Claramonte, Simón P. (2017) Estudio experimental de desgaste por fretting en tubos de generadores de vapor nucleares. / Experimental study on fretting wear of nuclear steam generator tubes. Maestría en Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Español 110Mb |
Resumen en español
El desgaste por fretting (FW, según sus siglas en ingles) es un mecanismo de degradación asistido mecánicamente que afecta a diferentes componentes industriales. El mismo se genera debido a la presencia de desplazamientos relativos de peque~na amplitud entre los elementos en contacto. Estos están asociados a vibraciones externas, aunque tambien pueden deberse a las cargas cíclicas que soporta algún componente. En la industria nuclear, el FW es generado por vibraciones inducidas por flujo y es considerado como uno de los mecanismos de daño mas importantes, ya que origina un tipo de degradación localizada que puede traducirse en perdida de integridad estructural de componentes tales como las vainas de los Elementos Combustibles, los tubos de los generadores de vapor (TGVs) y los tubos de presión de reactores tipo CANDU. El estudio del FW en TGVs es de particular interés para el diseño de los generadores de vapor del reactor CAREM 25. En este trabajo se presenta el desarrollo de un dispositivo que permite realizar dos ensayos en simultaneo de FW en tubos, en aire y a temperatura ambiente. El dispositivo no posee accionamiento propio sino que se diseño para ser montado en una maquina de ensayos servohidráulica. Se presenta ademas el desarrollo de una metodología de estimación del volumen de material removido, basada en la determinación de información topográfica de la zona dañada (scar) mediante interferometría óptica y el cálculo del volumen mediante un programa desarrollado en Matlab. Estos desarrollos experimentales permitieron realizar un estudio comparativo de FW en TGVs contra diferentes materiales que representan a los soportes. Dicho estudio se realizo de acuerdo con la norma ASTM G204-10 pero utilizando una geometría de contacto de cilindros cruzados. Se utilizaron tubos de Inconel 690 e Incoloy 800 que se desgastaron contra patines de aceros inoxidables tipo 304L, 316L, 420 (recocido) y 420TT (templado y revenido) que representan el material de los soportes de los tubos. Las observaciones del volumen de material removido indicarían que con respecto al FW: (1) los TGVs sufren mayor daño que los patines de acero inoxidable; (2) la composición química del material de los patines seria mas relevante que la dureza de los mismos en cuanto al FW en TGVs; (3) el acero inoxidable 304L seria una mejor opción que el 316L y el 420 para ser usado como material de soporte de TGVs de Inconel 690 e Incoloy 800. Por ultimo se presenta un estudio de la evolución del daño originado por FW con el aumento del numero de ciclos de fretting. El daño fue analizado a través de la observación de diferentes características como el coeficiente de fricción, el volumen de material removido y la geometría del scar. El análisis de la geometría de los scars se realizo mediante la observación de la evolución en función del numero de ciclos de tres parámetros geométricos del scar en el tubo: la dimensión en la dirección longitudinal, en la dirección circunferencial y la profundidad del scar. Los cambios en estas variables evidencian que la evolución de la geometría del scar depende tanto de la geometría de la piezas en contacto como de las partículas (debris) que se desprenden en el proceso de FW.
Resumen en inglés
Friction wear (FW) is a mechanically assisted degradation mechanism that affects different industrial components. It is generated by small-amplitude relative displacements between the elements in contact. These are associated with external vibrations, although they could also be due to the cyclic loads that support some mechanical component. In the nuclear industry, FW is generated by ow induced vibrations and is considered to be one of the most important damage mechanisms since it causes localized degradation that can result in structural integrity loss of components such as Fuel Elements, Steam Generator Tubes (TGVs) and Pressure Tubes in CANDU reactors. The study on FW of TGVs is of particular interest for the design of steam generators of the CAREM 25 reactor. In this work, the development of a device that allows two simultaneous tests of FW in tubes, in air and at room temperature is presented. The device does not have its own drive system but was designed to be mounted on a servo-hydraulic testing machine. It is also presented the development of a methodology for estimating the volume of material removed, based on the determination of topographic information of the damaged area (scar) by optical interferometry and volume calculation using a program developed in Matlab. These experimental developments allowed performing a comparative study on FW of TGVs against different materials that represent tubes supports. This study was carried out according to ASTM G204-10 but using cross-cylinder contact geometry. Inconel 690 and Incoloy 800 tubes were worn out against stainless steel type 304L, 316L, 420 (annealed) and 420TT (quenched and tempered) pads representing the material of the tube supports. Observations of the volume of material removed would indicate that regarding FW: (1) TGVs suffer greater FW damage than stainless steel pads; (2) the chemical composition of the material of the pads would be more relevant than the hardness of the same as for the FW in TGVs; (3) 304L stainless steel would be a better option than 316L and 420 to be used as support material for Inconel 690 and Incoloy 800 TGVs. Finally, a study of the evolution of the FW damage with the increase of the number of fretting cycles is presented. The damage was analyzed through the observation of different characteristics such as the coefficient of friction, the volume of material removed and the scar geometry. The analysis of the scar geometry was made by observing the evolution as a function of the number of cycles of three geometric parameters of the scar in the tube: the dimension in the longitudinal direction, the dimension in the circumferential direction and the depth of the scar. The changes in these variables show that the evolution of scar geometry depends on both the geometry of the pieces in contact and the particles (debris) removed by the FW process.
Tipo de objeto: | Tesis (Maestría en Ingeniería) |
---|---|
Palabras Clave: | Wear, Desgaste; Vapor generators; Generadores de vapor; Fretting corrosion; Corrosión por frotamiento; Inconel 690; Inconel 800; [ Steam generator tubes; Tubos de generadores de vapor] |
Referencias: | [1] ASM International. Friction, lubrication, and wear technology. ASM Handbook, Volume 18, 1992. [2] D. Kaczorowski y J. Vernot. Wear problems in nuclear industry. Tribology Inter- national, 39, 2006. [3] ASM International. Corrosion: Environments and industries. ASM Handbook, Volume 13C, 2006. [4] H. Attia. Fretting fatigue and wear damage of structural components in nuclear power stations-fitness for service and life management. Tribology International, 39, 2006. [5] IAEA. Nuclear fuel cycle information system. TECDOC-1613 - Technical Docu- ment - International Atomic Energy Agency, 2009. [6] IAEA. Review of fuel failures in water cooled reactors. NF-T-2.1 - Technical Report - International Atomic Energy Agency, 2010. [7] D. Markov, V. Smirnov, A. Smirnov, S. Perepelkin y V. Polenok. Integration of post-irradiation examination results of failed WWER fuel rods. FSUE SSC FR RIAR, Dimitrovgrad, Russian Federation, 2002. [8] IAEA. Assessment and management of ageing of major nuclear power plant components important to safety steam generators. TECDOC-1668 - Technical Docu- ment - International Atomic Energy Agency, 2011. [9] J. T. A. Roberts. Structural materials in nuclear power systems. Plenum Press, 1981. [10] EPRI. Steam generator reference book. TR-103824s-V1R1 - Technical Report - Electric Power Reserch Institute, 1994. [11] M. C. Conti y M. Chocrion. Consideraciones sobre la quimica del agua y el revestimiento del RPR CAREM 25. MEM-GQ AT-017/14,460.310 - Memorando - Gerencia de Quimica CNEA, 2014. [12] T. Tarasova. Alcance del grupo de sumistro generador de vapor. PL-CAREM25M- 614-B0300-r0 - Plano - Proyecto CAREM 25. [13] IAEA. Advances in small modular reactor technology developments. A supplement to: IAEA Advanced Reactors Information System, International Atomic Energy Agency, 2014. [14] T. Tarasova. Subconjunto camisa 1. PL-CAREM25M-109-B0300-r1 - Plano - Proyecto CAREM 25. [15] S. Claramonte, S. Soria y A. Yawny. Seleccion del material para los separadores de tubos de los generadores de vapor de reactor nuclear CAREM 25. INT- INN 03MET-001 - Informe Tecnico - Gerencia de Física CAB - GAIyANN - CNEA, 2015. [16] G. Anteri, A. Pastor y A. Burkart. Seleccion de materiales y definicinion de especi ficaciones de materiales para los componentes del reactor CAREM 25. IT-G- MAT:29/13 - Informe Tecnico - Gerencia de Materiales - GAEN - CNEA, 2013. [17] ASTM. Standard test method for damage to contacting solid surfaces under fretting conditions. ASTM G204-10 - American Society of Testing Materials, 2010. [18] D.R. Chalfoun. Desarrollo de tratamiento termico en tubos de inconel 690 para generadores de vapor para centrales nucleares. Trabajo de Seminario - Instituto Prof. Jorge A. Sabato - UNSAM-CNEA, 2011. [19] G.W. Stachowiak y A.W. Batchelor. Engineering tribology. Butterworth- Heinemann, 2nd edition, 2001. [20] E. Rabinowicz. Friction and wear of materials. John Wiley & Sons, Inc., 2nd edition, 1995. [21] J.F. Archard. Contact and rubbing of at surfaces. Journal of Applied Physics, 24, 8, 1953. [22] O. Vingsbo. On fretting maps. Wear, 126, 1988. [23] S. Fouvry, P. Kapsa y L. Vincent. Quantification of fretting damage. Wear, 200, 1996. [24] S. Fouvry y P. Kapsa. An energy description of hard coating wear mechanisms. Surface and Coatings Technology, 138, 2011. [25] S. Fouvry y P. Kapsa. Analysis of sliding behaviour for fretting loadings determination of transition criteria. Wear, 185, 1995. [26] H. Attia. A generalized fretting wear theory. Tribology International, 42, 2009. [27] F.M. Guerout y N.J. Fisher. Steam generator fretting-wear damage: A summary of recent findings. Journal of Pressure Vessel Technology, 121, 1999. [28] J.K. Hong y I.S. Kim. Environment effects on the reciprocating wear of Inconel 690 steam generator tubes. Wear, 255, 2003. [29] Young-Ho Lee et al. A comparative study on the fretting wear of steam generator tubes in korean power plants. Wear, 255, 2003. [30] M. K. Lim, S.D. Oh y Y.Z. Lee. Friction and wear of Inconel 690 and Inconel 600 for steam generator tube in room temperature water. Nuclear Engineering and Design, 226, 2003. [31] ASTM. A new fretting test method. ASTM International - ASTM Wear News - Number 4, 9, 2011. [32] K.L. Johnson. Contact mechanics. Cambirdge University Press, 1996. 33] J. P. Balbiani. Dise~no de facilidad experimental de laboratorio para el estudio de fretting en tubos de generadores de vapor. Tesis de Maestria en Ingenieria - Instituto Balseiro - Universidad Nacional de Cuyo, 2014. [34] SKF. Rolling bearings catalogue. Pagina Web SKF, 2016. http://www.skf.com/binary/77-121486/SKF-rolling-bearings-catalogue.pdf. [35] JSME. Standard method of fretting fatigue testing. JSME S 015-2002 - The Japan Society of Mechanical Engineers, 2002. [36] ASTM. Standard test methods for determining average grain size. ASTM E112-13 - American Society of Testing Materials, 2013. [37] ASTM. Standard specification for stainless steel bars and shapes. ASTM A276-13 - American Society of Testing Materials, 2013. [38] J.K. Hong, I.S. Kim, C.Y. Park y E.S. Kim. Microstructural effects on the fretting wear of Inconel 690 steam generator tubes. Wear, 259, 2005. [39] AREVA. Replacement of Arkansas nuclear one unit 1 OTSG by Areva. DOCKET No. 50-313 - Conference Call Summary, August 10, 2005. [40] P. De Baets y K. Strijckmans. Characterization of the fretting wear of unlubricated steel surfaces based on the comparison of wear results obtained by different methods. Wear, 208, 1997. [41] Sartorius. Ultramicro and micro balances. Pagina Web Sartorius, 2016. https://www.sartorius.com/en/products/laboratory/laboratorybalances/ ultramicro-micro-balances/. [42] ASTM. Test method for wear testing with a pin-on-disk apparatus. ASTM G99-05 - American Society of Testing Materials, 2005. [43] ASTM. Test method for linearly reciprocating ball-on- at sliding wear. ASTM G133-05 - American Society of Testing Materials, 2005. [44] P. De Baets y K. Strijckmans. Thin layer activation for measuring fretting wear and material transfer in iron alloys. Tribology International, 29, 1996. [45] P. De Baets y K. Strijckmans. A mathematical, geometrical wear model for continuous wear measurements based on the normal approach between a spherical and a at specimen subject to fretting. Wear, 208, 1997. [46] S. Claramonte, D. Vazano, M. Bergant y A. Yawny. Caracterizacion del daño por fretting en tubos de generadores de vapor. 98o Reunion Nacional de la Asociacion de Física Argentina, Poster, 2013. [47] S. Claramonte, J.P. Balbiani, D. Vazano, M. Bergant y A. Yawny. Estuduios experimentales de desgaste por fretting en tubos de generadores de vapor. 13er Congreso Internacional en Ciencia y Tecnologia de Metalurgia y Materiales - SA- M/CONAMET, Poster, 2013. [48] X. Mi, Z.B. Cai, X.M. Xiong, H. Qian, L.C. Tang, Y.C. Xie, J.F. Peng y M.H. Zhu. Investigation on fretting wear behavior of 690 alloy in water under various temperatures. Tribology International, 2016. http://dx.doi.org/10.1016/j.triboint.2016.05.012i. [49] H.K. Kim y Y.H. Lee. In uence of contact shape and supporting condition on tube fretting wear. Wear, 255, 2003. [50] D.V.S Murty. Transducers and instrumentation. PHI Learning, London, 2004. [51] D. Stefanescu. Handbook of force transducers. Springer, London, 2008. |
Materias: | Ingeniería > Tribología |
Divisiones: | Investigación y aplicaciones no nucleares > Física > Física de metales |
Código ID: | 634 |
Depositado Por: | Tamara Cárcamo |
Depositado En: | 30 Oct 2017 10:00 |
Última Modificación: | 30 Oct 2017 11:21 |
Personal del repositorio solamente: página de control del documento