Propiedades ópticas y de transporte en arreglos de puntos cuáticos. / Optical and transport properties in quantum dot arrays.

Andrade Hoyos, Jhon A. (2017) Propiedades ópticas y de transporte en arreglos de puntos cuáticos. / Optical and transport properties in quantum dot arrays. Tesis Doctoral en Física, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Disponible bajo licencia Creative Commons: Reconocimiento - No comercial - Compartir igual.

Español
19Mb

Resumen en español

En esta tesis se analizan las propiedades ópticas y de transporte de dispositivos de puntos cuánticos, donde las interacciones generan regímenes altamente correlacionados y fenómenos de muchos cuerpos. En esta tesis se presentan resultados obtenidos utilizando principalmente el grupo de renormalización numérica de Wilson, complementado con técnicas analíticas basadas en la teoría de líquidos de Fermi, bosones esclavos y cálculos variacionales. Con estas herramientas se exploran sistemas de arreglos de puntos cuánticos acoplados entre ellos y a conductores que proporcionan una rica variedad de fenómenos físicos tales como el efecto Kondo regular, sub-apantallado y ferromagnético. Estos podrían ser utilizados en aplicaciones que hagan uso de sus propiedades dinámicas, de transporte, termoeléctricas y termomagnéticas, gracias a la gran sensibilidad que tienen a campos eléctricos y magnéticos. Esta alta sensibilidad provee grandes valores en el poder termoeléctrico de carga y de espín, donde este último conlleva corrientes de polarización de espín, útil en aplicaciones de espintrónica. Por otro lado, analizamos resultados experimentales de fotoluminiscencia en el decaimiento de un trión y de excitones de diferentes cargas en un punto cuántico, en la que efectos de muchos cuerpos dan lugar a fenómenos como la catástrofe de ortogonalidad de Anderson, efectos de ensanchamiento en la intensidad en el espectro de fotoluminiscencia, corrimiento de las líneas de intensidad hacia el rojo o azul dependiendo del régimen de excitación.

Resumen en inglés

In this thesis, we analyze the optical and transport properties of quantum dots devices, where the interaction generates highly correlated regimes and many-body phenomena. In this thesis, we use Wilson's numerical renormalization group complemented by analytical techniques based on Fermi liquid theory, slave bosons and variational calculations. With those tools, we explore systems of quantum dot arrays coupled between themselves and to conductors which provide a rich variety of physical phenomena such as the regular, underscreened and ferromagnetic Kondo effects. Those systems could be used in applications that utilize their dynamics, transport, thermoelectric, and thermomagnetic properties, owing to the great sensitivity that they have to electric and magnetic fields. This great sensitivity provides large values in the charge and spin thermopower, the latter leading to spin polarization currents, useful in spintronic applications. On the other hand, we analyze experimental results of the photoluminescence in the trion and exciton decays of different charges of a quantum dot, where many body effects lead to phenomena such as the Anderson's orthogonality catastrophe, effects of widening on the intensity of the photoluminescence spectrum, and red and blue shift of intensity lines depending on the excitation regime.

Tipo de objeto:Tesis (Tesis Doctoral en Física)
Información Adicional:Área Temática: Teoría de la materia condensada.
Palabras Clave:Kondo effect; Efecto Kondo, Optical properties, Propiedades ópticas, Ferrimagnetism; Ferrimangnétismo; [Quantum dot; Punto cuántico]
Referencias:[1] Bulla, R., Costi, T. A., Pruschke, T. Numerical renormalization group method for quantum impurity systems. Rev. Mod. Phys., 80, 395-450, Apr 2008. URL http://link.aps.org/doi/10.1103/RevModPhys.80.395. vii, viii, 1, 12 [2] Krishna-murthy, H. R., Wilkins, J. W., Wilson, K. G. Renormalization-group approach to the Anderson model of dilute magnetic alloys. ii. static properties for the asymmetric case. Phys. Rev. B, 21, 1044-1083, Feb 1980. URL http: //link.aps.org/doi/10.1103/PhysRevB.21.1044. viii, 11, 14 [3] Baines, D. Y., Meunier, T., Mailly, D., Wieck, A. D., Bäuerle, C., Saminadayar, L., et al. Transport through side-coupled double quantum dots: From weak to strong interdot coupling. Phys. Rev. B, 85, 195117, May 2012. URL http: //link.aps.org/doi/10.1103/PhysRevB.85.195117. ix, 22, 23, 26, 27, 28, 33, 84, 85 [4] Kleemans, N. A. J. M., van Bree, J., Govorov, A. O., Keizer, J. G., Hamhuis, G. J., Notzel, R., et al. Many body exciton states in self assembled quantum dots coupled to a Fermi sea. Nature, 6, 534, 2010. URL http://dx.doi.org/ 10.1038/nphys1673. xiii, xiii, xiv, 69, 70, 71, 72, 73, 74, 75, 76, 77 [5] Helmes, R. W., Sindel, M., Borda, L., von Delft, J. Absorption and emission in quantum dots: Fermi surface effects of Anderson excitons. Phys. Rev. B, 72, 125301, Sep 2005. URL http://link.aps.org/doi/10.1103/PhysRevB. 72.125301. xiii, 4, 71 [6] Kastner, M. A. Artificial atoms. Phys. Today, 46 (1), 24-31, 1993. URL http://scitation.aip.org/content/aip/magazine/physicstoday/ article/46/1/10.1063/1.881393. 2 [7] Ashoori, R. Electrons in artificial atoms. Nature, 380, 559, Apr 1996. URL http://dx.doi.org/10.1038/380559b0. 2 [8] Delagebeaudeuf, D., Linh Nuyen, T. Metal-(n) AlGaAs - GaAs two-dimensional electron gas FET. IEEE, 29, 955-960, Jun 1982. URL http://doi.org/10. 1109/T-ED.1982.20813. 3 [9] Kastner, M. A. Mesoscopic physics and artificial atoms. AIP Conf. Proc., 275, 573, 1993. URL http://aip.scitation.org/doi/abs/10.1063/1.43770. 3 [10] Moison, J. M., Houzay, F., Barthe, F., Leprince, L., André, E., Vatel. Self organized growth of regular nanometer scale InAs dots on GaAs. Appl. Phys. Lett., 64 (2), 196-198, 1994. URL http://dx.doi.org/10.1063/1.111502. 4 [11] Marzin, J. Y., Gérard, J. M., Izraël, A., Barrier, D., Bastard, G. Photoluminescence of single InAs quantum dots obtained by self-organized growth on GaAs. Phys. Rev. Lett., 73, 716-719, Aug 1994. URL http://link.aps.org/doi/10. 1103/PhysRevLett.73.716. 4 [12] Solomon, G. S., Trezza, J. A., Harris, J. S. Effects of monolayer coverage, fiux ratio, and growth rate on the island density of InAs islands on GaAs. Appl. Phys. Lett., 66 (23), 3161-3163, 1995. URL http://scitation.aip.org/content/ aip/journal/apl/66/23/10.1063/1.113709. 4 [13] Karrai, K.,Warburton, R. J., Schulhauser, C., Hogele, A., Urbaszek, B., McGhee, E. J., et al. Hybridization of electronic states in quantum dots through photon emission. Nature, 427 (135), 135-138, 2004. URL http://www.nature.com/ nature/journal/v427/n6970/suppinfo/nature02109_S1.html. 4 [14] Goldhaber-Gordon, D., Shtrikman, H., Mahalu, D., Abusch-Magder, D., Meirav, U., Kastner, M. A. Kondo effect in a single-electron transistor. Nature, 391, 156-159, 1998. URL http://dx.doi.org/10.1038/34373. 4 [15] Cronenwett, S. M., Oosterkamp, T. H., Kouwenhoven, L. P. A tunable Kondo effect in quantum dots. Science, 281 (5376), 540-544, 1998. URL http:// science.sciencemag.org/content/281/5376/540. 4 [16] Franck, J. P., Manchester, F. D., Douglas, L. M. The specific heat of pure copper and of some dilute copper+iron alloys showing a minimum in the electrical resistance at low temperatures. Proc. R. Soc. Lond., 263, 494-507, Oct 1961. URL http://dx.doi.org/10.1098/rspa.1961.0176. 4 [17] Kondo, J. Resistance minimum in dilute magnetic alloys. Prog. Theor. Phys., 32, 37-49, Oct 1964. URL http://dx.doi.org/10.1098/rspa.1961.0176. 4 [18] Anderson, P. W. Localized magnetic states in metals. Phys. Rev., 124, 41-53, Oct 1961. URL http://link.aps.org/doi/10.1103/PhysRev.124.41. 5 [19] Hewson, A. C. Models of magnetic impurities. En: The Kondo Problem to Heavy Fermions. Cambridge University Press, New York, 1993. 5, 6, 41, 95, 97 [20] Nozières, P. A Fermi-liquid description of the Kondo problem at low temperatures. J. Low Temp. Phys., 17 (1), 31-42, 1974. URL http://dx.doi.org/10. 1007/BF00654541. 6, 43, 44 [21] Varma, C., Nussinov, Z., van Saarloos, W. Singular or non-Fermi liquids. Phys. Rep., 361 (5-6), 267-417, 2002. URL http://www.sciencedirect.com/ science/article/pii/S0370157301000606. 7 [22] Mehta, P., Andrei, N., Coleman, P., Borda, L., Zarand, G. Regular and singular Fermi-liquid fixed points in quantum impurity models. Phys. Rev. B, 72, 014430, Jul 2005. URL http://link.aps.org/doi/10.1103/PhysRevB.72.014430. 7, 30, 43 [23] Roch, N., Florens, S., Costi, T. A., Wernsdorfer, W., Balestro, F. Observation of the underscreened Kondo effect in a molecular transistor. Phys. Rev. Lett., 103 (19), 197202, nov. 2009. URL http://link.aps.org/doi/10.1103/ PhysRevLett.103.197202. 7, 43 [24] Koller, W., Hewson, A. C., Meyer, D. Singular dynamics of underscreened magnetic impurity models. Phys. Rev. B, 72, 045117, Jul 2005. URL http: //link.aps.org/doi/10.1103/PhysRevB.72.045117. 7, 30, 43, 53 [25] Kuzmenko, T., Kikoin, K., Avishai, Y. Tunneling through triple quantum dots with mirror symmetry. Phys. Rev. B, 73, 235310, Jun 2006. URL http://link. aps.org/doi/10.1103/PhysRevB.73.235310. 7, 44, 60 [26] Mitchell, A. K., Jarrold, T. F., Logan, D. E. Quantum phase transition in quantum dot trimers. Phys. Rev. B, 79, 085124, Feb 2009. URL http: //link.aps.org/doi/10.1103/PhysRevB.79.085124. [27] Mitchell, A. K., Jarrold, T. F., Galpin, M. R., Logan, D. E. Local moment formation and Kondo screening in impurity trimers. J. Phys. Chem. B, 117 (42), 12777-12786, 2013. URL http://pubs.acs.org/doi/abs/10.1021/ jp401936s. [28] Baruselli, P. P., Requist, R., Fabrizio, M., Tosatti, E. Ferromagnetic Kondo effect in a triple quantum dot system. Phys. Rev. Lett., 111, 047201, Jul 2013. URL http://link.aps.org/doi/10.1103/PhysRevLett.111.047201. 7, 30, 44, 47, 60 [29] Cornaglia, P. S., Usaj, G., Balseiro, C. A. Tunable charge and spin Seebeck effects in magnetic molecular junctions. Phys. Rev. B, 86 (4), 041107, jul. 2012. URL http://link.aps.org/doi/10.1103/PhysRevB.86.041107. 8, 22, 43, 60 [30] Dong, B., Lei, X. L. Effect of the kondo correlation on the thermopower in a quantum dot. J. Phys.: Condens. Matter, 14 (45), 11747, 2002. URL http: //stacks.iop.org/0953-8984/14/i=45/a=316. 8 [31] Jauho, A.-P., Wingreen, N. S., Meir, Y. Time-dependent transport in interacting and noninteracting resonant-tunneling systems. Phys. Rev. B, 50, 5528-5544, Aug 1994. URL http://link.aps.org/doi/10.1103/PhysRevB.50.5528. 8 [32] Anderson, P. W. Infrared catastrophe in Fermi gases with local scattering potentials. Phys. Rev. Lett., 18, 1049-1051, Jun 1967. URL http://link.aps.org/ doi/10.1103/PhysRevLett.18.1049. 10, 70 [33] Nozières, P., Dominicis, C. T. Singularities in the x-ray absorption and emission of metals. iii. One-body theory exact solution. Phys. Rev., 178, 1097-1107, Feb 1969. URL http://link.aps.org/doi/10.1103/PhysRev.178.1097. 11 [34] Wilson, K. G. The renormalization group: Critical phenomena and the Kondo problem. Rev. Mod. Phys., 47, 773-840, Oct 1975. URL http://link.aps.org/ doi/10.1103/RevModPhys.47.773. 11, 51 [35] Cragg, D. M., Lloyd, P., Nozières, P. On the ground states of some s-d exchange kondo hamiltonians. J. Phys. C: Solid State Phys., 13 (5), 803, 1980. URL http://stacks.iop.org/0022-3719/13/i=5/a=011. 12 [36] Yoshida, M., Whitaker, M. A., Oliveira, L. N. Renormalization-group calculation of excitation properties for impurity models. Phys. Rev. B, 41, 9403-9414, May 1990. URL http://link.aps.org/doi/10.1103/PhysRevB.41.9403. 15 [37] Vivaldo L. Campo, J., Oliveira, L. N. Alternative discretization in the numerical renormalization-group method. Phys. Rev. B, 72, 104432, Sept 2005. URL http: //link.aps.org/doi/10.1103/PhysRevB.72.104432. 15 [38] Anders, F. B., Schiller, A. Spin precession and real-time dynamics in the kondo model: Time-dependent numerical renormalization-group study. Phys. Rev. B, 74, 245113, Dec 2006. URL http://link.aps.org/doi/10.1103/PhysRevB. 74.245113. 16, 18 [39] Weichselbaum, A., von Delft, J. Sum-rule conserving spectral functions from the numerical renormalization group. Phys. Rev. Lett., 99, 076402, Aug 2007. URL http://link.aps.org/doi/10.1103/PhysRevLett.99.076402. 16 [40] Merker, L., Weichselbaum, A., Costi, T. A. Full density-matrix numerical renormalization group calculation of impurity susceptibility and specific heat of the Anderson impurity model. Phys. Rev. B, 86, 075153, Aug 2012. URL http://link.aps.org/doi/10.1103/PhysRevB.86.075153. 16 [41] Cornaglia, P. S., Grempel, D. R. Strongly correlated regimes in a double quantum dot device. Phys. Rev. B, 71 (7), 075305, Feb 2005. URL http://dx.doi.org/ 10.1103/PhysRevB.71.075305. 21, 22, 30, 31, 51 [42] Ferreira, I. L., Orellana, P. A., Martins, G. B., Souza, F. M., Vernek, E. Capacitively coupled double quantum dot system in the Kondo regime. Phys. Rev. B, 84, 205320, Nov 2011. URL http://link.aps.org/doi/10.1103/PhysRevB. 84.205320. 21 [43] Potok, R. M., Rau, I. G., Shtrikman, H., Oreg, Y., Goldhaber-Gordon, D. Observation of the two-channel Kondo effect. Nature, 446 (7132), 167-171, mar. 2007. URL http://dx.doi.org/10.1038/nature05556. 22 [44] Simon, P., Salomez, J., Feinberg, D. Transport spectroscopy of a Kondo quantum dot coupled to a finite size grain. Phys. Rev. B, 73, 205325, May 2006. URL http://link.aps.org/doi/10.1103/PhysRevB.73.205325. 22 [45] Thimm, W. B., Kroha, J., von Delft, J. Kondo box: A magnetic impurity in an ultrasmall metallic grain. Phys. Rev. Lett., 82, 2143-2146, Mar 1999. URL http://link.aps.org/doi/10.1103/PhysRevLett.82.2143. [46] Hu, H., Zhang, G.-M., Yu, L. Mesoscopic Kondo screening effect in a singleelectron transistor embedded in a metallic ring. Phys. Rev. Lett., 86, 5558-5561, Jun 2001. URL http://link.aps.org/doi/10.1103/PhysRevLett.86.5558. [47] Simon, P., Affeck, I. Finite-size effects in conductance measurements on quantum dots. Phys. Rev. Lett., 89, 206602, Oct 2002. URL http://link.aps.org/doi/ 10.1103/PhysRevLett.89.206602. [48] Cornaglia, P. S., Balseiro, C. A. Transport through quantum dots in mesoscopic circuits. Phys. Rev. Lett., 90, 216801, May 2003. URL http://link.aps.org/ doi/10.1103/PhysRevLett.90.216801. [49] Cornaglia, P. S., Balseiro, C. A. Kondo impurities in nanoscopic systems: Confinement-induced regimes. Phys. Rev. B, 66, 115303, Sep 2002. URL http://link.aps.org/doi/10.1103/PhysRevB.66.115303. [50] Lobos, A., Aligia, A. One- and many-body effects on mirages in quantum corrals. Phys. Rev. B, 68, 035411, Jul 2003. URL http://link.aps.org/doi/10.1103/ PhysRevB.68.035411. [51] Kaul, R. K., Ullmo, D., Chandrasekharan, S., Baranger, H. U. Mesoscopic Kondo problem. EPL, 71 (6), 973, 2005. URL http://stacks.iop.org/0295-5075/ 71/i=6/a=973. [52] Yoo, J., Chandrasekharan, S., Kaul, R. K., Ullmo, D., Baranger, H. U. Cluster algorithms for quantum impurity models and mesoscopic Kondo physics. Phys. Rev. B, 71, 201309, May 2005. URL http://link.aps.org/doi/10.1103/PhysRevB. 71.201309. [53] Bomze, Y., Borzenets, I., Mebrahtu, H., Makarovski, A., Baranger, H. U., Finkelstein, G. Two-stage Kondo effect and Kondo-box level spectroscopy in a carbon nanotube. Phys. Rev. B, 82, 161411, Oct 2010. URL http://link.aps.org/ doi/10.1103/PhysRevB.82.161411. [54] Kaul, R. K., Zaránd, G., Chandrasekharan, S., Ullmo, D., Baranger, H. U. Spectroscopy of the Kondo problem in a box. Phys. Rev. Lett., 96, 176802, May 2006. URL http://link.aps.org/doi/10.1103/PhysRevLett.96.176802. 22 [55] Zitko, R. Fano-Kondo effect in side-coupled double quantum dots at finite temperatures and the importance of two-stage Kondo screening. Phys. Rev. B, 81, 115316, Mar 2010. URL http://link.aps.org/doi/10.1103/PhysRevB.81. 115316. 22, 30 [56] Zitko, R., Bon£a, J. Enhanced conductance through side-coupled double quantum dots. Phys. Rev. B, 73, 035332, Jan 2006. URL http://link.aps.org/doi/10. 1103/PhysRevB.73.035332. [57] Yoshida, M., Oliveira, L. N. Thermoelectric effects in quantum dots. Physica B, 404 (19), 3312-3315, 2009. URL http://www.sciencedirect.com/science/ article/pii/S0921452609006206. [58] Tifrea, I., Crisan, M., Pal, G., Grosu, I. Electronic transport of a T-shaped double-quantum-dot system in the Coulomb blockade regime. Eur. Phys. J. B, 86 (3), 102, mar. 2013. URL http://link.springer.com/10.1140/epjb/ e2013-30567-8. 22 [59] Oreg, Y., Goldhaber-Gordon, D. Two-channel Kondo effect in a modiffed single electron transistor. Phys. Rev. Lett., 90, 136602, Apr 2003. URL http://link. aps.org/doi/10.1103/PhysRevLett.90.136602. 22 [60] Pustilnik, M., Borda, L., Glazman, L. I., von Delft, J. Quantum phase transition in a two-channel-Kondo quantum dot device. Phys. Rev. B, 69, 115316, Mar 2004. URL http://link.aps.org/doi/10.1103/PhysRevB.69.115316. 22 [61] Aldea, A., Tolea, M., Dinu, I. V. Coulomb oscillations in the Fano-Kondo effect and zero-bias anomalies in a double-dot mesotransistor. Phys. Rev. B, 83, 245317, Jun 2011. URL http://link.aps.org/doi/10.1103/PhysRevB.83.245317. 22 [62] Andrade, J. A., Cornaglia, P. S., Aligia, A. A. Transport through side-coupled multilevel double quantum dots in the Kondo regime. Phys. Rev. B, 89, 115110, Mar 2014. URL http://link.aps.org/doi/10.1103/PhysRevB.89.115110. 23 [63] van der Wiel, W. G., De Franceschi, S., Elzerman, J. M., Fujisawa, T., Tarucha, S., Kouwenhoven, L. P. Electron transport through double quantum dots. Rev. Mod. Phys., 75, 1-22, Dec 2002. URL http://link.aps.org/doi/10.1103/ RevModPhys.75.1. 24, 25 [64] Kastner, M. A. The single-electron transistor. Rev. Mod. Phys., 64, 849-858, Jul 1992. URL http://link.aps.org/doi/10.1103/RevModPhys.64.849. 24 [65] Kouwenhoven, L. P., Marcus, C. M., McEuen, P. L., Tarucha, S., Westervelt, R. M., Wingreen, N. S. Electron transport in quantum dots. En: L. L. Sohn, L. P. Kouwenhoven, G. Schön (eds.) Mesoscopic Electron Transport, págs. 105 214. New York: Kluwer, 1997. [66] Aleiner, I. L., Brouwer, P. W., Glazman, L. I. Quantum effects in the Coulomb blockade. Phys. Rep., 358, 309-440, 2002. URL http://dx.doi.org/10.1016/ S0370-1573(01)00063-1. [67] Alhassid, Y. The statistical theory of quantum dots. Rev. Mod. Phys., 72, 895- 968, Oct 2000. URL http://link.aps.org/doi/10.1103/RevModPhys.72.895. [68] Roch, N., Florens, S., Bouchiat, V., Wernsdorfer, W., Balestro, F. Quantum phase transition in a single-molecule quantum dot. Nature, 453 (7195), 633-7, mayo 2008. URL http://dx.doi.org/10.1038/nature06930. 30, 43 [69] Logan, D., Wright, C., Galpin, M. Correlated electron physics in two-level quantum dots: Phase transitions, transport, and experiment. Phys. Rev. B, 80 (12), 125117, sep. 2009. URL http://link.aps.org/doi/10.1103/PhysRevB.80. 125117. 53 [70] Roura Bas, P., Aligia, A. A. Nonequilibrium transport through a singlet-triplet Anderson impurity. Phys. Rev. B, 80, 035308, Jul 2009. URL http://link. aps.org/doi/10.1103/PhysRevB.80.035308. [71] Roura Bas, P., Aligia, A. A. Nonequilibrium dynamics of a singlet-triplet Anderson impurity near the quantum phase transition. J. Phys.: Condens. Matter, 22 (2), 025602, ene. 2010. URL http://iopscience.iop.org/0953-8984/22/ 2/025602. [72] Zitko, R., Peters, R., Pruschke, T. Properties of anisotropic magnetic impurities on surfaces. Phys. Rev. B, 78, 224404, Dec 2008. URL http://link.aps.org/ doi/10.1103/PhysRevB.78.224404. [73] Parks, J. J., Champagne, a. R., Costi, T. a., Shum, W. W., Pasupathy, a. N., Neuscamman, E., et al. Mechanical control of spin states in spin-1 molecules and the underscreened Kondo effect. Science, 328 (5984), 1370-3, jun. 2010. URL http://www.ncbi.nlm.nih.gov/pubmed/20538943. 43 [74] Cornaglia, P. S., Roura Bas, P., Aligia, A. A., Balseiro, C. A. Quantum transport through a stretched spin-1 molecule. EPL, 93 (4), 47005, Feb 2011. URL http: //iopscience.iop.org/0295-5075/93/4/47005/fulltext/. 43 [75] Florens, S., Freyn, A., Roch, N., Wernsdorfer, W., Balestro, F., Roura-Bas, P., et al. Universal transport signatures in two-electron molecular quantum dots: gate-tunable Hund's rule, underscreened Kondo effect and quantum phase transitions. J. Phys.: Condens. Matter, 23 (24), 243202, 2011. URL http: //stacks.iop.org/0953-8984/23/i=24/a=243202. 30, 43 [76] Karrasch, C., Enss, T., Meden, V. Functional renormalization group approach to transport through correlated quantum dots. Phys. Rev. B, 73, 235337, Jun 2006. URL http://link.aps.org/doi/10.1103/PhysRevB.73.235337. 30 [77] Schrieffer, J. R., Wolff, P. A. Relation between the Anderson and Kondo hamiltonians. Phys. Rev., 149, 491-492, Sep 1966. URL http://link.aps.org/doi/ 10.1103/PhysRev.149.491. 30, 35, 46 [78] Torio, M. E., Hallberg, K., Ceccatto, A. H., Proetto, C. R. Kondo resonances and Fano antiresonances in transport through quantum dots. Phys. Rev. B, 65, 085302, Jan 2002. URL http://link.aps.org/doi/10.1103/PhysRevB. 65.085302. 31 [79] Tanaka, Y., Kawakami, N., Oguri, A. Crossover between two different Kondo couplings in side-coupled double quantum dots. Phys. Rev. B, 85, 155314, Apr 2012. URL http://link.aps.org/doi/10.1103/PhysRevB.85.155314. 31 [80] Pines, D., Nozières, P. The theory of quantum liquids. Addison-Wesley, 1990. 43 [81] Nozières, P., Blandin, A. Kondo effect in real metals. J. Phys. France, 41 (3), 193-211, 1980. URL http://dx.doi.org/10.1051/jphys:01980004103019300. 43 [82] Coleman, P., Pépin, C. Singular Fermi liquid behavior in the underscreened Kondo model. Phys. Rev. B, 68, 220405, Dec 2003. URL http://link.aps. org/doi/10.1103/PhysRevB.68.220405. [83] Cabrera Cano, M., Florens, S. Magnetotransport in the Kondo model with ferromagnetic exchange interaction. Phys. Rev. B, 88, 035104, Jul 2013. URL http://link.aps.org/doi/10.1103/PhysRevB.88.035104. 43, 60 [84] Sasaki, S., De Franceschi, S., Elzerman, J., Van der Wiel, W., Eto, M., Tarucha, S., et al. Kondo effect in an integer-spin quantum dot. Nature, 405 (6788), 764-767, 2000. URL http://dx.doi.org/10.1038/35015509. 43 [85] Andrade, J. A., García, D. J., Cornaglia, P. S. Ferromagnetic and underscreened Kondo behavior in quantum dot arrays. Phys. Rev. B, 92, 165416, Oct 2015. URL http://link.aps.org/doi/10.1103/PhysRevB.92.165416. 44, 60 [86] Lieb, E., Mattis, D. Ordering energy levels of interacting spin systems. J. Math. Phys., 3 (4), 749-751, 1962. URL http://dx.doi.org/10.1063/1.1724276. 46 [87] Merzbacher, E. Quantum Mechanics. John Willey and Sons Inc., New York, 1998. 48 [88] Langreth, D. C. Friedel sum rule for Anderson's model of localized impurity states. Phys. Rev., 150 (2), 516, 1966. URL https://doi.org/10.1103/PhysRev. 150.516. 52 [89] Abrikosov, A. A., Gorkov, L. P., Dzyaloshinski, I. E. Methods of quantum field theory in statistical physics. Courier Corporation, 1975. 52, 92 [90] Logan, D. E., Tucker, A. P., Galpin, M. R. Common non-Fermi liquid phases in quantum impurity physics. Phys. Rev. B, 90, 075150, Aug 2014. URL http: //link.aps.org/doi/10.1103/PhysRevB.90.075150. 53 [91] Anderson, P. W. A poor man's derivation of scaling laws for the Kondo problem. J. Phys. C: Solid State Phys., 3 (12), 2436, 1970. URL https://doi.org/10. 1088/0022-3719/3/12/008. 55 [92] Tsvelick, A. M., Wiegmann, P. B. Exact results in the theory of magnetic alloys. Adv. Phys., 32 (4), 453-713, 1983. URL http://dx.doi.org/10.1080/ 00018738300101581. 55 [93] Furuya, K., Lowenstein, J. H. Bethe-ansatz approach to the Kondo model with arbitrary impurity spin. Phys. Rev. B, 25, 59355952, May 1982. URL http: //link.aps.org/doi/10.1103/PhysRevB.25.5935. [94] Andrei, N., Furuya, K., Lowenstein, J. H. Solution of the Kondo problem. Rev. Mod. Phys., 55, 331-402, Apr 1983. URL http://link.aps.org/doi/10.1103/ RevModPhys.55.331. 55 [95] Wolf, S., Awschalom, D., Buhrman, R., Daughton, J., Von Molnar, S., Roukes, M., et al. Spintronics: a spin-based electronics vision for the future. Scien- ce, 294 (5546), 1488-1495, 2001. URL https://doi.org/10.1126/science. 1065389. 59 [96] Zuti¢, I., Fabian, J., Das Sarma, S. Spintronics: Fundamentals and applications. Rev. Mod. Phys., 76, 323-410, Apr 2004. URL http://link.aps.org/doi/10. 1103/RevModPhys.76.323. 59 [97] Kent, A. D., Worledge, D. C. A new spin on magnetic memories. Nature nano., 10 (3), 187-191, 2015. URL http://dx.doi.org/10.1038/nnano.2015.24. 59 [98] Datta, S., Das, B. Electronic analog of the electro-optic modulator. Appl. Phys. Lett., 56 (7), 665-667, 1990. URL http://dx.doi.org/10.1063/1.102730. 59 [99] Hatami, M., Bauer, G. E. W., Zhang, Q., Kelly, P. J. Thermal spin-transfer torque in magnetoelectronic devices. Phys. Rev. Lett., 99, 066603, Aug 2007. URL http://link.aps.org/doi/10.1103/PhysRevLett.99.066603. 59 [100] Torio, M., Hallberg, K., Flach, S., Miroshnichenko, A., Titov, M. Spin filters with Fano dots. Eur. Phys. J. B, 37 (3), 399-403, 2004. URL http://dx.doi. org/10.1140/epjb/e2004-00072-6. 60 [101] Song, J., Ochiai, Y., Bird, J. Fano resonances in open quantum dots and their application as spin filters. Appl. Phys. Lett., 82 (25), 4561-4563, 2003. URL http://dx.doi.org/10.1063/1.1586788. [102] Ojeda, J., Pacheco, M., Orellana, P. An array of quantum dots as a spin filter device by using Dicke and Fano effects. Nanotechnology, 20 (43), 434013, 2009. URL http://stacks.iop.org/0957-4484/20/i=43/a=434013. 60 [103] Reddy, P., Jang, S.-Y., Segalman, R. A., Majumdar, A. Thermoelectricity in molecular junctions. Science, 315 (5818), 1568-1571, 2007. URL https://doi. org/10.1126/science.1137149. 60 [104] Uchida, K., Takahashi, S., Harii, K., Ieda, J., Koshibae, W., Ando, K., et al. Observation of the spin Seebeck effect. Nature, 455 (7214), 778-781, 2008. URL http://dx.doi.org/10.1038/nature07321. 60 [105] Kubala, B., König, J., Pekola, J. Violation of the Wiedemann-Franz law in a single-electron transistor. Phys. Rev. Lett., 100, 066801, Feb 2008. URL http: //link.aps.org/doi/10.1103/PhysRevLett.100.066801. 60 [106] Murphy, P., Mukerjee, S., Moore, J. Optimal thermoelectric figure of merit of a molecular junction. Phys. Rev. B, 78, 161406, Oct 2008. URL http://link. aps.org/doi/10.1103/PhysRevB.78.161406. [107] Finch, C. M., García-Suárez, V. M., Lambert, C. J. Giant thermopower and figure of merit in single-molecule devices. Phys. Rev. B, 79, 033405, Jan 2009. URL http://link.aps.org/doi/10.1103/PhysRevB.79.033405. [108] Costi, T. A., Zlati¢, V. Thermoelectric transport through strongly correlated quantum dots. Phys. Rev. B, 81, 235127, Jun 2010. URL http://link.aps. org/doi/10.1103/PhysRevB.81.235127. 60 [109] Wójcik, K. P.,Weymann, I. Thermopower of strongly correlated T-shaped double quantum dots. Phys. Rev. B, 93, 085428, Feb 2016. URL http://link.aps. org/doi/10.1103/PhysRevB.93.085428. [110] Dubi, Y., Di Ventra, M. Colloquium: Heat flow and thermoelectricity in atomic and molecular junctions. Rev. Mod. Phys., 83, 131-155, Mar 2011. URL http: //link.aps.org/doi/10.1103/RevModPhys.83.131. [111] Widawsky, J. R., Darancet, P., Neaton, J. B., Venkataraman, L. Simultaneous determination of conductance and thermopower of single molecule junctions. Nano Letters, 12 (1), 354-358, 2012. URL http://dx.doi.org/10.1021/nl203634m, pMID: 22128800. [112] Rejec, T., Zitko, R., Mravlje, J., Ram²ak, A. Spin thermopower in interacting quantum dots. Phys. Rev. B, 85, 085117, Feb 2012. URL http://link.aps. org/doi/10.1103/PhysRevB.85.085117. 60 [113] Roura-Bas, P., Tosi, L., Aligia, A. A., Cornaglia, P. S. Thermopower of an SU(4) Kondo resonance under an SU(2) symmetry-breaking field. Phys. Rev. B, 86, 165106, Oct 2012. URL http://link.aps.org/doi/10.1103/PhysRevB. 86.165106. 60 [114] Mahan, G., Sofo, J. The best thermoelectric. PNAS, 93 (15), 7436-7439, 1996. URL http://www.pnas.org/content/93/15/7436.abstract. 60 [115] Lim, J. S., López, R., Sánchez, D. Orbital caloritronic transport in strongly interacting quantum dots. New J. Phys., 16 (1), 015003, 2014. URL http: //stacks.iop.org/1367-2630/16/i=1/a=015003. 60 [116] Zitko, R., Mravlje, J., Ram²ak, A., Rejec, T. Spin thermopower in the overscreened Kondo model. New J. Phys., 15 (10), 105023, 2013. URL http: //stacks.iop.org/1367-2630/15/i=10/a=105023. 60 [117] Tooski, S., Ram²ak, A., Buªka, B. Reprint of : Regular and singular Fermi liquid in triple quantum dots: Coherent transport studies. Physica E: Low Di- mens. Syst. Nanostruct., 82, 366-373, 2016. URL http://www.sciencedirect. com/science/article/pii/S1386947716304222, frontiers in quantum electronic transport - In memory of Markus Büttiker. 60 [118] Andrade, J. A., Cornaglia, P. S. Spinfiltering and thermopower in star-coupled quantum dot devices. Phys. Rev. B, 94, 235112, Dec 2016. URL http://link. aps.org/doi/10.1103/PhysRevB.94.235112. 60 [119] Atatüre, M., Dreiser, J., Badolato, A., Högele, A., Karrai, K., Imamoglu, A. Quantum-dot spin-state preparation with near-unity fidelity. Science, 312 (5773), 551, 2006. URL http://dx.doi.org/10.1126/science.1126074. 69, 72 [120] Greilich, A., Oulton, R., Zhukov, E. A., Yugova, I. A., Yakovlev, D. R., Bayer, M., et al. Optical control of spin coherence in singly charged (In; Ga)As=GaAs quantum dots. Phys. Rev. Lett., 96, 227401, Jun 2006. URL http://link.aps. org/doi/10.1103/PhysRevLett.96.227401. [121] Berezovsky, J., Mikkelsen, M. H., Stoltz, N. G., Coldren, L. A., Awschalom, D. D. Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science, 320 (5874), 349, 2008. URL http://dx.doi.org/10. 1126/science.1154798. 69 [122] Mackowski, S., Gurung, T., Jackson, H. E., Smith, L. M., Karczewski, G., Kossut, J. Exciton-controlled magnetization in single magnetic quantum dots. Appl. Phys. Lett., 87 (7), 072502, 2005. URL http://scitation.aip.org/content/ aip/journal/apl/87/7/10.1063/1.2011785. 69 [123] Korkusinski, M., Hawrylak, P. Optical signatures of spin polarization of carriers in quantum dots. Phys. Rev. Lett., 101, 027205, Jul 2008. URL http://link. aps.org/doi/10.1103/PhysRevLett.101.027205. 69 [124] Reiter, D. E., Kuhn, T., Axt, V. M. All-optical spin manipulation of a single manganese atom in a quantum dot. Phys. Rev. Lett., 102, 177403, Apr 2009. URL http://link.aps.org/doi/10.1103/PhysRevLett.102.177403. 69 [125] Warburton, R. J., Schaffein, C., Haft, D., Bickel, F., Lorke, A., Karrai, K., et al. Optical emission from a charge-tunable quantum ring. Nature, 405, 926, 2000. URL http://dx.doi.org/10.1038/35016030. 69 [126] Högele, A., Seidl, S., Kroner, M., Karrai, K., Warburton, R. J., Gerardot, B. D., et al. Voltage-controlled optics of a quantum dot. Phys. Rev. Lett., 93, 217401, Nov 2004. URL http://link.aps.org/doi/10.1103/PhysRevLett. 93.217401. [127] Smith, J. M., Dalgarno, P. A., Warburton, R. J., Govorov, A. O., Karrai, K., Gerardot, B. D., et al. Voltage control of the spin dynamics of an exciton in a semiconductor quantum dot. Phys. Rev. Lett., 94, 197402, May 2005. URL http://link.aps.org/doi/10.1103/PhysRevLett.94.197402. 69 [128] Dalgarno, P. A., Ediger, M., Gerardot, B. D., Smith, J. M., Seidl, S., Kroner, M., et al. Optically induced hybridization of a quantum dot state with a lled continuum. Phys. Rev. Lett., 100, 176801, Apr 2008. URL http://link.aps. org/doi/10.1103/PhysRevLett.100.176801. 69, 70, 73 [129] Cao, S., Tang, J., Sun, Y., Peng, K., Gao, Y., Zhao, Y., et al. Observation of coupling between zero- and two-dimensional semiconductor systems based on anomalous diamagnetic effects. Nano Research, 9, 306-316, 2016. URL http: //dx.doi.org/10.1007/s12274-015-0910-z. [130] Helmes, R. W., Sindel, M., Borda, L., von Delft, J. Absorption and emission in quantum dots: Fermi surface eects of Anderson excitons. Phys. Rev. B, 72, 125301, Sep 2005. URL http://link.aps.org/doi/10.1103/PhysRevB. 72.125301. 69, 70 [131] Türeci, H. E., Hanl, M., Claassen, M., Weichselbaum, A., Hecht, T., Braunecker, B., et al. Many-body dynamics of exciton creation in a quantum dot by optical absorption: A quantum quench towards Kondo correlations. Phys. Rev. Lett., 106, 107402, Mar 2011. URL http://link.aps.org/doi/10.1103/PhysRevLett. 106.107402. 70, 78, 88 [132] Latta, C., Haupt, F., Hanl, M., Weichselbaum, A., Claassen, M., Wuester, W., et al. Quantum quench of Kondo correlations in optical absorption. Nature, 474, 627-630, 2011. URL http://dx.doi.org/10.1038/nature10204. 69, 70, 75, 78, 79 [133] Hilario, L. M. L., Aligia, A. A. Photoluminescence of a quantum dot hybridized with a continuum of extended states. Phys. Rev. Lett., 103, 156802, Oct 2009. URL http://link.aps.org/doi/10.1103/PhysRevLett.103.156802. 70, 76 [134] Nordlander, P., Pustilnik, M., Meir, Y., Wingreen, N. S., Langreth, D. C. How long does it take for the Kondo effect to develop? Phys. Rev. Lett., 83, 808-811, Jul 1999. URL http://link.aps.org/doi/10.1103/PhysRevLett.83.808. 70 [135] Heyl, M., Kehrein, S. Crooks relation in optical spectra: Universality in work distributions for weak local quenches. Phys. Rev. Lett., 108, 190601, May 2012. URL http://link.aps.org/doi/10.1103/PhysRevLett.108.190601. [136] Vasseur, R., Trinh, K., Haas, S., Saleur, H. Crossover physics in the nonequilibrium dynamics of quenched quantum impurity systems. Phys. Rev. Lett., 110, 240601, Jun 2013. URL http://link.aps.org/doi/10.1103/PhysRevLett. 110.240601. [137] Lukyanov, S. L., Saleur, H., Jacobsen, J. L., Vasseur, R. Exact overlaps in the Kondo problem. Phys. Rev. Lett., 114, 080601, Feb 2015. URL http://link. aps.org/doi/10.1103/PhysRevLett.114.080601. [138] Antipov, A. E., Dong, Q., Gull, E. Voltage quench dynamics of a Kondo system. Phys. Rev. Lett., 116, 036801, Jan 2016. URL http://link.aps.org/doi/10. 1103/PhysRevLett.116.036801. 70 [139] Cornaglia, P. S., Georges, A. Theory of core-level photoemission and the x-ray edge singularity across the Mott transition. Phys. Rev. B, 75, 115112, Mar 2007. URL http://link.aps.org/doi/10.1103/PhysRevB.75.115112. 70, 75 [140] Andrade, J. A., Aligia, A. A., Cornaglia, P. S. Many-body dynamics of the decay of excitons of different charges in a quantum dot. Phys. Rev. B, 94, 235109, Dec 2016. URL http://link.aps.org/doi/10.1103/PhysRevB.94.235109. 70 [141] Ternes, M. Spin excitations and correlations in scanning tunneling spectroscopy. arXiv preprint arXiv:1505.04430, 2015. 86 [142] Coqblin, B., Schrieffer, J. R. Exchange interaction in alloys with cerium impurities. Phys. Rev., 185, 847-853, Sep 1969. URL http://link.aps.org/doi/10. 1103/PhysRev.185.847. 95 [143] Zubarev, D. N. Double-time green functions in statistical physics. Soviet Physics Uspekhi, 3 (3), 320, 1960. URL http://stacks.iop.org/0038-5670/3/i=3/a= R02. 96 [144] Coleman, P. Introduction to many body physics. Rutgers University, New Jersey, 2012. 100, 101
Materias:Física
Divisiones:Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Materia condensada > Teoría de sólidos
Código ID:613
Depositado Por:Tamara Cárcamo
Depositado En:19 Jun 2017 13:53
Última Modificación:19 Jun 2017 13:53

Personal del repositorio solamente: página de control del documento