Fases metaestables con estructura BCC en el sistema Mg-Nb-H. / Metaestable phases with BCC structure in the Mg-Nb-H.

Moro, María Belén (2017) Fases metaestables con estructura BCC en el sistema Mg-Nb-H. / Metaestable phases with BCC structure in the Mg-Nb-H. Maestría en Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
7Mb

Resumen en español

En esta tesis se estudian fases metaestables del sistema Mg-Nb con estructura cristalina bcc, sintetizadas por medio de molienda mecánica. La motivación del trabajo son las interesantes propiedades para almacenamiento de hidrógeno reportadas para el compuesto metaestable Mg_3Nb, obtenido en forma de película delgada. Los materiales se prepararon moliendo en atmósfera controlada mezclas Mg-Nb con distintas relaciones atómicas en el rango 0,5:1-3:1. Durante la síntesis se utilizaron estrategias combinadas de hidruración, deshidruración, y molienda para lograr una mezcla eficiente de los metales. Los materiales se caracterizaron por XRD, DSC, TG, TEM y SEM. De manera complementaria, se realizó el refinamiento de los difractogramas mediante el método de Rietveld. Asimismo, se estudió la interacción de las muestras con H2 utilizando técnicas volumétricas. El resultado principal del trabajo es la obtención de una solución sólida sustitucional Mg-Nb en el caso de la mezcla equimolar, que mantiene la estructura bcc del Nb. Esta fase tiene un parámetro de red (3,341 Å) mayor al del Nb metálico (3,302 Å), en acuerdo con el mayor radio atómico del Mg respecto al del Nb. La composición de esta solución se ha estimado en Mg_0,46Nb_0,54. Los materiales preparados con un mayor contenido de Mg muestran una fase bcc muy similar a la obtenida en el caso de la mezcla equimolar y un exceso de Mg, lo cual sugiere que no es posible incorporar más Mg en la estructura del Nb. Los materiales con defecto de magnesio presentan dos fases con estructura bcc y distinta proporción Mg:Nb, probablemente debidas a inhomogeneidad en la muestra. Las soluciones incorporan hidrógeno si se las mantiene a temperaturas en el rango 200-300 ºC y a presiones de H_2 de 6 MPa durante 3 días, dependiendo de la composición de la mezcla. Durante este proceso la estructura bcc se mantiene, pero aumenta el tamaño de celda. El contenido de hidrógeno absorbido por las soluciones es bajo, del orden del 0,3 % en peso en el caso de la mezcla equimolar hidrurada a 275 ºC. Los materiales con Mg en exceso no absorben hidrógeno, aún a temperaturas de 400 ºC; mientras que las mezclas con menor contenido de Mg son más reactivas, pudiendo hidrurarse la solución a 200 ºC. Tanto la solución sólida como su hidruro son metaestables, pero requieren temperaturas cercanas a 300 ºC para descomponerse.

Resumen en inglés

n this thesis, metastable phases of the Mg-Nb system with bcc crystalline structure synthesized by mechanical milling are studied. The motivation of the work are the interesting properties of hydrogen storage reported for the metastable compound Mg_3Nb, obtained as a thin film. The materials were prepared by milling Mg-Nb mixtures with atomic ratios in the 0.5:1-3:1 range in a controlled atmosphere. During the synthesis, combined strategies of hydriding, dehydriding and milling were used to achieve an efficient mixture of metals. The materials were characterized by XRD, DSC, TG, TEM, and SEM. In addition, the diffractograms were refined by the Rietveld method. The interaction of said samples with H2 was also studied, using volumetric techniques. The main result of the work is the synthesis of a solid substitutional solution Mg-Nb in the case of the equimolar mixture, which maintains the bcc structure of Nb. This phase has a lattice parameter (3.341 Å) larger than that of the metallic Nb (3.302 Å), in agreement with the larger atomic radius of Mg compared to Nb. The composition of this solution has been estimated to be Mg_0.46Nb_0.54. The materials prepared with a higher Mg content show a very similar bcc phase to the one obtained in the case of the equimolar mixture, and also an excess of Mg, suggesting that it is not possible to incorporate more Mg in the structure of Nb. Materials with lower magnesium content show two phases with bcc structure and different Mg:Nb ratio, probably due to inhomogeneity in the sample. The solid solutions incorporate hydrogen if maintained at temperatures in the range from 200 to 300 °C and at H_2 pressures of 6 MPa for 3 days, depending on the composition of the mixture. During this process the bcc structure is maintained, but the cell size increases. The hydrogen content absorbed by the solutions is low, of the order of 0.3 wt. % in the case of the equimolar mixture hydrided at 275 °C. Materials with excess of Mg do not absorb hydrogen, even at temperatures of 400 °C; wheareas the mixtures with lower Mg content are more reactive, and the solution can be hydrided at 200 °C. Both the solid solution and its hydride are metastable, but require temperatures close to 300 °C to decompose.

Tipo de objeto:Tesis (Maestría en Ingeniería)
Palabras Clave:Magnesium; Magnecso; Hydrogen; Hidrógeno; [Metastability; Metaestabilidad; Mechanical milling; Molienda mecánica; Hydrogen storage; Almacenamiento de hidrógeno; BCC structure]
Referencias:[1] Weidenthaler, C and Felderhoff, M. Solid-state hydrogen storage for mobile applications: Quo Vadis? Energy Environ. Sci., 4, 2495 – 2502, 2011. [2] Aguey-Zinsou, K. F. and Ares-Fernández, J. R. Hydrogen in magnesium: new perspectives toward functional stores. Energy Environ. Sci., 3, 526-543, 2010. [3] http://www.fgcsic.es/lychnos/es_es/articulos/hidrogeno_metodologias_de_produccion [4] Schlapbach, L. and Züttel, A. Hydrogen-storage materials for mobile applications. Nature, 414, 353-358, 2001. [5] Tzimas, E., Filiou, C. et al. Hydrogen Storage: State-of-the-art and future perspective. The Netherlands Directorate General Joint Research Centre (DG JRC) Institute for Energy Petten The Netherlands, 2003. [6] Rochow, Eugene G. Química inorgánica descriptiva, Editorial Reverté S.A., 1981. [7] Raymond, E., Kenneth, D., Whitten, W. 8ª ed. Mcgraw Hill. [8] Jain, I. P., Lal, C. and Jain, A. Hydrogen storage in Mg: A most promising material. International journal of hydrogen energy, 35, 5133–5144, 2010. [9] Sakintunaa, B., Lamari-Darkrim, F. and Hirscher, M. Metal hydride materials for solid hydrogen storage: A review. International Journal of Hydrogen Energy, 32, 1121 – 1140, 2007. [10] Tan, X., Wang, L., Holt, C. M. B., Zahiri, B., Eikerling, M. H. and Mitlin, D. Body centered cubic magnesium niobium hydride with facile room temperature absorption and four weight percent reversible. Phys. Chem. Chem. Phys., 14, 10904-10909, 2012. [11] Hanada, N., Ichikawa, T., Fujii, H. Catalytic effect of nanoparticle 3D-transition metals on hydrogen storage properties in magnesium hydride MgH2 prepared by mechanical milling. J Phys Chem B, 109, 7188–7194, 2005. [12] Yermakov, A. Y., Mushnikov, N. V., Uimin, M. A., Gaviko, V. S., Tankeev, A. P., Skripov, A. V. et al. Hydrogen reaction kinetics of Mg-based alloys synthesized by mechanical milling. J Alloys Compd, 425, 367–372, 2006. [13] Dufour, J. and Huot, J. Rapid activation, enhanced hydrogen sorption kinetics and air resistance in laminated Mg-Pd 2.5 at%. J Alloys Compd, 439, L5–7, 2007. [14] Reda, M. R. The effect of organic additive in Mg/graphite composite as hydrogen storage materials. J Alloys Compd, 480, 238–240, 2009. [15] Lu, K. Nanocrystalline metals crystallized from amorphous solids: nanocrystallization, structure, and properties. Mater Sci Eng Rep R, 16, 161–221, 1996. [16] Terzieva, M., Khrussanova, M. and Peshev, P. Hydriding and dehydriding characteristics of Mg–LaNi5 composite materials prepared by mechanical alloying. J Alloys Compd, 267(1–2), 235–239, 1998. [17] Liang, G., Wang, E. and Fang, S. Hydrogen absorption and desorption characteristics of mechanically milled Mg-35 wt% FeTi1.2 powders. J Alloys Compd, 223, 111–114, 1995. [18] Jain, I. P., Vijay, Y. K., Malhotra, L. K. and Uppadhyay, K. S. Hydrogen storage in thin film metal hydride-a review. Int J Hydrogen Energy, 13, 15–23, 1988. [19] Reilly, J. J. and Wiswall, R. H. Reaction hydrogen with alloys magnesium and nickel and formation of Mg2NiH4. Inorg Chem, 7, 2254, 1968. [20] Janot, R., Aymard, L., Rougier, A., Nazri, G. A. and Tarascon, J. M. Enhanced hydrogen sorption capacities and kinetics of Mg2Ni alloys by ball-milling with carbon and Pd coating. JMater Res, 18, 1749–1752, 2003. [21] Kodera, Y., Yamasaki, N., Yamamoto, T. et al. Hydrogen storage Mg2Ni alloy produced by induction field activated combustion synthesis. J Alloys Compd, 446, 138–141, 2007. [22] Pozzo, M. and Alfe, D. Structural properties and enthalpy of formation of magnesium hydride from quantum Monte Carlo calculations. Phys Rev B, 77, 104103, 2008. [23] Vajo JJ, Olson GL. Hydrogen storage in destabilized chemical systems. Scr Mater, 56, 829-34, 2007. [24] MacChi, C., Maurizio, C., Checchetto, R., Mariazzi, S., Ravelli, L., Egger, W. et al. Condensed Matter and Material Physics. Phys Rev B, 85 (21), art. Nº. 214117, 2012. [25] Pelletier, J. F., Huot, J., Sutton, M. et al. Hydrogen desorption mechanism in MgH2-Nb nanocomposites. Physical Review B, 63, 052103, 2001. [26] de Castro, J. F. R., Santos, A. F. et al. Structural characterization and dehydrogenation behavior of Mg–5 at.%Nb nano-composite processed by reactive milling. Journal of Alloys and Compounds, 376, 251–256, 2004. [27] Leinartas, K., Juzeliūnas E., Laurynas Staišiūnas, L. et al. Mg-Nb alloy films: Structure and stability in a balanced salt solution. Journal of Alloys and Compounds, 661, 322-330, 2016. [28] Staišiūnas, L., Leinartas, K., Samulevičienė, M. et al. Electrochemical and structural characterization of sputter-deposited Mg–Nb and Mg–Nb–Al–Zn alloy films, Journal of Solid State Electrochemistry, 17 (6), 1649–1656, 2013. [29] Smith, J.F. Mg-Nb (magnesium-niobium) binary alloy phase diagrams. In ASM Alloy Phase Diagrams Center, 2ª ed.; Massalski, T.B., Ed.; ASM International: Materials Park, OH, USA, 1990; Volume 3, p. 2526. [30] Nayeb-Hashemi AA, Clark JB (1988) Phase diagrams of binary magnesium alloys. ASM International, Materials Park, 44073. [31] Suryanarayana, C. Mechanical Alloying and Milling. 2ª ed. Marcel Dekker. USA, 2004. [32] Asano, K., Enoki, H. and Akiba, E. Synthesis process of Mg-Ti BCC alloys by means of ball milling. Journal of Alloy Compounds, 486, 115-123, 2009. [33] Zhang, Y., Tsushio, Y. et al. The study on binary Mg-Co hydrogen storage alloys with BCC phase. Journal of Alloy Compounds, 393, 147-153, 2005. [34] Chou, T. C., Nieh, T. G. and Wadsworth, J. Structural evolution in niobium beryllides during mechanical alloying. Scripta Metallurgia et Materialia, 27, 881-886, 1992. [35] Peng, Z., Suryanarayana, C. and Froes, F. H. Mechanical Alloying of Nb-Al Powders. Metallurgical and Materials Transactions A, 27A, 41, 1996. [36] Tracy, M. J. and Groza, J. R. Nanophase structure in Nb Rich – Nb3Al alloy by mechanical alloying. NanoStructured Materials, 1, 369-378, 1992. [37] Abad, M. D., Parker, S., Kiener, D. et al. Microstructure and mechanical properties of CuxNb1-x alloys prepared by ball milling and high pressure torsion compacting. Journal of Alloy Compounds, 630, 117-125, 2015. [38] Di, L. M. and Bakker, H. Nonequilibrium phase transformations of the Nb-Au alloy system by ball milling. Applied Physics Letters. 62 (4), 1993. [39] Lü L., Lai M., Mechanical Alloying. Kluwer Academic Publishers, Norwell, Massachussets, USA, 1998. [40] Cullity, B. D. Elements of X-Ray Diffraction. 2ª ed. Addison-Wesley Publishing Company Inc, USA, 1959. [41] Klug, H. P. y Alexander, L. E. X-ray diffraction procedures for polycrystalline and amorphous materials. Wiley, New York, 1954. [42] Young, R.A. The Rietveld Method, IUCR Monographs on crystallography. Oxford University Press, 1993. [43] Pecharsky, V. K. y Zavalij, P. Y. Fundamentals of powder diffraction and structural characterization of materials. 2a ed. Springer, 2009. [44] http://xml.ier.unam.mx/xml/ms/Doctos/Manual_RietveldML1.pdf. [45] Rodriguez-Carvajal, Juan. An introduction to the program FullProf 2000 (Version July2001). Laboratoire Léon Brillouin (CEA-CNRS). [46] Wendlandt, W. W. Thermal Analysis. 3ª ed. John Wiley & Sons Inc, USA, 1986. [47] Chartrand, P and Pelton, A. D. Critical Evaluation and Optimization of the Thermodynamic Properties and Phase Diagrams of the AI-Mg, AI-Sr, Mg-Sr, and AI-Mg-Sr. Systems. Journal of Phase Equilibria, 15 (6) 591-605, 1994 [22A]. [48] Goldstein, J., Newbury, D. E., Joy, D.C., Lyman, C. E., Echlin, P., Lifshin, E. et al. Scanning Electron Microscopy and X-Ray Microanalysis. 3ª ed. Springer, 2003. [49] Williams, D. B. & Carter, C. B. Transmission Electron Microscopy. Plenum Publishing Corporation. [50] Whan, R.E. Materials Characterization, American Society for Metals. 5º ed.,USA, 1998. [51] Watchman, J. B. Characterization of Materials. Butterworth-Heinemann, 1993. [52] http://tainstruments.com/pdf/literature/DSC_2910.pdf [53] Manchester, F. D. and Pitre, J. M. H-Nb (Hydrogen-Niobium) Part I: The Incoherent Phase Diagram. Phase Diagrams of Binary Hydrogen Alloys. Ed. ASM International, 2000. [54] Denton, A. R. and Ashcroft, N. W. Vegard's law. Phys. Rev. A. 43 (6): 3161-3164, 1991. [55] Zhu, C., Hosokai, S. et al. Shape-Controlled growth of MgH2/Mg Nano/Microstructures via hydriding Chemical Vapor Deposition. Cryst. Growth Des., 10 (12), 5123–5128, 2010. [56] Use of pattern decomposition or simulation to study microstructure: theoretical considerations”, J. Ian Langford. Capítulo 5 en Defect and microstructure analysis by diffraction, R. L. Snyder, J. Fiala, H. Bunge, International Union of Crystallography book series, Oxford University Press, 1999
Materias:Ingeniería > Ciencia de los materiales
Divisiones:Aplicaciones de la energía nuclear > Tecnología de materiales y dispositivos > Fisicoquímica de materiales
Código ID:636
Depositado Por:Tamara Cárcamo
Depositado En:27 Oct 2017 15:14
Última Modificación:30 Oct 2017 09:29

Personal del repositorio solamente: página de control del documento