009. [258] Tsao, J. Y. Materials fundamentals of molecular beam epitaxy. Academic Press, 2012. [259] Fritsch, D., Ederer, C. Epitaxial strain eects in the spinel ferrites CoFe2O4 and NiFe2O4 from rst principles. Phys. Rev. B, 82, 104117, 2010. [260] Foerster, M., Iliev, M., Dix, N., Mart, X., Barchuk, M., Sanchez, F., et al. The Poisson Ratio in CoFe2O4 Spinel Thin Films. Adv. Funct. Mater., 22 (20), 4344-4351, 2012. [261] Ziese, M. Are magnetite (Fe3O4) lms on MgAl2O4 auxetic?, 2011. ArXiv:1103.3666. [262] Ramos, A., Moussy, J.-B., Guittet, M.-J., Gautier-Soyer, M., Gatel, C., Bayle-Guillemaud, P., et al. In uence of a metallic or oxide top layer in epitaxial magnetic bilayers containing CoFe2O4(111) tunnel barriers. Phys. Rev. B, 75 (22), 224421, 2007. [263] Verwey, E. Electronic conduction of magnetite (Fe3O4) and its transition point at low temperatures. Nature, 144 (3642), 327-328, 1939. [264] Garca, J., Subas, G. The verwey transition|a new perspective. J. Phys: Condens. Matter, 16 (7), R145, 2004. [265] Senn, M. S., Wright, J. P., Atteld, J. P. Charge order and three-site distortions in the Verwey structure of magnetite. Nature, 481 (7380), 173-176, 2012. [266] Moussy, J.-B., Gota, S., Bataille, A., Guittet, M.-J., Gautier-Soyer, M., Delille, F., et al. Thickness dependence of anomalous magnetic behavior in epitaxial Fe3O4 (111) thin lms: Eect of density of antiphase boundaries. Phys. Rev. B, 70 (17), 174448, 2004. [267] Eerenstein, W., Palstra, T., Hibma, T., Celotto, S. Origin of the increased resistivity in epitaxial Fe3O4 lms. Phys. Rev. B, 66 (20), 3-6, 2002. [268] Yan, S.-S., Barnard, J., Xu, F.-T., Weston, J., Zangari, G. Critical dimension of the transition from single switching to an exchange spring process in hard/soft exchange-coupled bilayers. Phys. Rev. B, 64 (18), 1-6, 2001. [269] Yan, S.-S., Elkawni, M., Li, D. S., Garmestani, H., Liu, J. P., Weston, J. L., et al. Soft/hard exchange-coupled layered structures with modulated exchange coupling. J. Appl. Phys., 94 (7), 4535-4538, 2003. [270] Bibes, M., Barthelemy, A. Oxide spintronics. IEEE Trans. El. Dev., 54 (5), 1003-1023, 2007. [271] Henriksen, A. D., Rizzi, G., sterberg, F. W., Hansen, M. F. Optimization of magnetoresistive sensor current for on-chip magnetic bead detection using the sensor self-eld. J. Magn. Magn. Mater., 380, 209-214, 2015. [272] Revia, R. A., Zhang, M. Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: recent advances. Mater. Today, 19 (3), 157-168, 2016. [273] Michalet, X., Pinaud, F. F. Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics. Science, 307 (538), 538-545, 2005. [274] Krishnan, K. M. Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy. IEEE Trans. Magn., 46 (7), 2523-2558, 2010. [275] Yoo, D., Lee, J.-H., Shin, T.-H., Cheon, J. Theranostic magnetic nanoparticles. Acc. Chem. Res., 44 (10), 863-874, 2011. [276] Xiong, H.-M. Photoluminescent ZnO nanoparticles modied by polymers. J. Mater. Chem., 20 (21), 4251-4262, 2010. [277] Özgür, Ü., Alivov, Y. I., Liu, C., Teke, A., Reshchikov, M., Dogan, S., et al. A comprehensive review of ZnO materials and devices. J. Appl. Phys., 98 (4), 041301, 2005. [278] Liu, H., Wu, J., Min, J. H., Zhang, X., Kim, Y. K. Tunable synthesis and multifunctionalities of Fe3O4/ZnO hybrid core-shell nanocrystals. Mater. Res. Bull., 48 (2), 2013. [279] Wan, J., Li, H., Chen, K. Synthesis and characterization of Fe3O4@ZnO core-shell structured nanoparticles. Mater. Chem. Phys., 114 (1), 30-32, 2009. [280] Chiu, W., Khiew, P., Cloke, M., Isa, D., Lim, H., Tan, T., et al. Heterogeneous seeded growth: synthesis and characterization of bifunctional Fe3O4/ZnO core/shell nanocrystals. J. Phys. Chem. C, 114 (18), 8212-8218, 2010. [281] Huang, X., Lu, J., Yue, D., Fan, Y., Yi, C., Wang, X., et al. Fe3O4@ZnO core-shell nanocomposites for ecient and repetitive removal of low density lipoprotein in plasma and on blood vessel. Nanotechnology, 26 (12), 125101, 2015. [282] Mojica Pisciotti, M. Desarrollo de nanopartculas para su aplicacion en el tratamiento medico: hipertermia. Tesis doctoral, Istituto Balseiro, Universidad Nacional de Cuyo, 2015. [283] Kozissnik, B., Bohorquez, A. C., Dobson, J., Rinaldi, C. Magnetic uid hyperthermia: Advances, challenges, and opportunity. Int. J. Hyperther., 29 (8), 706-714, 2013. [284] Hofmann, A., Thierbach, S., Semisch, A., Hartwig, A., Taupitz, M., Rühl, E., et al. Highly monodisperse water-dispersable iron oxide nanoparticles for biomedical applications. J. Mater. Chem., 20 (36), 7842-7853, 2010. [285] Grüttner, C., Müller, K., Teller, J., Westphal, F. Synthesis and functionalisation of magnetic nanoparticles for hyperthermia applications. Int. J. Hyperther., 29 (8), 777-789, 2013. [286] Wood, A., Giersig, M., Hilgendor, M., Vilas-Campos, A., Liz-Marzan, L. M., Mulvaney, P. Size Eects in ZnO: The Cluster to Quantum Dot Transition. Aust. J. Chem., 56 (10), 1051, 2003. [287] Sheetz, R. M., Ponomareva, I., Richter, E., Andriotis, A. N., Menon, M. Defect-induced optical absorption in the visible range in ZnO nanowires. Phys. Rev. B, 80 (19), 195314, 2009. [288] Borgohain, C., Senapati, K. K., Sarma, K., Phukan, P. A facile synthesis of nanocrystalline CoFe2O4 embedded one-dimensional ZnO hetero-structure and its use in photocatalysis. J. Mol. Catal. A: Chem., 363, 495-500, 2012. [289] Schmidt-Mende, L., MacManus-Driscoll, J. L. ZnO-nanostructures, defects, and devices. Mater. today, 10 (5), 40-48, 2007. [290] Fu, R., Wang, W., Han, R., Chen, K. Preparation and characterization of -Fe2O3/ZnO composite particles. Mater. Lett., 62 (25), 4066-4068, 2008. [291] Lima Jr, E., De Biasi, E., Zysler, R. D., Mansilla, M. V., Mojica-Pisciotti, M. L., Torres, T. E., et al. Relaxation time diagram for identifying heat generation mechanisms in magnetic fluid hyperthermia. J. Nanopart. Res., 16 (12), 1{11, 2014. [292] Martinez-Boubeta, C., Simeonidis, K., Serantes, D., Conde-Leboran, I., Kazakis, I., Stefanou, G., et al. Adjustable Hyperthermia Response of Self-Assembled Ferromagnetic Fe-MgO Core-Shell Nanoparticles by Tuning Dipole-Dipole Interactions. Adv. Funct. Mater., 22 (17), 3737-3744, 2012. [293] Torres Molina, T. Power absorption mechanisms in high-anisotropy CoFe2O4 magnetic nanoparticles. Tesis doctoral, Universidad de Zaragoza, 2015. [294] Xiong, H.-M., Xu, Y., Ren, Q.-G., Xia, Y.-Y. Stable aqueous ZnO@polymer core- shell nanoparticles with tunable photoluminescence and their application in cell imaging. J. Am. Chem. Soc., 130 (24), 7522-7523, 2008. [295] Alocilja, E. C., Cloutier, B. C., Anderson, M. J. Extraction and detection of pathogens using carbohydrate-functionalized biosensors, 2012. US Patent App. 13/598,160. [296] Yan, H., Sung, B., Kim, M.-H., Kim, C. A novel strategy for functionalizable photoluminescent magnetic nanoparticles. Mater. Res. Express, 1 (4), 045032, 2014. [297] Burns, A., Ow, H., Wiesner, U. Fluorescent core-shell silica nanoparticles: towards \lab on a particle" architectures for nanobiotechnology. Chem. Soc. Rev., 35 (11), 1028-1042, 2006. [298] Milos, M., Raemy, X. C., Dorier, J.-L. Thermoluminescent composite particle and marking comprising same, 2014. US Patent App. 14/577,390. [299] Brites, C. D. S., Lima, P. P., Silva, N. J. O., Millan, A., Amaral, V. S., Palacio, F., et al. Lanthanide-based luminescent molecular thermometers. New J. Chem., 35 (6), 1177, 2011. [300] Zhang, H., Huang, H., He, S., Zeng, H., Pralle, A. Monodisperse magneto uorescent nanoplatforms for local heating and temperature sensing. Nanoscale, 6 (22), 13463-13469, 2014.
Materias:Física > Nanotecnología
Divisiones:Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Ciencias de materiales > Resonancias magnéticas
Código ID:607
Depositado Por:Tamara Cárcamo
Depositado En:18 May 2017 10:17
Última Modificación:18 May 2017 10:17

Personal del repositorio solamente: página de control del documento