Anisotropía magnética y acople magneto-elástico en películas delgadas de Fe_1-xGa_x crecidas epitaxialmente sobre ZnSe/GaAs(001). / Magnetic anisotropy and magneto-elastic coupling in Fe_1-xGa_x thin films grown epitaxially over ZnSe/GaAs(001).

Barturen, Mariana (2014) Anisotropía magnética y acople magneto-elástico en películas delgadas de Fe_1-xGa_x crecidas epitaxialmente sobre ZnSe/GaAs(001). / Magnetic anisotropy and magneto-elastic coupling in Fe_1-xGa_x thin films grown epitaxially over ZnSe/GaAs(001). Tesis Doctoral en Física, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
8Mb

Resumen en español

En la evolución de la investigación acerca de materiales magnetostrictivos, el descubrimiento de la aleación Fe_1-xGa_x fue un punto donde se alcanzó un compromiso muy conveniente entre los requerimientos de tener elevada magnetostricción a temperatura ambiente (del orden de 10"4), campos de manipulación bajos (menores a 300 Oe), hist éresis pequeña, gran ductilidad y bajo costo (por el hecho de no poseer tierras raras) [1]. Estas características inspiraron gran número de trabajos tanto teóricos como experimentales destinados a entender, entre otras cuestiones, la influencia de la estructura atómica en la magnetostricción. En esta tesis hemos introducido el estudio de esta aleación crecida como película delgada. Las facilidades del Instituto de Nanociencia de París nos permitieron contar con films crecidos por MBE de espesores nanométricos y monocristalinos. Nuestro trabajo fue de índole experimental y consistió en realizar una caracterizaci ón magnética que incluyó el estudio de las anisotropías magnéticas, los coeficientes de acople-magneto-elástico y los dominios magnéticos. Para este trabajo se utilizaron principalmente las técnicas de resonancia ferromagnética, medición del acople magnetoel ástico por deflexión de cantilever y microscopía de fuerza magnética. Las anisotropías se estudiaron en función del espesor, concentración y estructura atómica lográndose una extensiva descripción del sistema. Se observó que los films conservan muchas de las características del material masivo pero al mismo tiempo presentan otras que los hacen diferentes. En particular, se detectó la presencia de una fuerte anisotropía fuera del plano (del orden de diez veces mayor a la anisotropía dentro del plano) que tiene una contribución magnetocristalina, una magneto-elástica y otra de origen desconocido para la cual presentamos la propuesta de una anisotropía en la distribución de los pares de Ga (más pares de Ga fuera del plano que dentro del mismo). Esta última contribución pudo ser modelada proponiendo una adaptación del modelo fenomenológico de Cullen [2]. Como consecuencia de esta anisotropía fuera del plano aparecen, para espesores adecuados, dominios magnéticos en forma de tiras o stripes cuya presencia no había sido detectada antes de esta tesis. Estos dominios pueden rotar en la dirección del campo magnético de saturación aplicado.

Resumen en inglés

In the evolution of research concerning magnetostrictive materials, the discovery of the Fe_1-xGa_x alloy was a point where a very suitable compromise was reached between the requirements of having an elevated magnetostriction at a room temperature (in the order of 10"4), low manipulation fields (lower than 300 Oe), small hysteresis, great ductility and low cost (due to the fact of not possessing rare earths) [1]. These characteristics inspired a great amount of publications, both theoretical and experimental destined to understand, among other issues, the influence of the atomic structure in magnetostriction. In this thesis we have introduced the study of this alloy grown as thin film. The facilities of Institute of Nanoscience of Paris allowed us to count on monocrystalline films of nanometric thicknesses grown by MBE. Our work was of experimental nature and consisted in a magnetic characterization that included the study of magnetic anisotropies, magneto-elastic coupling coefficients and magnetic domains. For this work we principally used three techniques: ferromagnetic resonance, magnetoelastic coupling measurement by cantilever deffection and magnetic force microscopy. Anisotropies were studied as a function of thickness, concentration and atomic structure, achieving an extensive description of the system. It was observed that the films conserved many of the bulk material characteristics, but at the same time they present some singularities that make them diffeerent. Particularly, a strong out of plane anisotropy was detected (ten times larger than the in-plane anisotropy), which has a magnetocrystalline contribution, a magnetoelastic contribution and another one of unknown origin. To explain this last term we put forward the hypothesis of an anisotropic distribution of Ga pairs (more Ga pairs out of plane than in plane). This last contribution could be modeled by adapting Cullen's phenomenological model [2]. As a consequence of this out of plane anisotropy, magnetic domains with stripe pattern appear, for appropriate thicknesses. This configuration was detected for the first time during this thesis in this system. These domains can rotate in the direction of the saturation applied magnetic field.

Tipo de objeto:Tesis (Tesis Doctoral en Física)
Información Adicional:Área Temática: Magnetismo en películas delgadas.
Palabras Clave:Magnetostriction; Magnestricción; Anisotropy; Anisotropía; [Galfenol; Fega; Stripes; Magneto-elastic coupling; Acople magneto-elástico]
Referencias:[1] Petculescu, G., Wu, R., McQueeney, R. Magnetoelasticity of bcc Fe-Ga Alloys, tomo 20 de Handbook of Magnetic Materials. Hardbound, 2012. [2] Cullen, J., Zhao, P., Wuttig, M. Anisotropy of crystalline ferromagnets with defects. Journal of Applied Physics, 101 (12), 123922, 2007. [3] Atulasimha, J., Flatau, A. A review of magnetostrictive iron-gallium alloys. Smart Mater. and Struct., 20, 043001, 2011. [4] Sander, D. The correlation between mechanical stress and magnetic anisotropy in ultrathin films. Reports on Progress in Physics, 62 (5), 809, 1999. [5] Åckereman, J. Toward a universal memory. Science, 308, 508, 2005. [6] Parkin, S., Hayashi, M., Thomas, L. Magnetic domain-wall racetrack memory. Science, 320, 190, 2008. [7] Katine, J., Albert, F., Buhrman, R., Myers, E., Ralph, D. Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars. Phys. Rev. Lett., 84, 3149, 2000. [8] Wang, K., Alzate, J., Khalili Amiri, P. Low-power non-volatile spintronic memory: STT-RAM and beyond. J. Phys.D, 46, 074003, 2013. [9] Liu, M., Homan, J., Wang, J., Zhang, J., Nelson-Cheeseman, B. Nonvolatile ferroelastic switching of the Verwey transition and resistivity of epitaxial Fe3O4/PMN-PT (011). Sci. Rep., 3, 1876, 2013. [10] Hockel, J., Bur, A., Wu, T., Wetzlar, K., Carman, G. Electric field induced magnetization rotation in patterned Niring/[Pb(Mg1=3Nb2=3)O3] 1-0;32-[PbTiO3]0;32 heterostructures. Appl. Phys. Lett., 100, 022401, 2012. [11] Adamo, C., Ke, X., Wang, H., Xin, H., Heeg, T., Hawley, M. E., et al. Effect of biaxial strain on the electrical and magnetic properties of (001) LSMO thin films. Appl. Phys. Lett., 95, 112504, 2009. [12] Finizio, S., Foerster, M., Buzzi, M., Krüger, B., Jourdan, M., Vaz, C., et al. Magnetic Anisotropy Engineering in Thin Film Ni Nanostructures by Magnetoelastic Coupling. Phys. Rev. Appl., 1, 021001, 2014. [13] Cherepov, S., Amiri, P., Alzate, J., Wong, K., Lewis, M., Upadhyaya, P., et al. Electric-field-induced spin wave generation using multiferroic magnetoelectric cells. Appl. Phys. Lett., 104 (082403), 2014. [14] Joule, J. P. On a new class of magnetic forces. Sturgeon's Annals of Electricity, 8, 219, 1842. [15] Joule, J. P. On the effects of magnetism upon the dimensions of iron and steel bars. Phil. Mag., 30 (3), 76-225, 1847. [16] Du-Tremolet-de Lacheisserie, E. Magnetostriction: theory and applications of magnetoelasticity. CRC Press, 1993. [17] Clark, A. E., Bozorth, R. M., Desavage, B. F. Anomalous thermal expansion and magnetostriction of single crystals of dysprosium. Physics Letters A, 5 (2), 100-102, 1963. [18] Legvold, S., Alstad, J., Rhyne, J. Giant magnetostriction in dysprosium and holmium single crystals. Physical Review Letters, 10 (12), 509-511, 1963. [19] Clark, A., DeSavage, B., Bozorth, R. Anomalous thermal expansion and magnetostriction of single-crystal dysprosium. Phys. Rev., 138, 24, 1965. [20] Abbundi, R., Clark, A. Analogous thermal expansion and magnetostriction of single-crystal Tb0;27Dy0;73Fe2. IEEE Trans. Magn., 13, 4510-5, 1977. [21] Clark, A. E., Restorff, J. B., Wun-Fogle, M., Lograsso, T. A., Schlagel, D. L. Magnetostrictive properties of body-centered cubic Fe-Ga and Fe-Ga-Al alloys. IEEE Transactions on Magnetics, 36 (5 I), 3238-3240, 2000. [22] Guruswamy, S., Srisukhumbowornchai, N., Clark, A. E., Restorff, J. B., Wun- Fogle, M. Strong, ductile, and low-field-magnetostrictive alloys based on Fe-Ga. Scripta Materialia, 43 (3), 239-244, 2000. [23] Clark, A. E., Hathaway, K. B., Wun-Fogle, M., Restorff, J. B., Lograsso, T. A., Keppens, V. M., et al. Extraordinary magnetoelasticity and lattice softening in bcc Fe-Ga alloys. Journal of Applied Physics, 93 (10 3), 8621-8623, 2003. [24] Wu, R. Origin of large magnetostriction in FeGa alloys. Journal of Applied Physics, 91 (10 I), 7358-7360, 2002. [25] Ikeda, O., Kainuma, R., Ohnuma, I., Fukamichi, K., Ishida, K. Phase equilibria and stability of ordered b.c.c. phases in the Fe-rich portion of the Fe-Ga system. Journal of Alloys and Compounds, 347 (1-2), 198-205, 2002. [26] Du, Y., Huang, M., Chang, S., Schlagel, D. L., Lograsso, T. A., McQueeney, R. J. Relation between Ga ordering and magnetostriction of Fe-Ga alloys studied by x-ray diffuse scattering. Physical Review B - Condensed Matter and Materials Physics, 81 (5), 2010. [27] Dunlap, R. A., McGraw, J. D., Farrell, S. P. A Mössbauer effect study of structural ordering in rapidly quenched Fe-Ga alloys. Journal of Magnetism and Magnetic Materials, 305 (2), 315-320, 2006. [28] Luo, H. Lattice parameters of iron-rich iron-gallium alloys. Trans. Metall. Soc. AIME, 239, 119, 1967. [29] Xing, Q., Du, Y., McQueeney, R. J., Lograsso, T. A. Structural investigations of Fe-Ga alloys: Phase relations and magnetostrictive behavior. Acta Materialia, 56 (16), 4536-4546, 2008. [30] Bhattacharyya, S., Jinschek, J. R., Khachaturyan, A., Cao, H., Li, J. F., Viehland, D. Nanodispersed DO3 -phase nanostructures observed in magnetostrictive Fe-19% Ga Galfenol alloys. Physical Review B - Condensed Matter and Materials Physics, 77 (10), 2008. [31] Khachaturyan, A. G., Viehland, D. Structurally heterogeneous model of extrinsic magnetostriction for Fe-Ga and similar magnetic alloys: Part I. Decomposition and confined displacive transformation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 38 A (13), 2308-2316, 2007. [32] Khachaturyan, A. G., Viehland, D. Structurally heterogeneous model of extrinsic magnetostriction for Fe-Ga and similar magnetic alloys: Part II. Giant magnetostriction and elastic softening. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 38 A (13), 2317-2328, 2007. [33] Cao, H., Gehring, P. M., Devreugd, C. P., Rodriguez-Rivera, J. A., Li, J., Viehland, D. Erratum: Role of nanoscale precipitates on the enhanced magnetostriction of heat-treated galfenol (Fe1-xGax) alloys (Physical Review Letters (2009) 102 (127201)). Physical Review Letters, 105 (11), 2010. [34] Wang, H., Zhang, Y. N., Yang, T., Zhang, Z. D., Sun, L. Z., Wu, R. Q. Ab initio studies of the effect of nanoclusters on magnetostriction of Fe1-x Gax alloys. Applied Physics Letters, 97 (26), 2010. [35] Laver, M., Mudivarthi, C., Cullen, J. R., Flatau, A. B., Chen, W. C., Watson, S. M., et al. Magnetostriction and magnetic heterogeneities in iron-gallium. Physical Review Letters, 105 (2), 2010. [36] Du, Y., Huang, M., Lograsso, T. A., McQueeney, R. J. X-ray diffuse scattering measurements of chemical short-range order and lattice strains in a highly magnetostrictive Fe0;813Ga0;187 alloy in an applied magnetic field. Physical Review B - Condensed Matter and Materials Physics, 85 (21), 2012. [37] Hong, S. C., Yun, W. S., Wu, R. Giant magnetostriction of Fe1-xBex alloy: A first-principles study. Physical Review B - Condensed Matter and Materials Physics, 79 (5), 2009. [38] Cao, H., Gehring, P. M., Devreugd, C. P., Rodriguez-Rivera, J. A., Li, J., Viehland, D. Role of nanoscale precipitates on the enhanced magnetostriction of heat-treated galfenol (Fe1-xGax) alloys. Physical Review Letters, 102 (12), 2009. [39] Zhang, Y. N., Cao, J. X., Wu, R. Q. Rigid band model for prediction of magnetostriction of iron-gallium alloys. Applied Physics Letters, 96 (6), 2010. [40] Wang, H., Zhang, Y. N., Wu, R. Q., Sun, L. Z., Xu, D. S., Zhang, Z. D. Understanding strong magnetostriction in Fe100-xGax alloys. Scientific Reports, 3, 2013. [41] Bhagat, S. M., Haraldson, S., Beckman, O. Ferromagnetic resonance in amorphous systems. J. Phys. Chem. Solids, 38, 593-599, 1997. [42] Sierra García, J. F. Magnetization Dynamics in Magnetic and Superconducting Nanostructures. Tesis Doctoral, Universidad Autónoma de Madrid, 2008. [43] Smit, J., Beljers, H. Phillips Res. Rep., 10 (113), 1955. [44] Premper, J., Sander, D., Kirschner, J. A combined surface stress and magneto optical Kerr effect measurement setup for temperatures down to 30 K and in fields of up to 0.7 T. Review of Scientific Instruments, 83 (7), 073904, 2012. [45] Dahmen, K., Lehwald, S., Ibach, H. Bending of crystalline plates under the influence of surface stress - a finite element analysis. Surface Science, 446 (1-2), 161-173, 2000. [46] Ibach, H. The role of surface stress in reconstruction, epitaxial growth and stabilization of mesoscopic structures. Surface Science Reports, 29 (5-6), 193-263, 1997. [47] Bayreuther, G., Premper, J., Sperl, M., Sander, D. Uniaxial magnetic anisotropy in Fe/GaAs(001): Role of magnetoelastic interactions. Physical Review B - Condensed Matter and Materials Physics, 86 (5), 2012. [48] Hubert, A., Schäfer, R. Magnetic Domains: The Analysis of Magnetic Microstructures. Springer, 1998. [49] Miyahara, T., Takahashi, M. Dependence of the longitudinal Kerr magneto-optic effect on saturation magnetization in Ni-Fe films. Jpn J Appl Phys, 15 (2), 291- 298, 1976. [50] Qiu, Z., Bader, S. Surface magneto-optic Kerr effect (SMOKE). Journal of Magnetism and Magnetic Materials, 200 (1), 664-678, 1999. [51] Scanning Probe Microscopy (SPM). URL http://www.klaeui-lab.physik. uni-mainz.de/146.php, University of Mainz. [52] Magnetic Force Microscopy (MFM). URL http://www.parkafm.com/ AFM_guide/spm_modes_7.php?id=1211&Magnetic%20Force%20Microscopy% 20(MFM), Park systems. [53] Nielsen, J. A., F., M. D. Elements of Modern X-Ray Physics. Wiley-IEEE Press, 2001. [54] Peters, J. F. Resonant soft x-ray scattering studies of the magnetic nanostructure of stripe domains. Tesis Doctoral, Universiteit op Donderdag, 2003. [55] Tobia, D. Efectos de superficie e interacción de intercambio en nanopartículas magnéticas. Tesis Doctoral, Universidad de Cuyo, 2011. [56] Pasquini, G. SQUID y materiales superconductores, 2011. URL http://users. df.uba.ar/pasquini/labo5/El%20SQUID.pdf. [57] Masel, R. Principles of Adsorption and Reaction on Solid Surfaces. John Wiley & Sons, 1996. [58] Marangolo, M., Gustavsson, F., Eddrief, M., Sainctavit, P., Etgens, V. H., Cros, V., et al. Magnetism of the Fe/ZnSe (001) interface. Physical Review Letters, 88 (21), 2172021-2172024, 2002. [59] Eddrief, M., Zheng, Y., Hidki, S., Rache Salles, B., Milano, J., Etgens, V. H., et al. Metastable tetragonal structure of FeGa epitaxial thin films on ZnSe/GaAs(001) substrate. Phys. Rev. B, 84, 161410, Oct 2011. [60] Yalçin, O. Ferromagnetic Resonance - Theory and Applications, 2013. URL http://www.intechopen.com/ books/ferromagnetic-resonance-theory-and-applications/ ferromagnetic-resonance. [61] Kittel, C. Physical theory of ferromagnetic domains. Reviews of Modern Physics, 21 (4), 541-583, 1949. [62] Landau, L. D., Pitaevskii, L. P., Lifshitz, E. M. Electrodynamics of Continuous Media. En: Course of theoretical Physics, tomo 8, pág. 3. Pergamon Press, 1984. [63] Cullity, B. D., Graham, C. D. Introduction to Magnetic Materials. 2a edón. Wiley-IEEE Press, 2009. [64] Marangolo, M., Gustavsson, F., Guichar, G. M., Eddrief, M., Varalda, J., Etgens, V. H., et al. Structural and magnetic anisotropies of Fe/ZnSe(001) thin films. Phys. Rev. B, 70, 134404, Oct 2004. [65] Meckenstock, R., Spoddig, D., Himmelbauer, K., Krenn, H., Doi, M., Keune, W., et al. Magnetic properties of Fe/ZnSe and Fe/GaAs heterostructures investigated by ferromagnetic resonance and SQUID measurements . Journal of Magnetism and Magnetic Materials, 240 (1-3), 410-413, 2002. 4th International Symposium on Metallic Multilayers. [66] Gustavsson, F., Nordström, E., Etgens, V. H., Eddrief, M., Sjöstedt, E., Wäppling, R., et al. Magnetic moment and anisotropy at the Fe/ZnSe(001) interface studied by conversion electron Mössbauer spectroscopy. Physical Review B - Condensed Matter and Materials Physics, 66 (2), 244051-244055, 2002. [67] Reiger, E., Reinwald, E., Garreau, G., Ernst, M., Zölft, M., Bensch, F., et al. Magnetic moments and anisotropies in ultrathin epitaxial Fe films on ZnSe(001). Journal of Applied Physics, 87 (9 III), 5923-5925, 2000. [68] Krebs, J. J., Jonker, B. T., Prinz, G. A. Properties of Fe single-crystal films grown on (100)GaAs by molecular-beam epitaxy. Journal of Applied Physics, 61 (7), 2596-2599, 1987. [69] Sjöstedt, E., Nordström, L., Gustavsson, F., Eriksson, O. Uniaxial magnetocrystalline anisotropy of metal/semiconductor interfaces: Fe/ZnSe(001). Physical Review Letters, 89 (26), 267203/1267203/4, 2002. [70] Steren, L. B., Milano, J., Eddrief, M., Etgens, V. H. Magnetic properties of Fe/ZnSe/Fe trilayers . Physica B: Condensed Matter, 320 (1-4), 162-164, 2002. Proceedings of the Fifth Latin American Workshop on Magnetism, Magnetic Materials and their Applications. [71] Rafique, S., Cullen, J. R., Wuttig, M., Cui, J. Magnetic anisotropy of FeGa alloys. Journal of Applied Physics, 95 (11), 6939-6941, 2004. [72] Tacchi, S., Grnäs, O., Stollo, A., Madami, M., Gubbiotti, G., Carlotti, G., et al. Epitaxial Fe films on ZnSe(001): Effect of the substrate surface reconstruction on the magnetic anisotropy. Journal of Physics Condensed Matter, 24 (23), 2012. [73] Tacchi, S., Fin, S., Carlotti, G., Gubbiotti, G., Madami, M., Barturen, M., et al. Rotatable magnetic anisotropy in a Fe0;8 Ga0;2 thin film with stripe domains: Dynamics versus statics. Physical Review B - Condensed Matter and Materials Physics, 89 (2), 2014. [74] Felippa, C. Stress, 2013. URL http://www.colorado.edu/engineering/CAS/ courses.d/Structures.d/IAST.Lect04.d/IAST.Lect01.pdf. [75] Felippa, C. Strains, 2013. URL http://www.colorado.edu/engineering/CAS/ courses.d/Structures.d/IAST.Lect04.d/IAST.Lect04.pdf. [76] Ashcroft, N. W., Mermin, N. D. Solid State Physics. Philadelphia: Saunders College, 1976. [77] Lee, E. W. Magnetostriction and magnetomechanical effects. Reports on Progress in Physics, 18 (1), 184-229, 1955. [78] Sun, S. W., O'Handley, R. C. Surface magnetoelastic coupling. Physical Review Letters, 66 (21), 2798-2801, 1991. [79] Song, O., Ballentine, C. A., O'Handley, R. C. Giant surface magnetostriction in polycrystalline Ni and NiFe films. Applied Physics Letters, 64 (19), 2593-2595, 1994. [80] O'Handley, R. C., Sun, S. . Strained layers and magnetoelastic coupling. Journal of Magnetism and Magnetic Materials, 104-107 (PART 3), 1717-1720, 1992. [81] O'Handley, R. C., Song, O. ., Ballentine, C. A. Determining thin-film magnetoelastic constants. Journal of Applied Physics, 74 (10), 6302-6307, 1993. [82] Koch, R., Weber, M., Thürmer, K., Rieder, K. H. Magnetoelastic coupling of Fe at high stress investigated by means of epitaxial Fe(001) films. Journal of Magnetism and Magnetic Materials, 159 (1-2), L11-L16, 1996. [83] Fujiwara, H., Kadomatsu, H., Tokunaga, T. Magnetocrystalline anisotropy and magnetostriction of Pd-Co alloys. Journal of Magnetism and Magnetic Materials, 31-34 (PART 2), 809-810, 1983. [84] Takahashi, H., Tsunashima, S., Iwata, S., Uchiyama, S. Measurement of magnetostriction constants in polycrystalline alloy and multilayer films of PdCo and PtCo. Journal of Magnetism and Magnetic Materials, 126 (1-3), 282-284, 1993. [85] Tsunashima, S., Nakamura, K., Uchiyama, S. Perpendicular magnetic anisotropy of PdCo and PtCo based multilayers. IEEE Transactions on Magnetics, 26 (5), 2724-2726, 1990. [86] Nakamura, K., Tsunashima, S., Hasegawa, M., Uchiyama, S. Perpendicular magnetic anisotropy of PdCo alloy in multilayered structure. Journal of Magnetism and Magnetic Materials, 93 (C), 462-464, 1991. [87] Takahashi, H., Tsunashima, S., Iwata, S., Uchiyama, S. Measurement of magnetostriction constants in polycrystalline alloy and multilayer films of PdCo and PtCo. Journal of Magnetism and Magnetic Materials, 126 (1-3), 282-284, 1993. [88] Kim, Y. K., Silva, T. J. Magnetostriction characteristics of ultrathin permalloy films. Applied Physics Letters, 68 (20), 2885-2886, 1996. [89] Bozorth, R. M. Ferromagnetism. Wiley, 1993. [90] Lachowicz, H. K., Szymczak, H. Magnetostriction of amorphous magnetic materials. Journal of Magnetism and Magnetic Materials, 41 (1-3), 327-334, 1983. [91] Giallorenzi, T. G., Bucaro, J. A., Dandridge, A., Siegel Jr., G. H., Cole, J. H., Rashleigh, S. C., et al. Optical fiber sensor technology. IEEE Journal of Quantum Electronics, QE-18 (4), 626-665, 1982. [92] Bucholtz, F., Koo, K. P., Sigel Jr., G. H., Dandridge, A. Optimization of the fiber/metallic glass bond in fiber-optic magnetic sensors. Journal of Lightwave Technology, LT-3 (4), 814-817, 1985. [93] Squire, P. T., Gibbs, M. R. J. Fibre-optic dilatometer for measuring magnetostriction in ribbon samples. Journal of Physics E: Scientific Instruments, 20 (5), 499-502, 1987. [94] Brizzolara, R. A., Colton, R. J. Magnetostriction measurements using a tunneling-tip strain detector. Journal of Magnetism and Magnetic Materials, 88 (3), 343-350, 1990. [95] Costa, J. L., Nogués, J., Rao, K. V. Direct measurements of magnetostrictive process in amorphous wires using scanning tunneling microscopy. Applied Physics Letters, pág. 3374, 1995. [96] Zhang, Y., Wu, R. Mechanism of Large Magnetostriction of Galfenol. IEEE Trans. Magn., 47 (10), 2011. [97] Wu, R. Q., Chen, L. J., Shick, A., Freeman, A. J. First-principles determinations of magneto-crystalline anisotropy and magnetostriction in bulk and thin- film transition metals. Journal of Magnetism and Magnetic Materials, 177- 181 (PART 2), 1216-1219, 1998. [98] Wang, D. ., Wu, R., Freeman, A. J. First-principles theory of surface magnetocrystalline anisotropy and the diatomic-pair model. Physical Review B, 47 (22), 14932-14947, 1993. [99] Brantley, W. A. Calculated elastic constants for stress problems associated with semiconductor devices. J. Appl. Phys., 44 (534), 1973. [100] Timoshenko, S., Woinowsky-Krieger, S. Theory of Plates and Shells. Singapore: McGraw-Hill, 1959. [101] Khmelevska, T., Khmelevskyi, S., Mohn, P. Magnetism and structural ordering on a bcc lattice for highly magnetostrictive Fe-Ga alloys: A coherent potential approximation study. Journal of Applied Physics, 103 (7), 2008. [102] Alvarez-Prado, L. M., Perez, G. T., Morales, R., Salas, F. H., Alameda, J. M. Perpendicular anisotropy detected by transversely biased initial susceptibility via the magneto-optic Kerr effect in FeSi thin films and FexSi1-x/Si multilayers: Theory and experiment. Physical Review B, 56 (6), 1997. [103] Guzmán, J. M., Álvarez, N., Salva, H. R., Vásquez Mansilla, M., Gómez, J., Butera, A. Abnormal temperature dependence of the coercive field in FePt thin films. Journal of Magnetism and Magnetic Materials, 347, 61-67, 2013. Cited By (since 1996):1. [104] Ramos, C., Brigneti, E. V., Gómez, J., Butera, A. Stripe domains in Permalloy films as observed by ferromagnetic resonance and magnetic force microscopy . Physica B: Condensed Matter, 404 (18), 2784 -2786, 2009. [105] Lehrer, S. S. Rotatable anisotropy in negative magnetostriction NiFe films. Journal of Applied Physics, 34 (4), 1207-1208, 1963. [106] Muller, M. W. Distribution of the magnetization in a ferromagnet. Physical Review, 122 (5), 1485-1489, 1961. [107] Brown Jr., W. F. Rigorous calculation of the nucleation field in a ferromagnetic film or plate. Physical Review, 124 (5), 1348-1353, 1961. [108] Hubert, A. Stray-field- free magnetization configurations. Physica Status Solidi, 32 (2), 519-534, 1969. [109] Spezzani, C., Fabrizioli, M., Candeloro, P., Di Fabrizio, E., Panaccione, G., Sacchil, M. Magnetic order in a submicron patterned permalloy film studied by resonant x-ray scattering. Physical Review B - Condensed Matter and Materials Physics, 69 (22), 224412-1-224412-7, 2004. [110] Saito, N., Fujiwara, H., Sugita, Y. A new type of magnetic domain structure in negative magnetostriction Ni-Fe films. Journal of the Physical Society of Japan, 19 (7), 1116-1125, 1964. [111] Kruglyak, V. V., Demokritov, S. O., Grundler, D. Magnonics. Journal of Physics D: Applied Physics, 43 (26), 2010. [112] Tacchi, S., Montoncello, F., Madami, M., Gubbiotti, G., Carlotti, G., Giovannini, L., et al. Band diagram of spin waves in a two-dimensional magnonic crystal. Physical Review Letters, 107 (12), 2011. [113] Wang, Z. K., Zhang, V. L., Lim, H. S., Ng, S. C., Kuok, M. H., Jain, S., et al. Nanostructured magnonic crystals with size-tunable bandgaps. ACS Nano, 4 (2), 643648, 2010. [114] Tacchi, S., Duerr, G., Klos, J. W., Madami, M., Neusser, S., Gubbiotti, G., et al. Forbidden band gaps in the spin-wave spectrum of a two-dimensional bicomponent magnonic crystal. Physical Review Letters, 109 (13), 2012. [115] Soderkvist, J., Hjort, K. The piezoelectric effect of GaAs used for resonators and resonant sensors. Journal of Micromechanics and Microengineering, 4 (1), 28-34, 1994. [116] Parkes, D. E., Shelford, L. R., Wadley, P., Holý, V., Wang, M., Hindmarch, A. T., et al. Magnetostrictive thin films for microwave spintronics. Scientific Reports, 3, 2013. [117] Brown, W. F. Theory of the Approach to Magnetic Saturation. Phys. Rev., 58, 736-743, Oct 1940. [118] Brown, W. F. The Effect of Dislocations on Magnetization Near Saturation. Phys. Rev., 60, 139-147, Jul 1941. [119] Asti, G., Rinaldi, S. Singular points in the magnetization curve of a polycrystalline ferromagnet. Journal of Applied Physics, 45 (8), 3600-3610, 1974
Materias:Física
Divisiones:Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Ciencias de materiales > Resonancias magnéticas
Código ID:612
Depositado Por:Tamara Cárcamo
Depositado En:14 Jun 2017 11:55
Última Modificación:14 Jun 2017 11:55

Personal del repositorio solamente: página de control del documento